
DTracing the Cloud

Lead Performance Engineer

brendan@joyent.com

Brendan Gregg

@brendangregg October, 2012

Monday, October 1, 12

mailto:rod@joyent.com
mailto:rod@joyent.com

DTracing the Cloud

Monday, October 1, 12

whoami

• G’Day, I’m Brendan

• These days I do performance analysis of the cloud

• I use the right tool for the job; sometimes traditional, often DTrace.

Traditional +
some DTrace

All DTrace

Monday, October 1, 12

DTrace

• DTrace is a magician

that conjures up

rainbows, ponies

and unicorns —

and does it all

entirely safely

and in production!

Monday, October 1, 12

DTrace

• Or, the version with fewer ponies:

• DTrace is a performance analysis and troubleshooting tool

• Instruments all software, kernel and user-land.

• Production safe. Designed for minimum overhead.

• Default in SmartOS, Oracle Solaris, Mac OS X and FreeBSD.
Two Linux ports are in development.

• There’s a couple of awesome books about it.

Monday, October 1, 12

illumos

• Joyent’s SmartOS uses (and contributes to) the illumos kernel.

• illumos is the most DTrace-featured kernel
• illumos community includes Bryan Cantrill & Adam Leventhal,

DTrace co-inventors (pictured on right).

Monday, October 1, 12

Agenda

• Theory

• Cloud types and DTrace visibility

• Reality

• DTrace and Zones

• DTrace Wins

• Tools

• DTrace Cloud Tools

• Cloud Analytics

• Case Studies

Monday, October 1, 12

Theory

Monday, October 1, 12

Cloud Types

• We deploy two types of virtualization on SmartOS/illumos:

• Hardware Virtualization: KVM

• OS-Virtualization: Zones

Monday, October 1, 12

Cloud Types, cont.

• Both virtualization types can co-exist:

Cloud TenantCloud Tenant

Host Kernel

Virtual Device Drivers

Guest Kernel

Apps

Guest Kernel

Apps

SmartOS

Linux Windows

Cloud Tenant

Apps

SmartOS

Monday, October 1, 12

Cloud Types, cont.

• KVM

• Used for Linux and Windows guests

• Legacy apps

• Zones

• Used for SmartOS guests (zones) called SmartMachines

• Preferred over Linux:
• Bare-metal performance

• Less memory overheads

• Better visibility (debugging)

• Global Zone == host, Non-Global Zone == guest

• Also used to encapsulate KVM guests (double-hull security)
Monday, October 1, 12

Cloud Types, cont.

• DTrace can be used for:

• Performance analysis: user- and kernel-level

• Troubleshooting

• Specifically, for the cloud:

• Performance effects of multi-tenancy

• Effectiveness and troubleshooting of performance isolation

• Four contexts:

• KVM host, KVM guest, Zones host, Zones guest

• FAQ: What can DTrace see in each context?

Monday, October 1, 12

• As the cloud operator (host):

Cloud TenantCloud TenantCloud Tenant

Hardware Virtualization: DTrace Visibility

Host Kernel

Virtual Device Drivers

Guest Kernel

Apps

Guest Kernel

Apps

Guest Kernel

Apps

SmartOS

Linux Linux Windows

Monday, October 1, 12

Hardware Virtualization: DTrace Visibility

• Host can see:

• Entire host: kernel, apps

• Guest disk I/O (block-interface-level)

• Guest network I/O (packets)

• Guest CPU MMU context register

• Host can’t see:

• Guest kernel

• Guest apps

• Guest disk/network context (kernel stack)

• ... unless the guest has DTrace, and access (SSH) is allowed

Monday, October 1, 12

• As a tenant (guest):

Cloud TenantCloud TenantCloud Tenant

Hardware Virtualization: DTrace Visibility

Host Kernel

Virtual Device Drivers

Guest Kernel

Apps

Guest Kernel

Apps

Guest Kernel

Apps

SmartOS

Linux An OS with DTrace Windows

Monday, October 1, 12

Hardware Virtualization: DTrace Visibility

• Guest can see:

• Guest kernel, apps, provided DTrace is available

• Guest can’t see:

• Other guests

• Host kernel, apps

Monday, October 1, 12

• As the cloud operator (host):

OS Virtualization: DTrace Visibility

Cloud TenantCloud TenantCloud Tenant

Host Kernel

Apps Apps Apps

SmartOS

SmartOSSmartOS SmartOS

Monday, October 1, 12

OS Virtualization: DTrace Visibility

• Host can see:

• Entire host: kernel, apps

• Entire guests: apps

Monday, October 1, 12

OS Virtualization: DTrace Visibility

• Operators can trivially see the entire cloud

• Direct visibility from host of all tenant processes

• Each blob is a tenant. The background shows one entire data
center (availability zone).

Monday, October 1, 12

OS Virtualization: DTrace Visibility

• Zooming in, 1 host,
10 guests:

• All can be examined
with 1 DTrace invocation;
don’t need multiple SSH
or API logins per-guest.
Reduces observability
framework overhead by
a factor of 10 (guests/host)

• This pic was just created
from a process snapshot (ps)
http://dtrace.org/blogs/brendan/2011/10/04/visualizing-the-cloud/

Monday, October 1, 12

http://dtrace.org/blogs/brendan/2011/10/04/visualizing-the-cloud/
http://dtrace.org/blogs/brendan/2011/10/04/visualizing-the-cloud/

• As a tenant (guest):

OS Virtualization: DTrace Visibility

Cloud TenantCloud TenantCloud Tenant

Host Kernel

Apps Apps Apps

SmartOS

SmartOSSmartOS SmartOS

Monday, October 1, 12

OS Virtualization: DTrace Visibility

• Guest can see:

• Guest apps

• Some host kernel (in guest context), as configured by
DTrace zone privileges

• Guest can’t see:

• Other guests

• Host kernel (in non-guest context), apps

Monday, October 1, 12

• Entire operating system stack (example):

Applications
DBs, all server types, ...

OS Stack DTrace Visibility

Device Drivers
Block Device Interface Ethernet

Volume Managers IP
UFS/... TCP/UDP

VFS Sockets
System Call Interface

System Libaries
Virtual Machines

ZFS

Devices

Monday, October 1, 12

• Entire operating system stack (example):

Applications
DBs, all server types, ...

OS Stack DTrace Visibility

Device Drivers
Block Device Interface Ethernet

Volume Managers IP
UFS/... TCP/UDP

VFS Sockets
System Call Interface

System Libaries
Virtual Machines

ZFS

Devices

DTrace

user

kernel

Monday, October 1, 12

Reality

Monday, October 1, 12

DTrace and Zones

• DTrace and Zones were developed in parallel for Solaris 10, and
then integrated.

• DTrace functionality for the Global Zone (GZ) was added first.

• This is the host context, and allows operators to use DTrace to
inspect all tenants.

• DTrace functionality for the Non-Global Zone (NGZ) was harder,
and some capabilities added later (2006):

• Providers: syscall, pid, profile

• This is the guest context, and allows customers to use DTrace
to inspect themselves only (can’t see neighbors).

Monday, October 1, 12

DTrace and Zones, cont.

Monday, October 1, 12

DTrace and Zones, cont.

• GZ DTrace works well.

• We found many issues in practice with NGZ DTrace:

• Can’t read fds[] to translate file descriptors. Makes using the
syscall provider more difficult.

dtrace -n 'syscall::read:entry /fds[arg0].fi_fs == "zfs"/ { @ =
quantize(arg2); }'
dtrace: description 'syscall::read:entry ' matched 1 probe
dtrace: error on enabled probe ID 1 (ID 4: syscall::read:entry): invalid
kernel access in predicate at DIF offset 64
dtrace: error on enabled probe ID 1 (ID 4: syscall::read:entry): invalid
kernel access in predicate at DIF offset 64
dtrace: error on enabled probe ID 1 (ID 4: syscall::read:entry): invalid
kernel access in predicate at DIF offset 64
dtrace: error on enabled probe ID 1 (ID 4: syscall::read:entry): invalid
kernel access in predicate at DIF offset 64
[...]

Monday, October 1, 12

DTrace and Zones, cont.

• Can’t read curpsinfo, curlwpsinfo, which breaks many scripts
(eg, curpsinfo->pr_psargs, or curpsinfo->pr_dmodel)

• Missing proc provider. Breaks this common one-liner:

dtrace -n 'syscall::exec*:return { trace(curpsinfo->pr_psargs); }'
dtrace: description 'syscall::exec*:return ' matched 1 probe
dtrace: error on enabled probe ID 1 (ID 103: syscall::exece:return): invalid
kernel access in action #1 at DIF offset 0
dtrace: error on enabled probe ID 1 (ID 103: syscall::exece:return): invalid
kernel access in action #1 at DIF offset 0
dtrace: error on enabled probe ID 1 (ID 103: syscall::exece:return): invalid
kernel access in action #1 at DIF offset 0
dtrace: error on enabled probe ID 1 (ID 103: syscall::exece:return): invalid
kernel access in action #1 at DIF offset 0
[...]

dtrace -n 'proc:::exec-success { trace(execname); }'
dtrace: invalid probe specifier proc:::exec-success { trace(execname); }:
probe description proc:::exec-success does not match any probes
[...]

Monday, October 1, 12

DTrace and Zones, cont.

• Missing vminfo, sysinfo, and sched providers.

• Can’t read cpu built-in.

• profile probes behave oddly. Eg, profile:::tick-1s only fires if
tenant is on-CPU at the same time as the probe would fire.
Makes any script that produces interval-output unreliable.

Monday, October 1, 12

DTrace and Zones, cont.

• These and other bugs have since been fixed for SmartOS/illumos
(thanks Bryan Cantrill!)

• Now, from a SmartOS Zone:

• Trivial DTrace one-liner, but represents much needed functionality.

dtrace -n 'proc:::exec-success { @[curpsinfo->pr_psargs] = count(); }
profile:::tick-5s { exit(0); }'
dtrace: description 'proc:::exec-success ' matched 2 probes
CPU ID FUNCTION:NAME
 13 71762 :tick-5s

 -bash 1
 /bin/cat -s /etc/motd 1
 /bin/mail -E 1
 /usr/bin/hostname 1
 /usr/sbin/quota 1
 /usr/bin/locale -a 2
 ls -l 3
 sh -c /usr/bin/locale -a 4

Monday, October 1, 12

DTrace Wins

• Aside from the NGZ issues, DTrace has worked well in the cloud
and solved numerous issues. For example (these are mostly from
operator context):

• http://dtrace.org/blogs/brendan/2012/08/09/10-performance-wins/

Monday, October 1, 12

http://dtrace.org/blogs/brendan/2012/08/09/10-performance-wins/
http://dtrace.org/blogs/brendan/2012/08/09/10-performance-wins/

DTrace Wins, cont.

• Not surprising given DTrace’s visibility...

Monday, October 1, 12

• For example, DTrace script counts from the DTrace book:

Applications
DBs, all server types, ...

DTrace Wins, cont.

Device Drivers
Block Device Interface Ethernet

Volume Managers IP
UFS/... TCP/UDP

VFS Sockets
System Call Interface

System Libaries
Virtual Machines

ZFS

Devices

10
17

10+
13

21

8
16
4
3

8
4

10+

Monday, October 1, 12

Tools

Monday, October 1, 12

Ad-hoc

• Write DTrace scripts as needed

• Execute individually on hosts, or,

• With ah-hoc scripting, execute across all hosts (cloud)

• My ad-hoc tools include:

• DTrace Cloud Tools

• Flame Graphs

Monday, October 1, 12

Ad-hoc: DTrace Cloud Tools

• Contains around 70 ad-hoc DTrace tools written by myself for
operators and cloud customers.

• Customer scripts are linked from the “smartmachine” directory
• https://github.com/brendangregg/dtrace-cloud-tools

./fs/metaslab_free.d

./fs/spasync.d

./fs/zfsdist.d

./fs/zfsslower.d

./fs/zfsslowzone.d

./fs/zfswhozone.d

./fs/ziowait.d

./mysql/innodb_pid_iolatency.d

./mysql/innodb_pid_ioslow.d

./mysql/innodb_thread_concurrency.d

./mysql/libmysql_pid_connect.d

./mysql/libmysql_pid_qtime.d

./mysql/libmysql_pid_snoop.d

./mysql/mysqld_latency.d

./mysql/mysqld_pid_avg.d

./mysql/mysqld_pid_filesort.d

./mysql/mysqld_pid_fslatency.d
[...]

./net/dnsconnect.d

./net/tcp-fbt-accept_sdc5.d

./net/tcp-fbt-accept_sdc6.d

./net/tcpconnreqmaxq-pid_sdc5.d

./net/tcpconnreqmaxq-pid_sdc6.d

./net/tcpconnreqmaxq_sdc5.d

./net/tcpconnreqmaxq_sdc6.d

./net/tcplistendrop_sdc5.d

./net/tcplistendrop_sdc6.d

./net/tcpretranshosts.d

./net/tcpretransport.d

./net/tcpretranssnoop_sdc5.d

./net/tcpretranssnoop_sdc6.d

./net/tcpretransstate.d

./net/tcptimewait.d

./net/tcptimewaited.d

./net/tcptimretransdropsnoop_sdc6.d
[...]

Monday, October 1, 12

https://github.com/brendangregg/dtrace-cloud-tools
https://github.com/brendangregg/dtrace-cloud-tools

Ad-hoc: DTrace Cloud Tools, cont.

• For example, tcplistendrop.d traces each kernel-dropped SYN due
to TCP backlog overflow (saturation):

• Can explain multi-second client connect latency.

./tcplistendrop.d
TIME SRC-IP PORT DST-IP PORT
2012 Jan 19 01:22:49 10.17.210.103 25691 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.108 18423 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.116 38883 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.117 10739 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.112 27988 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.106 28824 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.12.143.16 65070 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.100 56392 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.99 24628 -> 192.192.240.212 80
[...]

Monday, October 1, 12

Ad-hoc: DTrace Cloud Tools, cont.

• tcplistendrop.d processes IP and TCP headers from the in-kernel
packet buffer:

• Since this traces the fbt provider (kernel), it is operator only.

fbt::tcp_input_listener:entry { self->mp = args[1]; }
fbt::tcp_input_listener:return { self->mp = 0; }

mib:::tcpListenDrop
/self->mp/
{
 this->iph = (ipha_t *)self->mp->b_rptr;
 this->tcph = (tcph_t *)(self->mp->b_rptr + 20);
 printf("%-20Y %-18s %-5d -> %-18s %-5d\n", walltimestamp,
 inet_ntoa(&this->iph->ipha_src),
 ntohs(*(uint16_t *)this->tcph->th_lport),
 inet_ntoa(&this->iph->ipha_dst),
 ntohs(*(uint16_t *)this->tcph->th_fport));
}

Monday, October 1, 12

Ad-hoc: DTrace Cloud Tools, cont.

tcp_conn_req_cnt_q distributions:

 cpid:3063 max_q:8
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 1
 1 | 0

 cpid:11504 max_q:128
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 7279
 1 |@@ 405
 2 |@ 255
 4 |@ 138
 8 | 81
 16 | 83
 32 | 62
 64 | 67
 128 | 34
 256 | 0

tcpListenDrops:
 cpid:11504 max_q:128 34

Text

• A related example: tcpconnreqmaxq-pid*.d prints a summary, showing
backlog lengths (on SYN arrival), the current max, and drops:

Monday, October 1, 12

Ad-hoc: Flame Graphs

• Visualizing CPU time using DTrace profiling and SVG

Monday, October 1, 12

Product

• Cloud observability products including DTrace:

• Joyent’s Cloud Analytics

Monday, October 1, 12

Product: Cloud Analytics

• Syscall latency across the entire cloud, as a heat map!

Monday, October 1, 12

Product: Cloud Analytics, cont.

• For operators and cloud customers

• Observes entire cloud, in real-time

• Latency focus, including heat maps

• Instrumentation: DTrace and kstats

• Front-end: Browser JavaScript

• Back-end: node.js and C

Monday, October 1, 12

Product: Cloud Analytics, cont.

• Creating an instrumentation:

Monday, October 1, 12

Product: Cloud Analytics, cont.

• Aggregating data across cloud:

Monday, October 1, 12

Product: Cloud Analytics, cont.

• Visualizing data:

Monday, October 1, 12

Product: Cloud Analytics, cont.

• By-host breakdowns are essential:

Switch from
cloud to host
in one click

Monday, October 1, 12

Case Studies

Monday, October 1, 12

Case Studies

• Slow disks

• Scheduler

Monday, October 1, 12

Slow disks

• Customer complains of poor MySQL performance.

• Noticed disks are busy via iostat-based monitoring software,
and have blamed noisy neighbors causing disk I/O contention.

• Multi-tenancy and performance isolation are common cloud issues

Monday, October 1, 12

Slow disks, cont.

• Unix 101

VFS

Block Device Interface

ZFS ...

Disks

Process
Syscall
Interface

Monday, October 1, 12

Slow disks, cont.

• Unix 101

VFS

Block Device Interface

ZFS ...

Disks

Process
Syscall
Interface

iostat(1)
often async:
write buffering,
read ahead

sync.

Monday, October 1, 12

Slow disks, cont.

• By measuring FS latency in application-synchronous context we
can either confirm or rule-out FS/disk origin latency.

• Including expressing FS latency during MySQL query, so that
the issue can be quantified, and speedup calculated.

• Ideally, this would be possible from within the SmartMachine, so
both customer and operator can run the DTrace script. This is
possible using:

• pid provider: trace and time MySQL FS functions

• syscall provider: trace and time read/write syscalls for FS file
descriptors (hence needing fds[].fi_fs; otherwise cache open())

Monday, October 1, 12

Slow disks, cont.

• mysql_pid_fslatency.d from dtrace-cloud-tools:
./mysqld_pid_fslatency.d -n 'tick-10s { exit(0); }' -p 7357
Tracing PID 7357... Hit Ctrl-C to end.
MySQL filesystem I/O: 55824; latency (ns):

 read
 value ------------- Distribution ------------- count
 1024 | 0
 2048 |@@@@@@@@@@ 9053
 4096 |@@@@@@@@@@@@@@@@@ 15490
 8192 |@@@@@@@@@@@ 9525
 16384 |@@ 1982
 32768 | 121
 65536 | 28
 131072 | 6
 262144 | 0

 write
 value ------------- Distribution ------------- count
 2048 | 0
 4096 | 1
 8192 |@@@@@@ 3003
 16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 13532
 32768 |@@@@@ 2590
 65536 |@ 370
 131072 | 58
 262144 | 27
 524288 | 12
 1048576 | 1
 2097152 | 0
 4194304 | 10
 8388608 | 14
 16777216 | 1
 33554432 | 0

Monday, October 1, 12

Slow disks, cont.

• mysql_pid_fslatency.d from dtrace-cloud-tools:
./mysqld_pid_fslatency.d -n 'tick-10s { exit(0); }' -p 7357
Tracing PID 7357... Hit Ctrl-C to end.
MySQL filesystem I/O: 55824; latency (ns):

 read
 value ------------- Distribution ------------- count
 1024 | 0
 2048 |@@@@@@@@@@ 9053
 4096 |@@@@@@@@@@@@@@@@@ 15490
 8192 |@@@@@@@@@@@ 9525
 16384 |@@ 1982
 32768 | 121
 65536 | 28
 131072 | 6
 262144 | 0

 write
 value ------------- Distribution ------------- count
 2048 | 0
 4096 | 1
 8192 |@@@@@@ 3003
 16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 13532
 32768 |@@@@@ 2590
 65536 |@ 370
 131072 | 58
 262144 | 27
 524288 | 12
 1048576 | 1
 2097152 | 0
 4194304 | 10
 8388608 | 14
 16777216 | 1
 33554432 | 0

DRAM
cache hits

Disk I/O

Monday, October 1, 12

Slow disks, cont.

• mysql_pid_fslatency.d is about 30 lines of DTrace:
pid$target::os_file_read:entry,
pid$target::os_file_write:entry,
pid$target::my_read:entry,
pid$target::my_write:entry
{
 self->start = timestamp;
}

pid$target::os_file_read:return { this->dir = "read"; }
pid$target::os_file_write:return { this->dir = "write"; }
pid$target::my_read:return { this->dir = "read"; }
pid$target::my_write:return { this->dir = "write"; }

pid$target::os_file_read:return,
pid$target::os_file_write:return,
pid$target::my_read:return,
pid$target::my_write:return
/self->start/
{
 @time[this->dir] = quantize(timestamp - self->start);
 @num = count();
 self->start = 0;
}

dtrace:::END
{
 printa("MySQL filesystem I/O: %@d; latency (ns):\n", @num);
 printa(@time);
 clear(@time); clear(@num);
}

Monday, October 1, 12

Slow disks, cont.

• mysql_pid_fslatency.d is about 30 lines of DTrace:
pid$target::os_file_read:entry,
pid$target::os_file_write:entry,
pid$target::my_read:entry,
pid$target::my_write:entry
{
 self->start = timestamp;
}

pid$target::os_file_read:return { this->dir = "read"; }
pid$target::os_file_write:return { this->dir = "write"; }
pid$target::my_read:return { this->dir = "read"; }
pid$target::my_write:return { this->dir = "write"; }

pid$target::os_file_read:return,
pid$target::os_file_write:return,
pid$target::my_read:return,
pid$target::my_write:return
/self->start/
{
 @time[this->dir] = quantize(timestamp - self->start);
 @num = count();
 self->start = 0;
}

dtrace:::END
{
 printa("MySQL filesystem I/O: %@d; latency (ns):\n", @num);
 printa(@time);
 clear(@time); clear(@num);
}

Thank you MySQL!
If not that easy,
try syscall with fds[]

Monday, October 1, 12

Slow disks, cont.

• Going for the slam dunk:

• Shows FS latency as a proportion of Query latency

• mysld_pid_fslatency_slowlog*.d in dtrace-cloud-tools

./mysqld_pid_fslatency_slowlog.d 29952
2011 May 16 23:34:00 filesystem I/O during query > 100 ms: query 538 ms,
fs 509 ms, 83 I/O
2011 May 16 23:34:11 filesystem I/O during query > 100 ms: query 342 ms,
fs 303 ms, 75 I/O
2011 May 16 23:34:38 filesystem I/O during query > 100 ms: query 479 ms,
fs 471 ms, 44 I/O
2011 May 16 23:34:58 filesystem I/O during query > 100 ms: query 153 ms,
fs 152 ms, 1 I/O
2011 May 16 23:35:09 filesystem I/O during query > 100 ms: query 383 ms,
fs 372 ms, 72 I/O
2011 May 16 23:36:09 filesystem I/O during query > 100 ms: query 406 ms,
fs 344 ms, 109 I/O
2011 May 16 23:36:44 filesystem I/O during query > 100 ms: query 343 ms,
fs 319 ms, 75 I/O
2011 May 16 23:36:54 filesystem I/O during query > 100 ms: query 196 ms,
fs 185 ms, 59 I/O
2011 May 16 23:37:10 filesystem I/O during query > 100 ms: query 254 ms,
fs 209 ms, 83 I/O

Monday, October 1, 12

Slow disks, cont.

• The cloud operator can trace kernel internals. Eg, the VFS->ZFS
interface using zfsslower.d:

• My go-to tool (does all apps). This example showed if there were
VFS-level I/O > 10ms? (arg == 10)

• Stupidly easy to do

./zfsslower.d 10
TIME PROCESS D KB ms FILE
2012 Sep 27 13:45:33 zlogin W 0 11 /zones/b8b2464c/var/adm/wtmpx
2012 Sep 27 13:45:36 bash R 0 14 /zones/b8b2464c/opt/local/bin/zsh
2012 Sep 27 13:45:58 mysqld R 1024 19 /zones/b8b2464c/var/mysql/ibdata1
2012 Sep 27 13:45:58 mysqld R 1024 22 /zones/b8b2464c/var/mysql/ibdata1
2012 Sep 27 13:46:14 master R 1 6 /zones/b8b2464c/root/opt/local/
libexec/postfix/qmgr
2012 Sep 27 13:46:14 master R 4 5 /zones/b8b2464c/root/opt/local/etc/
postfix/master.cf
[...]

Monday, October 1, 12

Slow disks, cont.

• zfs_read() entry -> return; same for zfs_write().

• zfsslower.d originated from the DTrace book

[...]
fbt::zfs_read:entry,
fbt::zfs_write:entry
{
 self->path = args[0]->v_path;
 self->kb = args[1]->uio_resid / 1024;
 self->start = timestamp;
}

fbt::zfs_read:return,
fbt::zfs_write:return
/self->start && (timestamp - self->start) >= min_ns/
{
 this->iotime = (timestamp - self->start) / 1000000;
 this->dir = probefunc == "zfs_read" ? "R" : "W";
 printf("%-20Y %-16s %1s %4d %6d %s\n", walltimestamp,
 execname, this->dir, self->kb, this->iotime,
 self->path != NULL ? stringof(self->path) : "<null>");
}
[...]

Monday, October 1, 12

Slow disks, cont.

• The operator can use deeper tools as needed. Anywhere in ZFS.
dtrace -n 'io:::start { @[stack()] = count(); }'
dtrace: description 'io:::start ' matched 6 probes
^C
 genunix`ldi_strategy+0x53
 zfs`vdev_disk_io_start+0xcc
 zfs`zio_vdev_io_start+0xab
 zfs`zio_execute+0x88
 zfs`zio_nowait+0x21
 zfs`vdev_mirror_io_start+0xcd
 zfs`zio_vdev_io_start+0x250
 zfs`zio_execute+0x88
 zfs`zio_nowait+0x21
 zfs`arc_read_nolock+0x4f9
 zfs`arc_read+0x96
 zfs`dsl_read+0x44
 zfs`dbuf_read_impl+0x166
 zfs`dbuf_read+0xab
 zfs`dmu_buf_hold_array_by_dnode+0x189
 zfs`dmu_buf_hold_array+0x78
 zfs`dmu_read_uio+0x5c
 zfs`zfs_read+0x1a3
 genunix`fop_read+0x8b
 genunix`read+0x2a7
 143

Monday, October 1, 12

Slow disks, cont.

• Cloud Analytics, for either operator or customer, can be used to
examine the full latency distribution, including outliers:

Outliers

This heat map shows FS latency for an entire cloud data center

Monday, October 1, 12

Slow disks, cont.

• Found that the customer problem was not disks or FS (99% of the
time), but was CPU usage during table joins.

• On Joyent’s IaaS architecture, it’s usually not the disks or
filesystem; useful to rule that out quickly.

• Some of the time it is, due to:

• Bad disks (1000+ms I/O)

• Controller issues (PERC)

• Big I/O (how quick is a 40 Mbyte read from cache?)

• Other tenants (benchmarking!). Much less for us now with ZFS
I/O throttling (thanks Bill Pijewski), used for disk performance
isolation in the SmartOS cloud.

Monday, October 1, 12

Slow disks, cont.

• Customer resolved real issue

• Prior to DTrace analysis, had spent months of poor performance
believing disks were to blame

Monday, October 1, 12

Kernel scheduler

• Customer problem: occasional latency outliers

• Analysis: no smoking gun. No slow I/O or locks, etc. Some random
dispatcher queue latency, but with CPU headroom.

$ prstat -mLc 1
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 17930 103 21 7.6 0.0 0.0 0.0 53 16 9.1 57K 1 73K 0 beam.smp/265
 17930 103 20 7.0 0.0 0.0 0.0 57 16 0.4 57K 2 70K 0 beam.smp/264
 17930 103 20 7.4 0.0 0.0 0.0 53 18 1.7 63K 0 78K 0 beam.smp/263
 17930 103 19 6.7 0.0 0.0 0.0 60 14 0.4 52K 0 65K 0 beam.smp/266
 17930 103 2.0 0.7 0.0 0.0 0.0 96 1.6 0.0 6K 0 8K 0 beam.smp/267
 17930 103 1.0 0.9 0.0 0.0 0.0 97 0.9 0.0 4 0 47 0 beam.smp/280
[...]

Monday, October 1, 12

Kernel scheduler, cont.

• Unix 101

CPUR R R

ORun Queue

Scheduler

CPUR R R

ORun Queue

R

preemption

Threads:
R = Ready to run
O = On-CPU

Monday, October 1, 12

Kernel scheduler, cont.

• Unix 102

• TS (and FSS) check for CPU starvation

CPU
R R R

ORun Queue

RR RR

Priority Promotion

CPU
Starvation

Monday, October 1, 12

Kernel scheduler, cont.

• Experimentation: run 2 CPU-bound threads, 1 CPU

• Subsecond offset heat maps:

Monday, October 1, 12

Kernel scheduler, cont.

• Experimentation: run 2 CPU-bound threads, 1 CPU

• Subsecond offset heat maps:

THIS
SHOULDNT
HAPPEN

Monday, October 1, 12

Kernel scheduler, cont.

• Worst case (4 threads 1 CPU), 44 sec dispq latency

dtrace -n 'sched:::off-cpu /execname == "burn1"/ { self->s = timestamp; }
 sched:::on-cpu /self->s/ { @["off-cpu (ms)"] =
 lquantize((timestamp - self->s) / 1000000, 0, 100000, 1000); self->s = 0; }'

 off-cpu (ms)
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 387184
 1000 | 2256
 2000 | 1078
 3000 | 862
 4000 | 1070
 5000 | 637
 6000 | 535
[...]
 41000 | 3
 42000 | 2
 43000 | 2
 44000 | 1
 45000 | 0

Expected
Bad
Inconceivable

ts_maxwait @pri 59 = 32s, FSS uses ?
Monday, October 1, 12

Kernel scheduler, cont.

• FSS scheduler class bug:

• FSS uses a more complex technique to avoid CPU starvation. A
thread priority could stay high and on-CPU for many seconds
before the priority is decayed to allow another thread to run.

• Analyzed (more DTrace) and fixed (thanks Jerry Jelinek)

• Under (too) high CPU load, your runtime can be bound by how
well you schedule, not do work

• Cloud workloads scale fast, hit (new) scheduler issues

Monday, October 1, 12

Kernel scheduler, cont.

• Required the operator of the cloud to debug

• Even if the customer doesn’t have kernel-DTrace access in the
zone, they still benefit from the cloud provider having access

• Ask your cloud provider to trace scheduler internals, in case
you have something similar

• On Hardware Virtualization, scheduler issues can be terrifying

Monday, October 1, 12

• Each kernel believes they own the hardware.

Cloud TenantCloud TenantCloud Tenant

Kernel scheduler, cont.

Host Kernel

VCPU

Guest Kernel

Apps

Guest Kernel

Apps

Guest Kernel

Apps

CPU CPU CPU CPU

VCPU VCPU VCPU VCPU VCPU

Monday, October 1, 12

• One scheduler:

Cloud TenantCloud TenantCloud Tenant

Kernel scheduler, cont.

Host Kernel

VCPU

Guest Kernel

Apps

Guest Kernel

Apps

Guest Kernel

Apps

CPU CPU CPU CPU

VCPU VCPU VCPU VCPU VCPU

Monday, October 1, 12

• Many schedulers. Kernel fight!

Cloud TenantCloud TenantCloud Tenant

Kernel scheduler, cont.

Host Kernel

VCPU

Guest Kernel

Apps

Guest Kernel

Apps

Guest Kernel

Apps

CPU CPU CPU CPU

VCPU VCPU VCPU VCPU VCPU

Monday, October 1, 12

Kernel scheduler, cont.

• Had a networking performance issue on KVM; debugged using:
• Host: DTrace

• Guests: Prototype DTrace for Linux, SystemTap

• Took weeks to debug
the kernel scheduler
interactions and
determine the fix
for an 8x win.

• Office wall
(output from many
perf tools, including
Flame Graphs):

Monday, October 1, 12

Thank you!

• http://dtrace.org/blogs/brendan

• email brendan@joyent.com

• twitter @brendangregg

• Resources:

• http://www.slideshare.net/bcantrill/dtrace-in-the-nonglobal-zone

• http://dtrace.org/blogs/dap/2011/07/27/oscon-slides/

• https://github.com/brendangregg/dtrace-cloud-tools

• http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
• http://dtrace.org/blogs/brendan/2012/08/09/10-performance-wins/

• http://dtrace.org/blogs/brendan/2011/10/04/visualizing-the-cloud/

• Thanks @dapsays and team for Cloud Analytics, Bryan Cantrill for DTrace
fixes, @rmustacc for KVM perf war, and @DeirdreS for another great event.

Monday, October 1, 12

mailto:brendan@joyent.com
mailto:brendan@joyent.com
http://www.slideshare.net/bcantrill/dtrace-in-the-nonglobal-zone
http://www.slideshare.net/bcantrill/dtrace-in-the-nonglobal-zone
http://dtrace.org/blogs/dap/2011/07/27/oscon-slides/
http://dtrace.org/blogs/dap/2011/07/27/oscon-slides/
http://dtrace.org/blogs/dap/2011/07/27/oscon-slides/
http://dtrace.org/blogs/dap/2011/07/27/oscon-slides/
http://dtrace.org/blogs/dap/2011/07/27/oscon-slides/
http://dtrace.org/blogs/dap/2011/07/27/oscon-slides/
http://dtrace.org/blogs/brendan/2012/08/09/10-performance-wins/
http://dtrace.org/blogs/brendan/2012/08/09/10-performance-wins/
http://dtrace.org/blogs/brendan/2011/10/04/visualizing-the-cloud/
http://dtrace.org/blogs/brendan/2011/10/04/visualizing-the-cloud/

