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Abstract
This paper presents new metrics for monitoring disk utilisation by process for the Solaris 10™ operating
environment  by  Sun  Microsystems™. How  to  measure  and  understand  disk  utilisation  by  process  is
discussed,  as  well  as  the  origin of  the measurements.  Facilities  used to monitor  disk utilisation include
procfs, TNF tracing and DTrace. 1

1 This is one part of a series of papers I'm planning that cover performance monitoring metrics.

Solaris Performance Metrics – Disk Utilisation by Process 1



Table of Contents
Abstract............................................................................................................................................................... 1
1. Introduction.....................................................................................................................................................4
2. Strategies.........................................................................................................................................................5

2.1. Existing Tools....................................................................................................................................5
2.2. Additional Tools................................................................................................................................ 5
2.3. Available Strategies........................................................................................................................... 5
2.4. Monitoring Goals...............................................................................................................................5
2.4. Not Covered.......................................................................................................................................5

3. Details............................................................................................................................................................. 6
3.1. Utilisation.......................................................................................................................................... 6

3.1.1. iostat..................................................................................................................................... 6
3.1.2. procfs.................................................................................................................................... 7

The ps command.................................................................................................................. 7
The prusage struct................................................................................................................ 8
Testing pr_inblk, pr_oublk.................................................................................................10
Testing pr_ioch...................................................................................................................10
Disk I/O size is the wrong track......................................................................................... 11
Sequential Disk I/O............................................................................................................ 11
Random Disk I/O................................................................................................................12

3.1.3. TNF  tracing....................................................................................................................... 13
strategy, biodone................................................................................................................ 13
prex, tnfxtract, tnfdump..................................................................................................... 14
Using block addresses........................................................................................................ 15
Using delta times................................................................................................................16
Using sizes and counts....................................................................................................... 16

3.1.4. I/O Time Algorithms.......................................................................................................... 17
Simple Disk Event..............................................................................................................17
Concurrent Disk Events 1.................................................................................................. 18
Concurrent Disk Events 2.................................................................................................. 19
Sparse Disk Events.............................................................................................................20
Adaptive Disk I/O Time Algorithm................................................................................... 21
Taking things too far.......................................................................................................... 21
Other Response Times....................................................................................................... 22
Time by Layer.................................................................................................................... 22
Completion is Asynchronous............................................................................................. 23
Understanding psio's values............................................................................................... 24
Asymmetric vs Symmetric Utilisation............................................................................... 24
Bear in mind percentages over time...................................................................................25
Duelling Banjos and Target Fixation.................................................................................25
What %utilisation is bad?.................................................................................................. 26
The revenge of random I/O................................................................................................ 27

3.1.5. More TNF tracing...............................................................................................................28
taz....................................................................................................................................... 28
TNFView............................................................................................................................29
TNF tracing dangers...........................................................................................................29

3.1.6. DTrace................................................................................................................................ 30
fbt probes............................................................................................................................30
io probes............................................................................................................................. 31
I/O size one liner................................................................................................................ 32
iotop....................................................................................................................................33
iosnoop............................................................................................................................... 36
Plotting disk activity.......................................................................................................... 38

Solaris Performance Metrics – Disk Utilisation by Process 2



Plotting Concurrent Activity..............................................................................................40
Other DTrace tools.............................................................................................................41

4. Conclusion.................................................................................................................................................... 44
5. References.....................................................................................................................................................44
6. Acknowledgements....................................................................................................................................... 44
7. Glossary........................................................................................................................................................ 45

Copyright (c) 2005 by Brendan D. Gregg. 

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0  or  later  (the  latest  version  is  presently  available  at  http://www.opencontent.org/openpub/).  Distribution  of
substantively modified  versions  of  this  document  is  prohibited  without  the  explicit  permission  of  the  copyright
holder. Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior
permission is obtained from the copyright holder. Also, to help with OPL requirements: the publisher's name is the
author's name, and the original location is http://www.brendangregg.com. 

This document is distributed in the hope that it will be useful. This document has been provided on an “as is” basis,
WITHOUT WARRANTY OF ANY KIND,  either  expressed  or  implied,  without  even  the  implied  warranty  of
merchantability or fitness for a particular purpose. This document could include technical inaccuracies, typographical
errors and even spelling errors (or at the very least, Australian spelling).

This document was NOT written by Sun Microsystems, and opinions expressed are not those of Sun Microsystems
unless by coincidence. This text has been written by a volunteer of the OpenSolaris community.

Solaris Performance Metrics – Disk Utilisation by Process 3



1. Introduction

Checking CPU usage by process is a routine task for Solaris system administrators, tools such as prstat or
ps provide a number of CPU metrics. However checking disk usage by process has been difficult to monitor
on Solaris 9 and earlier, with no Solaris command providing such statistics.2

These days disk I/O is often the bottleneck in a system, spurring the
use of volume managers, disk arrays and storage area networks. For
an administrator to identify disk I/O as the bottleneck, the iostat
command can be used. An artful system administrator can interpret
extra details from iostat's output, such as if the disk activity is likely
to be random or sequential. But there is no way to determine disk
I/O details by process, nor does iostat have a switch for that3.

Now, there are some Neanderthal-like ways to bash this data from the system. The most entertaining are,

• Freeze every process on the system in turn while watching iostat. If the disk load vanishes you
have found your culprit.

• Create a separate mount point for every process in the system, from which the applications are run.
Now iostat -xnmp has separate details per process.

This paper will focus on sensible ways to monitor disk usage by process. 

A variety of monitoring solutions will be presented with their strengths and weaknesses discussed. Since we
will be introducing new techniques, the origin of the data used and the algorithms applied will be covered
carefully.  A short  summary for  various background topics  such as procfs and DTrace will  be provided.
Apologies to experienced readers who may encounter a few pages of recap.

This paper  is  one in a series  of  papers  covering performance monitoring metrics  in Solaris.  The topics
covered in this paper are highlighted in the following matrix4,

Resource Qualifier Scope

CPU Utilisation by System
Memory Saturation by Process
Disk Errors
Network

Table 1. Resource Monitoring Matrix

Rather  than  use  the  term “usage”,  the  terms “utilisation”  and “saturation”  will  be  used  along with  the
following descriptions. This paper in particular covers: Disk Utilisation by Process.

Utilisation5 can be measured as a percentage of the resource that was in use. This is usually presented as an
average measured over a time interval.

Saturation is a measure of the work that has queued waiting for the resource. This is usually presented as an
average over time, however it can also be measured at a particular point in time. 

2 If you are using  VxFS, you can use vxstat  for per process disk statistics.
3 At least, not as of Solaris 10.
4 Other combinations will be covered in future papers.
5 This is the Australian spelling, other countries may spell this as “Utilization”.
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Question
On Solaris 9 or earlier, how do you
measure disk I/O by process?

No, iostat does not have a switch
for that...



2. Strategies

Lets start with a summary of techniques available to measure disk I/O utilisation by process.

2.1. Existing Tools

There are no tools in Solaris that achieve this directly, for example a switch on prstat or iostat.

2.2. Additional Tools6

• pea.se from the SE Toolkit7 reports on the size of disk activity.

• prusage is a Perl/Kstat tool8 to report on the size of disk activity.

• psio is a Perl/TNF tracing tool9 that can report the size and time consumed by disk activity.

• iosnoop from the DTraceToolkit10 is a shell/DTrace tool to print disk events, size and time.

• iotop from the DTraceToolkit is a shell/DTrace tool to report a summary of disk size or time.

2.3. Available Strategies

• procfs – the process filesystem contains information on disk size totals.

• TNF tracing – kernel tracing lets us monitor disk events, including size and time.

• DTrace – dynamic tracing lets us safely monitor disk events, including size and time.

2.4. Monitoring Goals

• Disk Utilisation by process – a value to represent disk resource consumption.

2.4. Not Covered

• Performance Tuning – After identifying a problem, how to fix it. This would be a good topic for a
separate paper, however it would need to cover many application specific strategies.11

• Advanced Storage Devices – such as volume managers, storage area networks and disk arrays.
Many of the algorithms presented still apply to these devices, however specific eccentricities are
not covered.

6 The tools we focus on are both freeware and opensource.  So there  are no license fees,  and the  source can be
inspected before use.

7 http://www.sunfreeware.com is the current location of the SE Toolkit.
8 http://www.brendangregg.com/psio.html
9 also at http://www.brendangregg.com/psio.html
10 http://www.opensolaris.org/os/community/dtrace/dtracetoolkit, or http://www.brendangregg.com/dtrace.html
11 And there are already some good books on this. See section 5. References.
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3. Details

A close look at existing tools, additional tools, strategies and solutions.

3.1. Utilisation

How much is each process utilising the disks. We could either examine the size of the disk events, or the
service  times of  the  disk events.  We are  after  a value  that  can be used for  comparisons,  such as  a
percentage.

3.1.1. iostat

Since we are talking disk usage, we'll start with our old friend iostat,

This gives us disk I/O utilisation and saturation systemwide, and
is  useful  to first  identify that  a problem exists.12 Just  a quick
rundown while we are here: utilisation is best determined from
the percent  busy  column “%b”,  and  saturation  from the  wait
queue length column “wait”. The first output is a summary since
boot, followed by samples per interval. 

We  are  interested  in  disk  I/O  by  process,  however  iostat
does not have a “by process” switch.  iostat fetches its info
from Kstat13,  the  Kernel  statistics  framework.  Kstat  is  a  great  resource,  and  is  used  by  tools  such  as
vmstat,  mpstat and  sar.  While  Kstat  does  track  statistics  by  disk  and  by CPU,  it  does  not track
statistics by process – that's what procfs is for.

12 See my forthcoming paper titled “Solaris Performance Monitoring – Disk by System”.
13 For info on Kstat, try a “man -l kstat” on Solaris.
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$ iostat -xnmpz 5

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

    0.0    0.0    0.2    0.1  0.0  0.0   12.4    6.3   0   0 c0t0d0

    0.0    0.0    0.2    0.1  0.0  0.0   12.4    6.2   0   0 c0t0d0s0 (/)

    0.0    0.0    0.0    0.0  0.0  0.0   39.0   20.4   0   0 c0t0d0s1

    0.0    0.0    0.0    0.0  0.0  0.0    2.2    9.6   0   0 c0t0d0s3 (/var)

    0.0    0.0    0.0    0.0  0.0  0.0    0.0    3.0   0   0 c0t2d0

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

  167.9    0.2  217.1    0.2  0.0  0.6    0.0    3.5   0  59 c0t0d0

  166.3    0.2  204.2    0.2  0.0  0.6    0.0    3.4   0  57 c0t0d0s0 (/)

    0.4    0.0    3.2    0.0  0.0  0.0    0.0   19.9   0   1 c0t0d0s3 (/var)

[...]

Figure 1   Output of iostat

Tip
“iostat -xnmp” is a nice combination,
but don't forget to check for errors;

“iostat  -xnmpe”  will  also  print  error
counts,   and  “iostat  -E”  prints  an
extended summary.



3.1.2. procfs

procfs is responsible for tracking statistics by process, it would be the first place to look for “by process”
information. In this section we try and then fail to find suitable details in procfs, however you may find the
journey interesting. If you'd like to cut to the chase, please skip to the next section on TNF tracing.

The ps command

If you haven't encountered procfs before, the following demonstrates that procfs is used by ps,

A “truss -ftopen” often reveals how tools work, here we see many files were read from /proc. /proc is
the process filesystem14 “procfs”, a pseudo in-memory filesystem that contains per-process information. This
exists so that user level commands can read process info via an easy15 and well defined interface, rather than
fishing this info from the depths of kernel memory. Both the ps and the prstat commands read /proc. 

Neither  ps nor the traditional “ps -ef” prints disk I/O by process. The “-o” option to  ps does lets us
customise what is printed16, for example “ps -eo pid,pcpu,pmem,args”. However disk I/O statistics
is not currently in the list of fields that ps can provide, listed in Figure 3.

14 The man page is proc(4).
15 Since it is a filesystem, a programmer immediately knows how to do a read, write, open and close.
16 The fields are documented in the man page for ps.
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$ ps -o

ps: option requires an argument -- o

usage: ps [ -aAdeflcjLPyZ ] [ -o format ] [ -t termlist ]

        [ -u userlist ] [ -U userlist ] [ -G grouplist ]

        [ -p proclist ] [ -g pgrplist ] [ -s sidlist ] [ -z zonelist ]

  'format' is one or more of:

        user ruser group rgroup uid ruid gid rgid pid ppid pgid sid taskid ctid

        pri opri pcpu pmem vsz rss osz nice class time etime stime zone zoneid

        f s c lwp nlwp psr tty addr wchan fname comm args projid project pset

Figure 3   conventional ps doesn't print disk I/O

$ truss -ftopen ps

[...]

15153:  open("/proc/0/psinfo", O_RDONLY)                = 4

15153:  open("/proc/1/psinfo", O_RDONLY)                = 4

15153:  open("/proc/2/psinfo", O_RDONLY)                = 4

15153:  open("/proc/3/psinfo", O_RDONLY)                = 4

[...]

$
$ df -k /proc

Filesystem            kbytes    used   avail capacity  Mounted on

proc                       0       0       0     0%    /proc

Figure 2   Examining how ps works



The prusage struct

There are disk statistics in procfs somewhere. Lets take a look at the procfs header file,

The procfs header file lists many structs of related process information. Above is a portion of the “prusage”
struct, which is accessible from procfs as “/proc/<pid>/usage”.

I've highlighted the values  pr_inblk and  pr_oublk, which provide us with input and output “blocks” by
process;  and  pr_ioch for  characters  read  and  written.  As they  are  by process  statistics  that  cover  disk
activity they are worth investigating here, if at the very least to explain why they can't be used.
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$ cat /usr/include/sys/procfs.h

[...]

/*

 * Resource usage.  /proc/<pid>/usage /proc/<pid>/lwp/<lwpid>/lwpusage

 */

typedef struct prusage {

[...]

        ulong_t         pr_nswap;       /* swaps */

        ulong_t         pr_inblk;       /* input blocks */

        ulong_t         pr_oublk;       /* output blocks */

        ulong_t         pr_msnd;        /* messages sent */

        ulong_t         pr_mrcv;        /* messages received */

        ulong_t         pr_sigs;        /* signals received */

        ulong_t         pr_vctx;        /* voluntary context switches */

        ulong_t         pr_ictx;        /* involuntary context switches */

        ulong_t         pr_sysc;        /* system calls */

        ulong_t         pr_ioch;        /* chars read and written */

        ulong_t         filler[10];     /* filler for future expansion */

} prusage_t;

[...]

Figure 4   The prusage structure from procfs

Foresight
The prusage structure, like many structures in
procfs, is future safe.

As of Solaris 10 there are six timestruc_t for
“future expansion” and ten ulong_t.

If  you  are  reading  this  many  years  since
Solaris  10,  check  what  is  in  prusage  now
(assuming it hasn't been superseded by then).
More disk statistics may have been added.



A while  ago I wrote  a  freeware  tool  called  prusage17 to  print  out  this  prusage struct  data  and other
statistics. The default output of prusage looks like this,

The highlighted columns are taken from the pr_inblk, pr_oublk and pr_ioch values. 

Another tool to view these statistics is from the the SE Toolkit, pea.se,18

The highlighted  columns also  print  pr_inblk,
pr_oublk and pr_ioch.  If needed, it would be
easy to write a tool to just print these columns
plus PID and process name, in the SE Toolkit's
own language – SymbEL.

17 http://www.brendangregg.com/Solaris/prusage
18 the output of “se -DWIDE pea.se” is very wide, > 80 chars. I've used a cut command to keep things tidy.
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$ prusage

   PID  MINF  MAJF    INBLK    OUBLK   CHAR-kb COMM

     3     0     0      852    57487         0 fsflush

  2143     0    11       13     4316     44258 setiathome

   407     0   897     1034      356      2833 poold

     9     0    76      155     1052    117082 svc.configd

   491     0   653      771        7    282161 Xorg

   611     0   360      407        1      2852 afterstep

   593     0   190      268        0      1062 snmpd

     7     0    73      128       24      7248 svc.startd

     1     0    91      122        0      6338 init

Figure 5   The prusage tool prints the prusage data

$ se -DWIDE pea.se 1 | cut -c1-36,91-118

13:05:41 name set lwmx   pid  ppid   inblk outblk chario   sysc

bash            -1   1 19768 19760    0.00   0.00      0      0

ssh             -1   1  9068 16378    0.00   0.00      6      0

ttsession       -1   2 19746     1    0.00   0.00      0      0

bash            -1   1 26061  2408    0.00   0.00      0      0

bash            -1   1 19732 19730    0.00   0.00      0      0

se.sparcv9.5.9  -1   1 10283  2533    0.00   0.00 376516   3550

dsdm            -1   1 19729     1    0.00   0.00      0      0

bash            -1   1 16378  2408    0.00   0.00      0      0

tail            -1   1  3695  3694    0.00   0.00      3     10

bash            -1   1  5412  2408    0.00   0.00      0      0

sshd            -1   1  8149  2324    0.00   0.00    437      9

[...]

Figure 6   The pea.se program prints prusage data

Myth
A  common  belief  is  that  the  SE  Toolkit  is  just  a
collection  of  tools.  It  is  much  more  than  that  –  it
contains  a  powerful  interpreter  for  writing  your  own
tools  that  gathers  kernel  statistics  together  in  a
meaningful way.



Testing pr_inblk, pr_oublk

What do pr_inblk and pr_oublk really measure?19 Their meaning appears lost in the mists of time, however
it would seem sensible to assume that they once measured blocks, and that 1 block == 8 Kb. To quickly test
what they are now I wrote two programs in C to do 100 well spaced reads20, then used the prusage tool to
see their value. The first program did reads of 50 bytes in size, the second 50 Kilobytes,

In Figure 7 the pr_ioch values of 5 Kb and 5000 Kb were expected, however the pr_inblk values of 106 and
125 blocks don't relate. This means there is no correlation between block count and size, such as 1 block
equalling 8 Kb.

The pr_inblk and pr_oublk counters are best understood by reading the OpenSolaris source, much of which
is the same as the Solaris 10 source21. For some paths to a disk event we increment pr_inblk and pr_oublk22

correctly, but for others this doesn't seem to occur23. 

Both pr_inblk and pr_oublk are still useful as indicators of disk I/O, perhaps you just wanted to know which
processes were using the disks. So long as they aren't used as an accurate measurement of I/O size. 

It is worth noting that no bundled Solaris tool actually uses these. Any statistic used by a Solaris tool is
carefully tested and maintained, and bugs are submitted if the statistic breaks. pr_inblk and pr_oublk simply
aren't used.

Testing pr_ioch

What about pr_ioch? That can be seen in the “CHAR-kb” column of prusage, and for those simple tests
the values look accurate. pr_ioch is tracking the total size of read and write system calls. 

In Figure 7 pr_ioch for the first test was 5 Kb, which is correct at that level: 100 x 50 byte reads =~ 5 Kb.
However if we are tracking disk usage by process this isn't quite correct – 100 different disk events must at
least be a disk sector in size, such that the total should be 100 x 512 bytes == 50 Kb. Other tools indicate the
disk actually read 8 Kb per read – so what the disks really did should be 100 x 8 Kb == 800 Kb, not 5 Kb as
reported.

19 Google didn't help – the first two hits were my own!
20 to avoid read ahead.
21 so long as the bits we are reading haven't changed between Solaris and OpenSolaris.
22 Via per thread counters: see bread_common in /usr/src/uts/common/os/bio.c  for “lwp->lwp_ru.inblock++”.
23 It's not obvious how UFS read aheads are measured correctly. Check for bugs related to this.
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$ prusage -Cp `pgrep read1` 1 1

   PID  MINF  MAJF    INBLK    OUBLK   CHAR-kb COMM

 16119     0   101      106        0         5 read1

$

$ prusage -Cp `pgrep read2` 1 1

   PID  MINF  MAJF    INBLK    OUBLK   CHAR-kb COMM

 16128     0     2      125        0      5000 read2

$

Figure 7   Examining values from the prusage data with known activity

Tip
Writing  test  programs  is  a
great  way to  confirm  what
statistics really are.

For  disk  I/O,  remember  to
take  caching  effects  into
account.  You  could  mount
remount filesystems first to
clear the cache.



Another simpler reason why we can't use pr_ioch for tracking disk I/O size goes like this,

The  yes command hasn't  caused  over  100 Mb of  disk  activity,  pr_ioch  is  measuring reads  and writes
whether they are to disk or not. pr_ioch isn't going to help us much. It can be used as an estimate if we know
the activity is mostly disk I/O.

Disk I/O size is the wrong track

So we didn't find accurate statistics for disk I/O size. pr_oublk and pr_inblk should probably have worked,
so an outcome from this may be to dive into the kernel code and fix them.

However disk I/O size by process cannot be used to determine disk utilisation by process anyway, even if we
had accurate size information it is at best an approximation24. The problem is that a byte count alone does
not identify random or sequential behaviour. Many readers will be quite familiar with this principle, if not
the following sections on sequential and random disk I/O should demonstrate this clearly.

Sequential Disk I/O

The dd command can be used to generate sequential I/O, as demonstrated in Figure 9,

So when the disk is 100% busy it is pulling around 13.5 Mb/sec. 

24 Consider the following: your application does mostly sequential I/O. You know the maximum disk throughput, say
80 Mb/s. If it was currently 40 Mb/s, you could estimate a utilisation of 50%. This is our best case approximation.
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$ yes > /dev/null &

[1] 3211

$ prusage -Cp 3211 1 1

   PID  MINF  MAJF    INBLK    OUBLK   CHAR-kb COMM

  3211     0     1        2        0    107544 yes

Figure 8   The pr_ioch vaulue matches all read/write traffic

# dd if=/dev/dsk/c0t0d0s0 of=/dev/null bs=128k &

[1] 3244

#

# iostat -xnmpz 5

[...]

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

  106.1    0.0 13578.4    0.0  0.0  1.7    0.0   15.9   0 100 c0t0d0

  106.1    0.0 13578.6    0.0  0.0  1.7    0.0   15.9   0 100 c0t0d0s0 (/)

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

  105.8    0.0 13543.1    0.0  0.0  1.7    0.0   16.0   0 100 c0t0d0

  105.8    0.0 13543.0    0.0  0.0  1.7    0.0   16.0   0 100 c0t0d0s0 (/)

[...]

Figure 9   An iostat output with sequential I/O



Random Disk I/O

The find command generates random I/O by walking scattered directories, as shown in Figure 10,

When the disk is 100% busy, now we are pulling 244.3 Kb/sec (71.8 + 172.5). 

Both disks are equally busy25, but the Kb/sec transferred is dramatically different. If we were using Kb/sec
as our measure of utilisation, then we may well have grossly underestimated how busy the find command
was causing the disks to be.

The problem with size information is that we don't know if it is 244 random Kb, or 244 sequential Kb. The
difference between these disk access patterns in terms of utilisation can be great – 244  random Kb may
equal 100% utilisation (Figure 10), but 244 sequential Kb may only equal 1.8% utilisation (calculated from
Figure 9). So we must take random/sequential access into account.

How do we differentiate between random and sequential access patterns? One way would be to look at the
block addresses for each disk event. Another would be to analyse the time of each event, as random access
involves seeking the disk heads and rotating the disk, consuming time.

We can try the above techniques if we can trace timestamps and block addresses per disk event. The Solaris
TNF tracing facility allows us to do this.

25 assuming that busy “%b” is a measurement that we can trust (yes, we pretty much can).
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Myth

Myth: it's the size that counts!

Fact: The type of I/O (random or sequential) may be
more important. Looking at I/O size (“kr/s” and “kw/s”
in iostat) is a useful indicator of disk I/O, but you don't
know if it is random or sequential.

(To be fair to iostat, there are techniques to estimate
this behaviour based on other details iostat provides:
“asvc_t” and the (r+w)/(kr+kw) ratio).

# find / > /dev/null 2>&1 &

[1] 3237

#

# iostat -xnmpz 5

[...]

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

  223.4    0.0  342.7    0.0  0.0  0.8    0.0    3.7   0  82 c0t0d0

  223.4    0.0  342.7    0.0  0.0  0.8    0.0    3.7   0  82 c0t0d0s0 (/)

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

   15.6   82.4   71.8  172.5  5.0  2.0   51.3   20.2  51 100 c0t0d0

   15.6   82.4   71.8  172.5  5.0  2.0   51.3   20.2  51 100 c0t0d0s0 (/)

[...]

Figure 10   An iostat output with random I/O



3.1.3. TNF  tracing

The TNF tracing facility was added to the Solaris  2.5 release.  It provided a standard format for adding
debugging probes to programs, and tools such as prex, tnfxtract and tnfdump to activate and extract
probe info. TNF is for Trace Normal Form, the binary output format for the probe data.

A developer could leave TNF probes in production code and only activate them on customer sites if needed,
especially  to  analyse  performance  problems  that  only  present  themselves  in  production.  An  excellent
overview and demonstration of TNF tracing is in Sun Performance and Tuning, 2nd edition,  chapter  8.
There is also an overview in the tracing(3TNF) man page.

The kernel can also be traced as around thirty TNF probes have been inserted in strategic locations. They
included such probes as,

• System Call probes: syscall_start, syscall_end

• Page Fault probes: address_fault, major_fault, ...

• Local I/O probes: strategy, biodone

A full list can be found in tnf_kernel_probes(4).

strategy, biodone

Of interest here are the strategy and biodone probes from the block I/O driver.

strategy – probes the function used to initiate a block I/O event26. 

biodone – probes the function called when a block I/O event completes27. 

A disk event is requested with a strategy and then completes with a biodone.

These probes also provide details on the PID, device, block address, I/O size and time. This lets us not only
examine size accurately by process, but also lets us identify random or sequential access based on the block
address and device details, and to fetch timestamps for disk driver events.

26 There is a man page for this function, strategy(9E)
27 There is a man page for this function, biodone(9F)
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Warning
The way prex works may seem a little unusual. 

It allows us to communicate with the kernel and send various commands: create a buffer,
enable these probes, begin tracing, stop tracing, return the buffer. 

It  some ways it  is  like sending commands to an interplanetary probe:  Earth  to TNF,
enable these instruments! begin measurement. stop measurement. return data. 

Once instructed to download, TNF will return a stream of raw data that requires post
processing. You may then find you sent the wrong instructions, and need to repeat the
process. 

There are qualities about the prex and TNF tracing implementation to admire: it is really
simple, and it does work. (unusual is subjective anyway).



prex, tnfxtract, tnfdump

The following demonstrates using TNF tracing to examine the strategy and biodone probes,

The prex command was used to create a 1 Mb buffer, enable the I/O probes and activate kernel tracing using
“ktrace on”. Trace details are stored in the ring buffer until “ktrace off” is issued. “trace io” indicates disk
I/O probes (including strategy and biodone) should return probe data, and “enable io” activates them.

The tnfxtract command was used to fetch the kernel buffer and save it to a file on disk. It is in TNF
format, so we use tnfdump to convert it into a text format for reading by eyeballs or other scripts28.

28 You can read TNF binary files directly if you like, see /usr/include/sys/tnf_com.h. There is also libtnf, which you can
decipher by picking through /usr/src/lib/libtnf and /usr/src/cmd/tnf/tnfdump. Or just use tnfdump.
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# prex -k

Type "help" for help ...

prex> buffer alloc 1m

Buffer of size 1048576 bytes allocated

prex> trace io

prex> enable io

prex> ktrace on

(tracing happens here)

prex> ktrace off

prex> quit

#

# tnfxtract io01.tnf

# ls -l io01.tnf

-rw-------   1 root     root     1048576 Sep 13 02:22 io01.tnf

#

Figure 11   Using TNF tracing

# tnfdump io01.tnf

probe     tnf_name:  "pagein"  tnf_string:  "keys  vm  pageio  io;file  ../../
common/os/bio.c;line 1333;"

probe     tnf_name:  "strategy"  tnf_string:  "keys  io  blockio;file  ../../
common/os/driver.c;line 411;"

probe     tnf_name:  "biodone"  tnf_string:  "keys  io  blockio;file  ../../
common/os/bio.c;line 1222;"

probe     tnf_name:  "pageout"  tnf_string:  "keys  vm  pageio  io;file  ../../
common/vm/vm_pvn.c;line 558;"

----------------  ----------------  -----  -----  ----------  ---
------------------------- ------------------------

    Elapsed (ms)       Delta (ms)   PID LWPID    TID     CPU Probe Name

       Data / Description . . .

----------------  ----------------  -----  -----  ----------  ---
------------------------- ------------------------

[...continued...]



The output above has wrapped badly, but all the information is there. This includes,

• PID 917 caused the first pagein and strategy event (and in turn the biodone event)

• The size of this event is 4096

• The block address of this event is 205888 on device 26738689

• The elapsed or delta times can be used to determine the event took around 55 ms

• The flags provide details such as direction, read or write

PIDs for strategy look correct, but for biodone they are always 0. This is because the disk event completion
is asynchronous to the process. 

To clean up after tracing (or before tracing), run  prex -k and issue a “buffer dealloc”, “untrace $all”,
“disable $all”. At any time run a “list probes $all” to check the trace/enable state of every probe.

Using block addresses

Block addresses are available such that random vs sequential patterns can be identified; but if we choose this
approach – how do we provide a meaningful value which represents our goal of disk utilisation by process? 

Just the count of how many events were or weren't random may not work – some events may be very random
as compared to others. We could try to solve this by taking the byte size of the seek into account, however
this proves difficult without information about the disk density; a high density disk may seek 1 mm to cover
10  Gb, where a low density disk may seek 5 mm to cover the same size,  taking longer.  There are also
problems when a single disk has several active slices - each provides their own range of blocks to seek
across. Calculating the total seek across slices adds to the complexity of this tactic.

So these block addresses may be useful for understanding the nature of the disk activity, but they don't easily
equate into a utilisation value.
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        0.000000         0.000000   917     1 0xd590de00   0 pagein

       vnode: 0xd66fd480 offset: 476545024 size: 4096

        0.011287         0.011287   917     1 0xd590de00   0 strategy

       device: 26738689 block: 205888 size: 4096 buf: 0xdb58c2c0 flags: 34078801

       55.355558        55.344271     0     0 0xd41edde0   0 biodone

       device: 26738689 block: 205888 buf: 0xdb58c2c0

       55.529550         0.173992   917     1 0xd590de00   0 pagein

       vnode: 0xd4eda480 offset: 3504209920 size: 4096

       55.532130         0.002580   917     1 0xd590de00   0 strategy

       device: 26738689 block: 206232 size: 4096 buf: 0xdb58c2c0 flags: 34078801

       66.961196        11.429066     0     0 0xd41edde0   0 biodone

       device: 26738689 block: 206232 buf: 0xdb58c2c0

       378.803659       311.842463     0     0 0xd41edde0   0 biodone

       device: 0 block: 0 buf: 0xd53f0330

[...]

Figure 12   TNF trace data



Using delta times

Since the  TNF probes  give us  timestamps for  the  start  and end of  each disk event,  delta  times can be
calculated.  I wrote  the  freeware  psio29 tool  to  do this.  psio runs  prex,  activates  TNF tracing,  runs
tnfxtract, then processes the output of  tnfdump. It associates the start event with the end event by
using the device number and block address provided by the TNF probes as a key.

The default output of psio prints a disk %I/O value (I/O time based) by process,

Figure 13 shows a grep process consuming 65.4% of I/O time. Great. psio can print sizes and counts too.

Using sizes and counts

The TNF probes also provide the size of each I/O event, and by counting the number of probes seen we also
know the count of I/O events. The following output of psio demonstrates using this information; the “-n”
prints  raw values  for  IOTIME (ms),  IOSIZE (bytes),  and  IOCOUNT (number);  the  “-f” option  prints
details by filesystem, with the first line for each process the totals,

pine has I/O totals of 189 ms for time, 303104 bytes for size, and a total count of 34 events.

To turn the bytes value into a percentage for easier comparisons, as  psio did with I/O time, how do we
determine the maximum bytes possible per second? This road leads back to the random vs sequential bytes
problem. I/O size is an interesting statistic, but we will focus on I/O time instead

29 psio is at http://www.brendangregg.com/psio.html, and is useful for Solaris 9 and earlier.
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# psio

     UID   PID  PPID %I/O    STIME TTY      TIME CMD

 brendan 13271 10093 65.4 23:20:16 pts/20   0:01 grep brendan contents

    root     0     0  0.0   Mar 16 ?        0:16 sched

    root     1     0  0.0   Mar 16 ?        0:10 /etc/init -

    root     2     0  0.0   Mar 16 ?        0:00 pageout

[...]

Figure 13   psio uses the TNF trace data for %I/O

# psio -nf 10

     UID   PID  IOTIME    IOSIZE IOCOUNT CMD

 brendan 25128    1886    347648     221 find /var

       "     "    1886    347648     221  /dev/dsk/c0t0d0s5, /var

    root     0     212     66560      27 sched

       "     "     112     45568      13  /dev/dsk/c0t0d0s5, /var

       "     "      68     11264      11  /dev/dsk/c0t0d0s6, /export/home

       "     "      33      9728       3  /dev/dsk/c0t0d0s4, /opt

 brendan 25125     189    303104      34 pine

       "     "     189    303104      34  /dev/dsk/c0t0d0s6, /export/home

[...]

Figure 14   psio can also print raw counts



3.1.4. I/O Time Algorithms

Disk I/O time is the most promising metric for disk utilisation, represented in previous figures as %I/O and
IOTIME. I/O time takes into account seek time, rotation time, transfer time, controller and bus times, etc,
and as such is an excellent metric for disk utilisation. It also has a known maximum: 1000 ms per second.

Recapping, TNF probes provide,

• strategy – the request for the disk event from the device driver.

• biodone – the disk event completion.

We can read timestamps plus other I/O details for each of these.

Simple Disk Event

We want the time the disk spends satisfying a disk request, which we'll call the “Disk Response Time”. Such
a measurement is often called the “service time”30. Ideally we would be able to read event timestamps from
the disk controller itself, so that we knew exactly when the heads seeked, sectors were read, etc. Instead, we
have strategy and biodone events from the driver.

By measuring the time from the strategy to the biodone we have a “Driver Response Time”. It is the closest
information available to measure the disk response. In reality it includes a little extra time to arbitrate and
send the request  over the I/O bus, which in comparison to the disk time (which is  usually measured in
milliseconds) will often be negligible.

We want disk response time and we can measure driver response time. For a simple disk event they are close
to being equal, so we'll start by assuming they are equal. This is illustrated in Figure 15.

The strategy event is represented by a blue rectangle, the biodone by a red spot. The location of the disk
head over time is traced in red31. The disk response time or the service time is drawn in grey.

30 The term “service time” makes more sense on older disks where it originated. For a detailed explanation and history
lesson see “Clarifying disk measurements and terminology”, SunWorld Online, September 1997.

31 Assuming this is an ordinary disk. Storage arrays use large front end caches, and many events will return quickly if
they hit the cache. Even so, our algorithms are still of value as we concentrate on time consumed by the disk to
service a request, whether that time was for mechanical events or cache activity.
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Figure 15   Visualising a single disk event
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The algorithm to measure disk response time would then be,

time(disk response) = time(biodone) – time(strategy)

A total by process would sum all disk response times.

Looks simple, doesn't work. Disks these days will allow multiple events to be sent to the disk where they
will be queued. Modern disks will reorder the queue for optimisation, completing disk events with a minimal
sweep  of  the  heads  –  sometimes  called  “elevator  seeking”.  The  following  example  will  illustrate  the
multiple event problem.

Concurrent Disk Events 1

Lets consider five concurrent disk requests are sent at time = 0, they complete at times = 10, 20, 30, 40 and
50 ms. This is represented in Figure 16. The disk is busy processing these events from time = 0 to 50 ms,
and so is busy for 50 ms. 

The previous algorithm gives disk response times of 10, 20, 30, 40 and 50 ms. The total would then be 150
ms, implying the disk has delivered 150 ms of disk response time in only 50 ms. The problem is that we are
over counting response times;  just  adding them together assumes the disk processes  events one by one,
which isn't always the case.
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Figure 16   Measuring concurrent disk event times from strategy to biodone
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second. This helps calculate utilisation percentages.
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Concurrent Disk Events 2

An improved algorithm for concurrent disk requests may be to ignore the strategy events, and only measure
time between the biodone events as shown in Figure 17.

(I've deliberately missed the first response time, from 0 to 10 ms. I'll get back to that)...

The following algorithm measures disk response as time between biodones,

time(disk response) = time(biodone) – time(previous biodone)

So the last four disk events would give disk response times of 10, 10, 10, 10 ms – and a total of 40 ms. That
bit makes sense.

Now we must take into account if the previous biodone event was on a different disk entirely. The algorithm
is better as,

time(disk response) = time(biodone) – time(previous biodone on the same disk device)

What  about  the  first  response  time?  This  would  be  calculated  correctly  if  the  previous  disk  event
conveniently  finished at  time = 0,  but  not  if  it  finished  some time  before  that.  The  next  scenario  will
illustrate this clearly.
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Figure 17   Measuring concurrent disk event times from consecutive biodones
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Sparse Disk Events

Consider two disk requests at time = 0 ms and time = 40 ms, each taking 10 ms to complete,

The disk response time for the second request will be 50 ms – 10 ms = 40 ms. That's not right – the disk
response time should be 10 ms, now we are counting idle time as disk response time. 

A simple algorithm to take both concurrent and sparse events into account is,

time(disk response) = MIN( time(biodone) - time(previous biodone, same disk device),
time(biodone) - time(previous strategy, same disk device) )

Which,  by deliberately choosing the minimum times from each approach,  avoids over counting.  This  is
depicted in Figure 19 below, and is the algorithm that the psio tool currently uses (version 0.68).

But not so fast! In Figure 19 two disk strategies cleanly occurred at time 10 ms, but what if they occurred at
10ms and 12ms, such that they were mixed and not in sync? By the minimum disk I/O time algorithm the
first disk response time would be incorrectly reported as 8ms. While this minimum disk I/O time algorithm
is simple to implement, it is possible that it undercounts actual disk response time.

Before I get too carried away drawing more diagrams, let me cut to the chase with the final algorithm.
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Figure 18   A problem with measuring times by consecutive biodones
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Figure 19   Measuring both concurrent and sparse events correctly
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Adaptive Disk I/O Time Algorithm

To cover simple, concurrent, sparse and mixed events we'll need to be a bit more creative,

time(disk response) = MIN( time(biodone) - time(previous biodone, same dev),
time(biodone) - time(previous idle -> strategy event, same dev) )

Tracking idle -> strategy events is achieved by counting pending events, and matching on a strategy event
when pending == 0. Both “previous” times above refer to previous times on the same disk device.

This covers all scenarios, and is the algorithm currently used by the DTrace tools in the next section.

In the above example, both concurrent and post-idle events are measured correctly.

Taking things too far

But ... what if, PIDs 101 and 102 both request nearby disk events at time = 0. They complete at 10 ms for
PID 101 and 11 ms for PID 102. PID 101 will have 10 ms of I/O time, and PID 102 will have 1 ms. Is that
fair? While the heads are seeking they are on their way to satisfy both requests – if this happens often in the
exact same way you may be wondering why PID 102 is so fast, unable to realise that PID 101 is seeking the
heads nearby. In this example, should both PIDs be actually be given a disk response time of 5.5 ms? Erm. Is
this scenario even realistic? Or will such 'jitter' cancel out and be negligible?

If we keep throwing scenarios at our disk algorithm and are exceedingly lucky, we'll end up with an elegant
algorithm to covers everything in an obvious way. However I think there is a greater chance that we'll end up
with an overly complex beast-like algorithm, several contrived scenarios that still don't fit, and a pounding
headache.

We'll consider the last algorithm presented as sufficient, so long as we remember that it is a close estimate. 
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Figure 20   Best algorithm so far
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Other Response Times

Thread Response Time is the time that the requesting thread experiences. This can be measured from the
time that a read/write system call blocks to its completion, assuming the request made it to disk and wasn't
cached32. This time includes other factors such as the time spent waiting on the run queue to be rescheduled,
and the time spent checking the page cache – if used.

Application Response Time is  the time for the application to respond to a client event,  often transaction
orientated. Such a response time helps us to understand why an application may respond slowly. 

Time by Layer

The relationship between the response times is summarised in Figure 21, which serves as a visual reference
for terminology used. This highlights different layers from which to consider response time.

32 This is fairly difficult to determine from the system call details alone.
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Figure 21   The relationship between response times
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Completion is Asynchronous

From the previous algorithms discussed, the final  disk I/O time by process may be calculated when the
biodone event occurs. Lets look again at the TNF details available for this biodone event,

The strategy event has a PID of 917, but the biodone event has a PID of 0. This is because the completion
occurs asynchronously to the thread, or the process. Since we are interested in the process responsible, we
need some way to associate the strategy with the biodone.

Events are associated using the device number and the block address as a unique key. This assumes that we
are unlikely to issue concurrent disk events to the same block number.
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# tnfdump io01.tnf

[...]

        0.011287         0.011287   917     1 0xd590de00   0 strategy

       device: 26738689 block: 205888 size: 4096 buf: 0xdb58c2c0 flags: 34078801

       55.355558        55.344271     0     0 0xd41edde0   0 biodone

       device: 26738689 block: 205888 buf: 0xdb58c2c0

[...]

Figure 22   TNF details for the start and end events

Analogy
Some people have become quite confused by the concept of completions being asynchronous to
the process. Let me draw an analogy to make this point clear.

The scene is  a popular  coffee shop.  The manager  wonders why sometimes  the staff  seem
saturated with requests, and a queue of customers is forming. Perhaps the problem is that one
customer is ordering really weird coffees (containing numerous random ingredients) and they are
taking a while to make. They could be identified if we knew coffee response time by customer.

Customers order a coffee,  it  is  made, placed on the counter,  then the customer picks it  up.
Measuring time between the customer ordering and picking it up may be unfair – they may have
wandered away for some reason adding time that isn't coffee preparation related. We ought to
measure the time from a coffee order to it being completed (strategy to coffeedone).

When an order is being placed, we know who the customer is – they are still standing there.
When the coffee is completed, the customer may or may not still be standing there (they may be
outside talking on the phone). To associate the two events by customer, we'd need to remember
who ordered what. (Or we could just blame the half caf soy chai late with extra froth person!).

Traps
Don't trust the process on I/O completion.

When a thread executes a read system call to a file on disk, the thread is blocked and leaves
the CPU until the read has completed. This gives other threads a chance to run during the 'slow'
disk response time, and is a voluntary context switch.

When an I/O event completes, the thread that requested the I/O is placed back on the run
queue where it can be scheduled to run.

But! At the moment the I/O event completes, the responsible thread is not on the CPU – it is on
the sleep queue. This means we cannot measure the thread or process ID from the CPU on I/O
completion.

Chapter 9 of Solaris Internals covers dispatcher operations such as context switching in detail.



Understanding psio's values

IOTIME gives us a close estimate of the number of milliseconds of time the disk spent satisfying requests
by process. That is quite a useful measurement, as I/O time does take into account both the size of the disk
events and the seek time involved.

%I/O,  the default  output of  psio, takes IOTIME and divides it  by the period of the  psio sample. By
default  this  is  one second,  but can be changed on the command line  – in  Figure 14 this  was made ten
seconds. So with a period of one second, 65.4% I/O time means that process caused 654 ms of I/O time.

If a process accessed two different  disks at  600 ms I/O
time  each,  psio would  add  the  I/O  time  values  and
report 120% I/O. Hmm. For a while I capped %I/O to 100
to  avoid  confusion,  but  I've  now  returned  it  to  this
uncapped value.

So %I/O represents a single disk's utilisation by process. 

It is a useful measure of disk I/O utilisation by process, so
long as we understand its origin and limitations.

Asymmetric vs Symmetric Utilisation

If the vmstat tool reported 100% CPU utilisation, we know all CPUs are 100% utilised – which may well
indicate a resource problem. If it reported the CPUs were 20% utilised we'd not worry about CPU usage. I'll
describe this as a utilisation percentage for a symmetric resource, as CPU utilisation resembles a resource
where work can be evenly distributed across each provider (CPU).33

Disk I/O utilisation is not a symmetric resource. An application may use a filesystem that contains two disks
on a server which has ten disks. If those two disks become busy, work cannot be distributed to the other
disks. This can be described as an asymmetric resource.

If disk I/O utilisation was reported in a same way as CPU utilisation, then two disks busy out of ten would
report  20%.  This  may  grossly  understate  the  problem.  The  algorithm we  do  use  would  report  200%.
Examples of these algorithms are depicted below,

33 I'll discuss single-threaded/process issues in a paper on CPU utilisation by system.
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food for thought
%I/O time, is a percentage of what?

I/O capacity across the entire server isn't as
useful  as  it  seems,  not  all  disks  may  be
useable by the application.

I/O  for  a  single  disk  makes  more  sense.
This means an application running at 200%
is effectively using two disks at 100% each.

Figure 23   Symmetric resource utilisation %
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Figure 24   Asymmetric resource utilisation %
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A problem with  our asymmetric  resource  utilisation percentage is  that  it  may overestimate  the  problem
rather than underestimate. It may be normal for a large database server to drive 16 disks at 50% utilisation
each, which would report 800%. Although it may be argued that it is safer to overstate than understate.

Another problem when generating a %I/O value occurs when metadevices are used. We may overcount disk
events if we see both block events to the metadevice and block events to the physical disks that it contains.

Is there a much better way to calculate resource utilisation percentages that is accurate for every scenario?
Probably not. This is a trade-off incurred when simplifying a complex resource into a single value.

Bear in mind percentages over time

Another important  point  to mention is  the duration for
which we are measuring I/O utilisation. If we saw 10%
utilisation it would seem to indicate light resource usage.
If the sample was an hour it  may have actually been 6
minutes of disk saturation (at  100% utilisation) and 54
minutes idle. 

This  problem  applies  to  any  percentage  average  over
time, and is one of the compromises made when using a
percentage rather than examining raw event details. This
is all fine, so long as we bear it in mind.

Duelling Banjos and Target Fixation

An interesting problem occurs  if  you focus  on the  disk utilisation  value  for  your target  process,  while
ignoring the utilisation values for other processes. 

Consider you have an application where you believe it should be performing numerous sequential events,
however the high disk utilisation value (which is time based) suggests that it is actually performing random
I/O. To try and understand the utilisation value better, you dump the raw I/O event details, grep for your
target process and eyeball the block address and size information for the strategy events. Still no answer!
Your process appears to be calling a number of sequential events, but not enough to warrant the I/O time
incurred that makes up the utilisation value.

Only when inspecting all events, not just those for your process, do you find an explanation: another process
is also using the disk at the same time, and is seeking the heads  elsewhere on disk before many of your
target process events. The seek time to return the heads is counted in your target process's disk I/O time.

So the  worst  case  scenario  is  where  two processes  are  taking
turns  to  read  from either  end  of  the  disk.  This  is  called  the
“duelling banjos condition”34. Focusing on the I/O time of one
process will be confusing without considering the other.

In summary, the disk utilisation value by process is influenced by
the value of other processes.

34 it isn't really, I just made that up.
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Question
What sample duration should you use?

This  depends  on  what  collects  the  data
and how it is used.

A generic system monitoring tool may use
long intervals, such as every 5 minutes.

A system administrator  troubleshooting  a
problem may use quick intervals such as
every 5 seconds.

Tip
Don't grep your PID.

disk  activity  by other  processes  is
important to consider too, they may
be  affecting  the  process  you  are
examining.



What %utilisation is bad?

We've previously used a value of 100% disk utilisation to indicate a resource usage problem. Is 80% a
problem, or 60%? The following table has been provided as a guide,

There  is  no simple  rule  for  identifying  disk  throughput  problems based  on  utilisation  percents.  It  is  a
complex system that is dependant on your applications, how they use the disks, why they use the disks, and
what it is that is “bad”. If you already have an idea for what %utilisation is bad for  your server based on
experience, then stick with that.

There are, at least, two sides to the simple rule argument. Briefly,

for simple rules: Give me a simple rule to check whether I
have a  disk performance problem. No,  I don't  have time to
learn the complexities of performance analysis. Just give me
any  rule  as  a  starting  point  to  get  a  handle  on  disk
performance. No, I don't much care if the rule over simplifies
things – anything is better than nothing.

against  simple  rules: There  is  no  simple  rule  for  disk
performance. It is really dependant on your application, disk
configuration  and  what  constitutes  a  problem.  Providing  a
simple  rule  may  discourage  proper  analysis  of  other  disk
statistics, which may clearly point out the real problem.

To provide a starting point35, it would be fair to say that a sustained per disk utilisation of 60% or more over
an interval of minutes rather than seconds is likely to reduce the performance of your application. Since

disks are a slow resource (compared to memory, for
example), any sustained disk utilisation over 20% is
certainly interesting.

To answer what %utilisation is bad, we need to ask
ourselves what “bad” actually means. Does it mean
a client experiences a slow response time? 

Once we have our %utilisation value, it doesn't tell
us if that utilisation is “bad” or not. All it tells us
are which processes are keeping the disks busy.

35 from Chapter 21 of “Configuring & Tuning Databases on the Solaris Platform” which has a good reference of “what
to look for” on a system. Also see “Configuration and Capacity Planning on Sun Solaris Servers”.
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Tip
Measuring response times.

If  your clients experience slow response times,
consider  using  a  program  to  simulate  client
activity  at  regular  intervals,  time  the  response,
and write this info to a log. This data is great for
pattern analysis.

Another  technique  to  get  such  data  is  to
instrument the application itself. There are many
ways to do this, such as TNF tracing and DTrace.

Utilisation per disk Performance problem

100% probably

75% maybe
50% maybe

25% maybe
0% no

Figure 25   What %utilisation is bad

Myth

Myth: Heavy disk I/O is always bad.

Fact:  Sometimes  doing  a  lot  of  disk
I/O is the price of doing business.

You  may  study  how  the  application
uses  the  disks,  how  the  disks  are
performing,  how  software  caching  is
configured – only to discover that all is
well. Sometimes it is unavoidable that
an application does heavy disk I/O.



The revenge of random I/O

Lastly, lets return to the random vs sequential disk I/O issue. We've made great effort to measure the time
consumed by disk events, as this accurately reflects the extra time caused by random disk activity vs faster
sequential events. So a value of 60% utilisation (by disk I/O time) is indeed meaningful, and does mean that
there is another 40% of capacity available. Great. 

But now we have a new problem to contend with: How do we know how much of this 60% disk utilisation
measurement was random events, and how much was sequential?

What!? Didn't we just take that into account? Well, yes. We turned apples and oranges into a more generic
“fruit” measurement by using a meaningful algorithm to take account of their appleyness or orangeyness.
Okay. And now that we have such a meaningful value, we can't tell what the “fruit” originally was. Without
eating it, of course.

Or, consider the scenario where you have a raft  floating
down  an  Amazonian  river.  Standing  on  the  raft  are  a
number of elephants and monkeys, as depicted in  Figure
26.36 To  calculate  how utilised  the  raft  is,  you take the
combined weights of the elephants and monkeys and then
divide by the raft's capacity. That may tell you the raft is
75%  utilised.  How  many  elephants  and  how  many
monkeys are there from this value?

This  problem  is  another  example  of  details  lost  when
summarising into  one value.  If  a  process  is  driving the
disks at 10% utilisation, it may actually be driving the disks in a clumsy random way, which if improved
may take the utilisation down to 2%. The value of 10% is not final, there is more to learn about what events
constituted a utilisation of 10%.

The point is, while our disk utilisation percent is a useful measurement it is not the end of the story.

For  further  reading on traps when creating performance metrics,  read Chapter  26 from “Configuring &
Tuning Databases on the Solaris Platform”.

36 A pointless diagram.
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Figure 26   The elephant/monkey problem
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3.1.5. More TNF tracing

To complete our discussion on TNF tracing, the following tools deserve a mention. 

taz

An earlier tool to use TNF probes for disk I/O analysis is taz37, the Tasmanian Devil Disk Tool by Richard
McDougall. It is bundled as RMCtaz, which provides a text based tool called “taz” and a GUI based tool
called  “taztool”.  taz prints  disk activity  with  details  such  as  block address,  service  time and  seek
distance. taztool plots disk activity by block address and time.

A screenshot  of  taztool is in  Figure 27.38 While  taztool was running, sequential  disk activity was
caused using the dd command (as was done in Figure 9), and then random disk activity was caused using
the find command (as with Figure 10). 

In the upper plot,  dd's sequential disk activity is drawn as a heavy red line beginning at block 0 and then
seeking gradually across the disk. In the last third of the plot we can see find's random disk activity, shown
as scattered block addresses of cooler colours (indicating smaller sizes). The way taztool has visualised
this disk behaviour is very effective.

The lower plot indicates seek distance, with blue the average and red the maximum. This plot begins dead
flat for sequential activity then becomes mountainous for random activity, as expected.

37 http://www.solarisinternals.com/si/tools/taz/index.php
38 this was RMCtaz ver 1.1 on a Solaris 8 server with a 32 bit kernel (ver 1.1 needs a 32 bit kernel).
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Figure 27   taztool plotting sequential then random disk I/O



TNFView

This is a GUI tool to plot TNF data by time and by thread. It is part of the TNF Tracing Tools collection,
downloadable from the Sun Developers website39. It is really cute and helps trawl through TNF data quickly,
in a variety of creative ways.

TNF tracing dangers

psio was written as a demonstration tool40. Since it enabled kernel tracing, something that is not commonly
used, I considered the possibility that this  could trigger an undiscovered bug in kernel code or cause an
unwanted conflict. I warned against running psio in production until I had studied the implications of TNF
tracing more thoroughly41.

It turns out that TNF tracing is fairly safe, there are no known bugs as of July 2005. Probably the worst
problem is the kernel ring buffer that TNF uses. You must provide a size – but what size? The psio tool
uses 300 Kb, plus an extra 100 Kb per second of the interval – but that's really just a guess. For very busy
servers that may not be enough, and the ring buffer may silently drop packets. A “-b” option was provided
with psio so a larger size could be picked from the command line.

DTrace from Solaris 10 is similar to TNF tracing as probes can be activated that write data to a buffer, and
we can match on the same strategy and biodone probes with process details. However there are thousands
more probes to pick from, customisable actions to run for each event, and the buffer size problem has been
solved. 

39 http://developers.sun.com/solaris/developer/support/driver/tools/tnftl.html. There is also an introduction to TNFView
at http://developers.sun.com/solaris/articles/tnf.html, by John Murayamo.

40 after I read Sun Performance and Tuning and saw the opportunity to present TNF data in a more meaningful way
41 Many emails of thanks, none to say “psio crashed my server!”
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Buried Treasure
TNF  tracing  is  still  quite  useful  for  Solaris  9  and  earlier,
before  DTrace  was  available.  Developers  can  add  trace
points  into  their  production  code  so  that  performance
statistics can be enabled and fetched as needed.

However  few  developers  have  been  near  TNF  tracing.  It
seems an undiscovered treasure from older Solaris, that has
now been surpassed by DTrace. 



3.1.6. DTrace

DTrace is a tool added to Solaris 10 that allows users to write their own troubleshooting or performance
analysis scripts in a comfy C-like language. If you are new to DTrace, the following should serve as an
introduction.

DTrace is the Holy Grail of tracing tools, and  is arguably one of the greatest achievements in operating
systems for over a decade. Some of its capabilities are similar to existing tools: such as tracking syscalls
with  truss, library calls with  apptrace, user functions with  truss -ua.out, and navigating both
kernel and user virtual memory with mdb. However DTrace goes further with first of its kind features, such
as dynamically tracing all kernel functions, and being lightweight and safe to use – unlike truss42.

For analysing disk utilisation by process, DTrace extends what we were achieving with TNF tracing. With
DTrace it is more powerful, more reliable and safer to use. 

fbt probes

Now, if I were really lazy, I could use DTrace to pull the same TNF probes out. The following lists them,

These probes give me access to the same data I was reading from tnfdump. (TNF called the bdev_strategy
function just “strategy”).

We begin  to  tap  the  real  power  of  DTrace  when we access  the  kernel  functions  for  bdev_strategy and
biodone themselves, including access to all the input arguments and return values,

The above is a list of probes. A probe traces a single event and has a four components to its name: provider,
module, function, name. The provider could be described as a library of related probes, here we are looking
at fbt, function boundary tracing, a raw provider of kernel functions. The “FUNCTION” for the probes is the
kernel function name, such as bdev_strategy. The last component, “NAME”, provides a probe for the entry
to the function and the return – this lets us fetch both the input arguments and the return value.

42 See http://www.brendangregg.com/DTrace/dtracevstruss.html for a showdown of DTrace vs truss.

Solaris Performance Metrics – Disk Utilisation by Process 30

# dtrace -ln 'fbt::*tnf_probe:entry'

   ID   PROVIDER            MODULE                          FUNCTION NAME

 3461        fbt           genunix                 biodone_tnf_probe entry

 3988        fbt           genunix           bdev_strategy_tnf_probe entry

Figure 28   The TNF probes from DTrace

# dtrace -ln 'fbt::bdev_strategy:,fbt::biodone:'

   ID   PROVIDER            MODULE                          FUNCTION NAME

 8422        fbt           genunix                     bdev_strategy entry

 8423        fbt           genunix                     bdev_strategy return

11184        fbt           genunix                           biodone entry

11185        fbt           genunix                           biodone return

Figure 29   Phwaorrr, these are the real strategy and biodone functions



The following traces the probes live,

DTrace gives us access to the arguments of functions, both bdev_strategy and biodone have one argument -
a pointer to the buf struct for this disk I/O event. From here we can walk through some kernel structures to
fetch plenty of information about this disk event, such as vnode, inode and vfs pointer, although it is some
work to do so. Fortunately DTrace has a provider that does the walking43 for you, “io”. 

io probes

The io provider allows us to trace disk events  with ease. It provides “io:::start”  and “io:::done” probes,
which for disk events corresponds to the strategy and biodone probes previously used. 

In  Figure 31 we list the probes from the io provider. This provider also tracks NFS events, raw disk I/O
events and asynchronous disk I/O events.

The probes io::biowait:wait-start and io::biowait:wait-done track when the thread begins to wait, and when
the wait has completed. This could be used to study thread response time, if needed.44

43 See /usr/lib/dtrace/io.d for details
44 This is really useful, by the way.
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# dtrace -n 'fbt::bdev_strategy:,fbt::biodone:'

dtrace: description 'fbt::bdev_strategy:,fbt::biodone:' matched 4 probes

CPU     ID                    FUNCTION:NAME

  0   8422              bdev_strategy:entry

  0   8423             bdev_strategy:return

  0   8422              bdev_strategy:entry

  0   8423             bdev_strategy:return

[...]

Figure 30   Tracing live probes

# dtrace -lP io

   ID   PROVIDER            MODULE                          FUNCTION NAME

 1425         io               nfs                          nfs4_bio done

 1426         io               nfs                          nfs3_bio done

 1427         io               nfs                           nfs_bio done

 1428         io               nfs                          nfs4_bio start

 1429         io               nfs                          nfs3_bio start

 1430         io               nfs                           nfs_bio start

 9915         io           genunix                           biodone done

 9916         io           genunix                           biowait wait-done

 9917         io           genunix                           biowait wait-start

 9926         io           genunix                    default_physio start

 9927         io           genunix                     bdev_strategy start

 9928         io           genunix                           aphysio start

Figure 31   Probes available from the io provider



Details  about each I/O event are provided by three arguments to these io probes.  Their  DTrace variable
names and contents are45,

• args[0], bufinfo. Useful details from the buf struct.

• args[1], devinfo. Details about the device: major and minor numbers, instance name, ...

• args[2], fileinfo. Details about the filename, pathname, filesystem, offset ...

These contain all of the desired details. Sheer luxury.

I/O size one liner

Fetching I/O event details with DTrace is very easy. The following command tracks PID, process name, I/O
event size and is a one liner,

This assumes that the correct PID is on the CPU for the start of an I/O event, which is fine.

For disk response time we'll need to measure the time at the start and the end of each event. As was done by
the psio tool, we associate the end event to the start event using the extended device number and the block
address as the unique key. 

I've written two programs that use DTrace to calculate disk response time, iotop and iosnoop.

45 full documentation is in the “io” chapter in the DTrace Guide, http://docs.sun.com/db/doc/817-6223
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# dtrace -n 'io:::start { printf("%d %s %d",pid,execname,args[0]->b_bcount); }'

dtrace: description 'io:::start ' matched 6 probes

CPU     ID                    FUNCTION:NAME

  0   9927              bdev_strategy:start 1122 grep 16384

  0   9927              bdev_strategy:start 1122 grep 57344

  0   9927              bdev_strategy:start 1122 grep 16384

  0   9927              bdev_strategy:start 1122 grep 57344

  0   9927              bdev_strategy:start 1122 grep 40960

  0   9927              bdev_strategy:start 1122 grep 57344

  0   9927              bdev_strategy:start 1122 grep 57344

  0   9927              bdev_strategy:start 1122 grep 8192

[...]

Figure 32   One liner for I/O size by process



iotop

iotop46 is a freeware program that uses DTrace to print disk I/O summaries by process, for details such as
size  (bytes)  and  disk  I/O time.  The  following is  the  default  output  of  version  0.75,  which  prints  size
summaries and refreshes the screen every five seconds,

In the  above output,  the  bart process  was responsible  for  around 17 Mb of disk read.  Disk I/O time
summaries  can  also  be  printed  “-o”,  which  is  a  more  accurate  measure  of  disk  utilisation. Here  we
demonstrate this with an interval of 10 seconds,

Note that iotop is printing totals, not per second values. In Figure 34 we read 11.5 Mb from disk during
those 10 seconds (disk_r), with the top process “bart” (PID 2078) consuming 1.66 seconds of disk time.
For this 10 second interval, 1.66 seconds would equate to a utilisation value of 17%. 

46 It is available in the DTraceToolkit, http://www.opensolaris.org/os/communty/dtrace/dtracetoolkit
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# iotop -o 10

2005 Oct 24 19:15:02,  load: 0.05,  disk_r:  11553 Kb,  disk_w:     12 Kb

  UID    PID   PPID CMD              DEVICE  MAJ MIN D         DISKTIME

    0   2070    378 sshd             cmdk0   102   0 W              489

    0   2078   2077 sh               cmdk0   102   0 R             8701

    0   2079   2078 sh               cmdk0   102   0 R            15728

    0   2065      1 nscd             cmdk0   102   0 R            22912

    0   2077   2076 sshd             cmdk0   102   0 R            26900

    0   2080   2078 sort             cmdk0   102   0 R            32558

    0   2070    378 sshd             cmdk0   102   0 R           218454

    0   2079   2078 find             cmdk0   102   0 R           673775

    0   2078   2077 bart             cmdk0   102   0 R          1657506

Figure 34   Measing disk I/O time by process

# iotop

2005 Oct 24 23:52:41,  load: 0.07,  disk_r:  17460 Kb,  disk_w:     20 Kb

  UID    PID   PPID CMD              DEVICE  MAJ MIN D            BYTES

    0   2673   2672 locale           cmdk0   102   0 R             1024

    0   2674   2671 sshd             cmdk0   102   0 R             4096

    0   2675   2674 sh               cmdk0   102   0 R             4096

    0      3      0 fsflush          cmdk0   102   0 W             8192

    0   2666   2663 sshd             cmdk0   102   0 R             8192

    0   2671    378 sshd             cmdk0   102   0 W            12288

    0   2671    378 sshd             cmdk0   102   0 R            12288

    1    116      1 kcfd             cmdk0   102   0 R           131072

    0   2669   2668 find             cmdk0   102   0 R           356352

    0   2668   2667 bart             cmdk0   102   0 R         17156096

Figure 33   Default output of iotop



iotop can print  %I/O utilisation using the “-P” option, here we also demonstrate “-C” to prevent the
screen from being cleared and provide a rolling output instead,

In the above output we can see the find and bart processes jostling for disk I/O. The command executed
was “find /var | bart create -I”, which outputs a database containing checksums for every file
in /var. This causes heavy disk activity, as find churns through the numerous directories in /var and bart
reads the file contents. 

Figure 36 plots %I/O as find and bart read through /usr. This time bart causes heavier %I/O as there
are bigger files to read, and fewer directories for find to traverse.

Solaris Performance Metrics – Disk Utilisation by Process 34

# iotop -CP 1

2005 Oct 24 23:46:06,  load: 0.30,  disk_r:    324 Kb,  disk_w:      0 Kb

  UID    PID   PPID CMD              DEVICE  MAJ MIN D   %I/O

    0   2631    942 bart             cmdk0   102   0 R     44

    0   2630    942 find             cmdk0   102   0 R     49

2005 Oct 24 23:46:07,  load: 0.30,  disk_r:    547 Kb,  disk_w:      0 Kb

  UID    PID   PPID CMD              DEVICE  MAJ MIN D   %I/O

    0   2630    942 find             cmdk0   102   0 R     44

    0   2631    942 bart             cmdk0   102   0 R     50

2005 Oct 24 23:46:08,  load: 0.31,  disk_r:    451 Kb,  disk_w:      0 Kb

  UID    PID   PPID CMD              DEVICE  MAJ MIN D   %I/O

    0   2630    942 find             cmdk0   102   0 R     43

    0   2631    942 bart             cmdk0   102   0 R     48

[...]

Figure 35   Viewing %disk I/O

Figure 36   %I/O as find and bart read through /usr
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Lets check if iotop's %I/O passes a sanity check; we compare an iotop output with an iostat output for
the same interval while running a tar command to create test load,

The %I/O values compare well between the iostat and iotop outputs.

Other options in iotop can be listed using “-h” (remember this is version 0.75),

Solaris Performance Metrics – Disk Utilisation by Process 35

# iotop -CP 10 1

2005 Oct 24 23:39:55,  load: 0.14,  disk_r:  86681 Kb,  disk_w:    214 Kb

  UID    PID   PPID CMD              DEVICE  MAJ MIN D   %I/O

    0      3      0 fsflush          cmdk0   102   0 W      0

    0      0      0 sched            cmdk0   102   0 W      0

    0    942    938 bash             cmdk0   102   0 R      0

    0   2593    942 tar              cmdk0   102   0 R     56

Figure 37   iotop output for test load

# iostat -xnz 10 2

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

    2.4    0.4   26.1    1.2  0.0  0.0    1.3    1.7   0   0 c0d0

    0.0    0.0    0.0    0.0  0.0  0.0    0.2   48.1   0   0 c1t0d0

                    extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device

  313.8    5.2 8685.5   21.4  0.1  0.9    0.3    2.7   6  56 c0d0

Figure 38   iostat output for test load

# iotop -h

USAGE: iotop [-C] [-D|-o|-P] [-j|-Z] [-d device] [-f filename]

             [-m mount_point] [-t top] [interval [count]]

                -C      # don't clear the screen

                -D      # print delta times, elapsed, us

                -j      # print project ID

                -o      # print disk delta times, us

                -P      # print %I/O (disk delta times)

                -Z      # print zone ID

                -d device       # instance name to snoop

                -f filename     # snoop this file only

                -m mount_point  # this FS only

                -t top          # print top number only

   eg,

        iotop         # default output, 5 second samples

[...]

Figure 39   Listing iotop's options



iosnoop

iosnoop is a freeware program that uses DTrace to monitor disk events live47. The default output prints
straightforward details such as PID, block address and size,

In the above output, we can see a grep process is reading several files from the /etc/default directory. 

Options allow us to dig deeper. Here we use “-e” for the device name (DEVICE), and “-o” for the disk
response time (DTIME) which uses the adaptive disk I/O time algorithm previously discussed,

In Figure 41 the disk response time, “DTIME”, is printed in microseconds. The largest event, 9705 us or
9.705 ms, corresponds to a jump in block address where the disk heads would have seeked. The sequential
disk events have a much smaller time, around 170 us or 0.17 ms.

47 It is also in the DTraceToolkit. iosnoop was my first released tool using DTrace, written during the Solaris 10 beta
program before the io provider existed. 
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# iosnoop

  UID   PID D    BLOCK   SIZE       COMM PATHNAME

    0  1570 R   172636   2048       grep /etc/default/autofs

    0  1570 R   102578   1024       grep /etc/default/cron

    0  1570 R   102580   1024       grep /etc/default/devfsadm

    0  1570 R   108310   4096       grep /etc/default/dhcpagent

    0  1570 R   102582   1024       grep /etc/default/fs

    0  1570 R   169070   1024       grep /etc/default/ftp

    0  1570 R   108322   2048       grep /etc/default/inetinit

    0  1570 R   108318   1024       grep /etc/default/ipsec

    0  1570 R   102584   2048       grep /etc/default/kbd

    0  1570 R   102588   1024       grep /etc/default/keyserv

    0  1570 R   973440   8192       grep /etc/default/lu

    0  1570 R   973456   8192       grep /etc/default/lu

[...]

Figure 40   Default output of iosnoop

# iosnoop -eo

DEVICE  DTIME        UID   PID D    BLOCK   SIZE       COMM PATHNAME

cmdk0   176            0  1604 R   103648   1024         ls /etc/volcopy

cmdk0   172            0  1604 R   103664   1024         ls /etc/wall

cmdk0   189            0  1604 R   103680   1024         ls /etc/whodo

cmdk0   9705           0  1604 R   171246   1024         ls /etc/rmt

cmdk0   464            0  1604 R   171342   1024         ls /etc/aliases

cmdk0   3929           0  1604 R   389290   1024         ls /etc/chroot

cmdk0   7631           0  1604 R   342798   1024         ls /etc/fuser

cmdk0   172            0  1604 R   342830   1024         ls /etc/link

cmdk0   169            0  1604 R   342862   1024         ls /etc/mvdir

[...]

Figure 41   iosnoop with device name and disk times



By default iosnoop provides a PID column, the “-o” gives the “DTIME” column needed to see disk I/O
time  by  process.  This  is  disk  utilisation  information  by  process,  this  verbose  event  style  output  that
iosnoop provides is suitable for when more details about disk I/O are needed.

A list of available options for iosnoop can be fetched using “-h”. This is from iosnoop version 1.55,

Of particular interest is the major and minor numbers option, “-N”. The block addresses printed are relative
to the disk slice, so understanding them accurately requires disk slice details as well. Otherwise what may
appear to be similar block addresses may in fact be on different slices or disks.
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# iosnoop -h

USAGE: iosnoop [-a|-A|-DeghiNostv] [-d device] [-f filename]

               [-m mount_point] [-n name] [-p PID]

       iosnoop          # default output

                -a      # print all data (mostly)

                -A      # dump all data, space delimited

                -D      # print time delta, us (elapsed)

                -e      # print device name

                -g      # print command arguments

                -i      # print device instance

                -N      # print major and minor numbers

                -o      # print disk delta time, us

                -s      # print start time, us

                -t      # print completion time, us

                -v      # print completion time, string

                -d device       # instance name to snoop

                -f filename     # snoop this file only

                -m mount_point  # this FS only

                -n name         # this process name only

                -p PID          # this PID only

   eg,

        iosnoop -v      # human readable timestamps

        iosnoop -N      # print major and minor numbers

        iosnoop -m /    # snoop events on filesystem / only

Figure 42   iosnoop available options

Favourite
I  like  using  iosnoop as  it  provides  raw data
that isn't heavily processed and summarised, as
with iotop. 

Often with iotop I find myself asking – why is
that  utilisation  so  high?  what  is  that  process
doing? etc. 

When looking at  iosnoop outputs you already
have  the  answers.  Although,  for  heavy  disk
activity the iosnoop output can scroll very fast.



Plotting disk activity

Using the “-t” option for iosnoop prints the disk completion time in microseconds48. In combination with
“-N”, we can plot disk events by a process on one slice. Here we fetch the data for the find command,

which contains the time (printed above in microseconds since boot) and block address. These will be our X
and Y coordinates. We check we remain on the same slice (major and minor numbers) and then plot it,

A “find /” command was run to generate random disk activity, which can be seen in Figure 44. As the
disk heads seeked to different block addresses the position of the heads is plotted in red. 

Woah now, are we really looking at disk head seek patterns? We are looking at block addresses for biodone
functions in the block I/O driver. We aren't using some X-ray vision to look at the heads themselves.

Now, if this is a simple disk device then the block address  probably relates to disk head location49. But if
this is a virtual device, say a storage array, then block addresses could map to anything, depending on the
storage layout. However we could at least say that a large jump in block address probably means a seek. But
not so fast – storage arrays often have large front end caches, so while block I/O driver thinks that the event
has completed it may have just been cached on the array. 

48 if you are on a multi-CPU server, it's a good idea to sort on this field afterwards.
49 even “simple” disks these days map addresses in firmware to an internal optimised layout, all we know is the image

of the disk that its firmware presents. The classic example here is “sector zoning”.
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# iosnoop -tN

TIME           MAJ MIN   UID   PID D    BLOCK   SIZE       COMM PATHNAME

131471871356   102   0     0  1693 R   201500   1024       find /usr/dt

131471877355   102   0     0  1693 R   198608   8192       find <none>

131471879231   102   0     0  1693 R   198640   8192       find <none>

131471879788   102   0     0  1693 R   198656   8192       find <none>

131471880831   102   0     0  1693 R   198672   8192       find <none>

Figure 43   Disk I/O events with completion times

Figure 44   Plotting disk activity, a random I/O example
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The block addresses do help us visualise the pattern of  completed disk activity. So long as we know that
completed means the block I/O driver thinks they completed. For simple disks that is probably the case, for
complex devices we must remember that disk events are remapped and may also be cached by the device.

Now for a demonstration of sequential disk I/O. A dd command is used on a raw disk device to deliberately
read sequential blocks,

Which is clearly sequential activity (and somewhat boring too).

What may be slightly more interesting is to run dd on the block device instead. A block device is a buffered
device, so some areas are found in the cache,

The steeper parts are caused by fewer disk reads as data is found in the page cache.
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Figure 45   Plotting disk activity, sequential access of a raw device

Figure 46   Plotting disk activity, sequential access of a block device
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Plotting Concurrent Activity

Previously we discussed concurrent disk activity and included a plot (Figure 17) to help us understand how
these events may occur. Since DTrace can easily trace this, it's irresistible to include a plot of actual activity.

The following DTrace script was written to provide input for a spreadsheet. We match on a device by its
major and minor numbers, then print out timestamps as the first column and block addresses for strategy and
biodone events in the remaining columns.

The output of the DTrace script in Figure 47 was plotted as Figure 48, using timestamps as X coordinates.

We can see many quick strategies followed by slower biodones, as the disk catches up at mechanical speeds.
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#!/usr/sbin/dtrace -s

#pragma D option quiet

io:genunix::start

/args[1]->dev_major == 102 && args[1]->dev_minor == 0/

{

        printf("%d,%d,\n", timestamp/1000, args[0]->b_blkno);

}

io:genunix::done

/args[1]->dev_major == 102 && args[1]->dev_minor == 0/

{

        printf("%d,,%d\n", timestamp/1000, args[0]->b_blkno);

}

Figure 47   Capture raw driver event data for plotting

Figure 48   Plotting raw driver events: strategy and biodone
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Other DTrace tools

Since we are on the topic of disk I/O by process, there are other tools from the DTraceToolkit that provide
disk I/O details. These details aren't utilisation values, but they are useful anyway. A tour for many of these
tools was recently published as a feature article in Sys Admin magazine50. I'll mention a couple here.

bitesize.d is a very simple DTrace program51 that prints a distribution plot of the size of disk events by
process. This helps us understand if a process is reading the disk by taking large “bites” or small ones. 

In Figure 49 we can see the find command has made 459 disk events, all of which fell into the 1024 byte
bucket (1024 to 2047 bytes). This is due to the find command reading through many small directory files. 

The bart process has a much more interesting distribution, since it is reading the file contents it can issue
much larger I/O requests for large files. We can see that most of its events were 32 Kb to 63 Kb.

If an application must go to disk, we generally like to see larger disk events rather than smaller. Larger is
often an indication of sequential  access,  or read ahead access,  both of which help performance.  Smaller
events can be an indication of scattered or random I/O access.

50 “Observing I/O  Behavior  with the  DTraceToolkit”,  Ryan Matteson,  December  2005  issue.  This  has  also  been
available online at http://www.samag.com/documents/sam0512a .

51 as a one liner: dtrace -n 'io:::start { @size[execname] = quantize(args[0]->b_bcount); }'
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# bitesize.d

Sampling... Hit Ctrl-C to end.

^C

     PID  CMD

    2705  find /\0

           value  ------------- Distribution ------------- count

             512 |                                         0

            1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 459

            2048 |                                         0

    2706  bart create -I\0

           value  ------------- Distribution ------------- count

             512 |                                         0

            1024 |@@@@@@                                   443

            2048 |@@                                       155

            4096 |@@@                                      217

            8192 |@                                        51

           16384 |                                         32

           32768 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@             2123

           65536 |                                         0

Figure 49   bitesize.d example, disk I/O size distributions



seeksize.d provides distributions of the  seek distance of disk events by process. To demonstrate this
script, a “find / | bart create -I” command is executed,

In Figure 50 we have measured the activity of a find process. The value here is the seek size in units of
sectors, and the find command has seeked over a wide number of different distances.
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# seeksize.d

Sampling... Hit Ctrl-C to end.

^C

     PID  CMD

    2912  find /\0

           value  ------------- Distribution ------------- count

              -1 |                                         0

               0 |@@@@@@                                   11

               1 |                                         0

               2 |                                         0

               4 |                                         0

               8 |@                                        2

              16 |@                                        1

              32 |                                         0

              64 |@                                        1

             128 |@                                        2

             256 |@@                                       3

             512 |@@                                       3

            1024 |                                         0

            2048 |@@                                       3

            4096 |@                                        1

            8192 |@                                        1

           16384 |@@@@@@                                   10

           32768 |@@@@@                                    9

           65536 |@@@                                      6

          131072 |@@                                       4

          262144 |@                                        1

          524288 |@@@                                      5

         1048576 |@                                        1

         2097152 |@@@                                      6

         4194304 |                                         0

[...]

Figure 50   seeksize.d example, find's random activity



Also in the seeksize.d output was the activity by the bart process,

Over half of the disk events requested for the bart command incurred a seek size of 0 – which is sequential
disk activity. There was also some degree of seeking.

Other disk I/O tools in the DTraceToolkit are either in the top directory (for the most popular ones), or in the
“Disk” subdirectory (for the rest).
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[...]

    2913  bart create -I\0

           value  ------------- Distribution ------------- count

              -1 |                                         0

               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@               583

               1 |                                         0

               2 |                                         4

               4 |@                                        13

               8 |@                                        24

              16 |@                                        26

              32 |@                                        28

              64 |                                         4

             128 |@                                        17

             256 |@                                        26

             512 |@                                        32

            1024 |@                                        23

            2048 |@                                        14

            4096 |                                         6

            8192 |                                         1

           16384 |@@                                       44

           32768 |@@                                       50

           65536 |                                         7

          131072 |                                         5

          262144 |                                         1

          524288 |                                         6

         1048576 |                                         0

Figure 51   seeksize.d example, bart's sequential activity



4. Conclusion

Utilisation by process is best measured in terms of disk I/O time, I/O size is at best an approximation. 

An adaptive disk I/O time algorithm was presented to best measure the time consumed by the disk device to
satisfy the request. This disk response time can be calculated as an absolute value, such as in milliseconds,
or as a percentage. Due to the asymmetric nature of disk resources, the disk I/O percentage was calculated in
terms of a single disk – not a percentage of the disk capacity for the entire server.

There are no by process statistics to track disk I/O time, such as in procfs. Disk I/O time can be measured
event wise using TNF tracing in Solaris 9 and earlier, and by using DTrace in Solaris 10 onwards. DTrace
has allowed new tools such as iosnoop and iotop to be written, which provide both disk I/O time and
size information by process. iotop can print a percent disk utilisation by process, which best answers the
goal of this paper.

Presenting disk I/O time by process as a single value has lost some details about the original I/O events,
especially whether they were random or sequential events. This is a trade-off incurred when simplifying a
complex system down to a single value, in this case a percent disk utilised by process. This is fine as long as
we bear in mind what our disk utilisation measurement really is  – a handy  summary. If needed, deeper
details can then be fetched using tools such as the iosnoop program.
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7. Glossary

Since new terms have been introduced in this paper, the following glossary has been compiled.

• Adaptive Disk I/O Time – an algorithm to closely estimate the Disk Response Time from a series of
strategy and biodone events.

• Application Response Time – the time from the start of an application event to the end. the response
time experienced by the client.

• Asymmetric  Resource  Utilisation –  is  where  load  cannot  be  easily  shared  across  components  of  a
resource. For example, network interface cards.

• bdev_strategy – see strategy.

• biodone – the block I/O driver function that receives the completion of a disk event.

• Disk Response Time – the time consumed by the disk to service a particular event. 

• Disk Utilisation by Process – a measure of how a process is causing the disks to be. Presented in terms
of a single disk, hence 400% utilisation means 4 disks at 100%, or 8 at 50%, or some such combination.

• Driver Response Time – the time from the driver request for a disk event to its completion.

• DTrace – the Dynamic Tracing facility in the Solaris 10 operating system.

• Duelling Banjos – a condition where two processes repeatedly access either end of a disk, causing each
other to seek further than would be expected.

• procfs – the process filesystem, /proc. This contains by process statistics.

• Random Disk I/O – where a series of disk events access block addresses scattered across the disk. This
causes high seek times.

• Sequential Disk I/O – where a series of disk events access adjacent or sequential block addresses. This
increases disk performance as it reduces seek time.

• Symmetric Resource Utilisation – is where load is easily shared across components of a resource. For
example, banks of RAM. 

• strategy – the block I/O driver function that requests a disk event.

• Target  Fixation – a term to describe  a condition  a fighter  pilot  may experience when focusing too
heavily on a target at the expense of other dangers. Here it was used to warn against grepping your PID
and missing other import disk event details. (Any excuse to use fighter pilot terminology).

• Thread Response Time – the time from the thread blocking on an event, to waking up again.

• TNF tracing – Trace Normal Form tracing. A facility to add trace probes into production code, from
Solaris 2.5. Some kernel probes are also provided by default.
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