
Solaris Performance Metrics

–

Disk Utilisation by Process

10th December 2005

Brendan Gregg

[Sydney, Australia]

Abstract
This paper presents new metrics for monitoring disk utilisation by process for the Solaris 10™ operating
environment by Sun Microsystems™. How to measure and understand disk utilisation by process is
discussed, as well as the origin of the measurements. Facilities used to monitor disk utilisation include
procfs, TNF tracing and DTrace. 1

1 This is one part of a series of papers I'm planning that cover performance monitoring metrics.

Solaris Performance Metrics – Disk Utilisation by Process 1

Table of Contents
Abstract... 1
1. Introduction...4
2. Strategies...5

2.1. Existing Tools..5
2.2. Additional Tools.. 5
2.3. Available Strategies... 5
2.4. Monitoring Goals...5
2.4. Not Covered...5

3. Details... 6
3.1. Utilisation.. 6

3.1.1. iostat... 6
3.1.2. procfs.. 7

The ps command.. 7
The prusage struct.. 8
Testing pr_inblk, pr_oublk...10
Testing pr_ioch...10
Disk I/O size is the wrong track... 11
Sequential Disk I/O.. 11
Random Disk I/O..12

3.1.3. TNF tracing... 13
strategy, biodone.. 13
prex, tnfxtract, tnfdump... 14
Using block addresses.. 15
Using delta times..16
Using sizes and counts... 16

3.1.4. I/O Time Algorithms.. 17
Simple Disk Event..17
Concurrent Disk Events 1.. 18
Concurrent Disk Events 2.. 19
Sparse Disk Events...20
Adaptive Disk I/O Time Algorithm... 21
Taking things too far.. 21
Other Response Times... 22
Time by Layer.. 22
Completion is Asynchronous... 23
Understanding psio's values... 24
Asymmetric vs Symmetric Utilisation... 24
Bear in mind percentages over time...25
Duelling Banjos and Target Fixation...25
What %utilisation is bad?.. 26
The revenge of random I/O.. 27

3.1.5. More TNF tracing...28
taz... 28
TNFView..29
TNF tracing dangers...29

3.1.6. DTrace.. 30
fbt probes..30
io probes... 31
I/O size one liner.. 32
iotop..33
iosnoop... 36
Plotting disk activity.. 38

Solaris Performance Metrics – Disk Utilisation by Process 2

Plotting Concurrent Activity..40
Other DTrace tools...41

4. Conclusion.. 44
5. References...44
6. Acknowledgements... 44
7. Glossary.. 45

Copyright (c) 2005 by Brendan D. Gregg.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/). Distribution of
substantively modified versions of this document is prohibited without the explicit permission of the copyright
holder. Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior
permission is obtained from the copyright holder. Also, to help with OPL requirements: the publisher's name is the
author's name, and the original location is http://www.brendangregg.com.

This document is distributed in the hope that it will be useful. This document has been provided on an “as is” basis,
WITHOUT WARRANTY OF ANY KIND, either expressed or implied, without even the implied warranty of
merchantability or fitness for a particular purpose. This document could include technical inaccuracies, typographical
errors and even spelling errors (or at the very least, Australian spelling).

This document was NOT written by Sun Microsystems, and opinions expressed are not those of Sun Microsystems
unless by coincidence. This text has been written by a volunteer of the OpenSolaris community.

Solaris Performance Metrics – Disk Utilisation by Process 3

1. Introduction

Checking CPU usage by process is a routine task for Solaris system administrators, tools such as prstat or
ps provide a number of CPU metrics. However checking disk usage by process has been difficult to monitor
on Solaris 9 and earlier, with no Solaris command providing such statistics.2

These days disk I/O is often the bottleneck in a system, spurring the
use of volume managers, disk arrays and storage area networks. For
an administrator to identify disk I/O as the bottleneck, the iostat
command can be used. An artful system administrator can interpret
extra details from iostat's output, such as if the disk activity is likely
to be random or sequential. But there is no way to determine disk
I/O details by process, nor does iostat have a switch for that3.

Now, there are some Neanderthal-like ways to bash this data from the system. The most entertaining are,

• Freeze every process on the system in turn while watching iostat. If the disk load vanishes you
have found your culprit.

• Create a separate mount point for every process in the system, from which the applications are run.
Now iostat -xnmp has separate details per process.

This paper will focus on sensible ways to monitor disk usage by process.

A variety of monitoring solutions will be presented with their strengths and weaknesses discussed. Since we
will be introducing new techniques, the origin of the data used and the algorithms applied will be covered
carefully. A short summary for various background topics such as procfs and DTrace will be provided.
Apologies to experienced readers who may encounter a few pages of recap.

This paper is one in a series of papers covering performance monitoring metrics in Solaris. The topics
covered in this paper are highlighted in the following matrix4,

Resource Qualifier Scope

CPU Utilisation by System
Memory Saturation by Process
Disk Errors
Network

Table 1. Resource Monitoring Matrix

Rather than use the term “usage”, the terms “utilisation” and “saturation” will be used along with the
following descriptions. This paper in particular covers: Disk Utilisation by Process.

Utilisation5 can be measured as a percentage of the resource that was in use. This is usually presented as an
average measured over a time interval.

Saturation is a measure of the work that has queued waiting for the resource. This is usually presented as an
average over time, however it can also be measured at a particular point in time.

2 If you are using VxFS, you can use vxstat for per process disk statistics.
3 At least, not as of Solaris 10.
4 Other combinations will be covered in future papers.
5 This is the Australian spelling, other countries may spell this as “Utilization”.

Solaris Performance Metrics – Disk Utilisation by Process 4

Question
On Solaris 9 or earlier, how do you
measure disk I/O by process?

No, iostat does not have a switch
for that...

2. Strategies

Lets start with a summary of techniques available to measure disk I/O utilisation by process.

2.1. Existing Tools

There are no tools in Solaris that achieve this directly, for example a switch on prstat or iostat.

2.2. Additional Tools6

• pea.se from the SE Toolkit7 reports on the size of disk activity.

• prusage is a Perl/Kstat tool8 to report on the size of disk activity.

• psio is a Perl/TNF tracing tool9 that can report the size and time consumed by disk activity.

• iosnoop from the DTraceToolkit10 is a shell/DTrace tool to print disk events, size and time.

• iotop from the DTraceToolkit is a shell/DTrace tool to report a summary of disk size or time.

2.3. Available Strategies

• procfs – the process filesystem contains information on disk size totals.

• TNF tracing – kernel tracing lets us monitor disk events, including size and time.

• DTrace – dynamic tracing lets us safely monitor disk events, including size and time.

2.4. Monitoring Goals

• Disk Utilisation by process – a value to represent disk resource consumption.

2.4. Not Covered

• Performance Tuning – After identifying a problem, how to fix it. This would be a good topic for a
separate paper, however it would need to cover many application specific strategies.11

• Advanced Storage Devices – such as volume managers, storage area networks and disk arrays.
Many of the algorithms presented still apply to these devices, however specific eccentricities are
not covered.

6 The tools we focus on are both freeware and opensource. So there are no license fees, and the source can be
inspected before use.

7 http://www.sunfreeware.com is the current location of the SE Toolkit.
8 http://www.brendangregg.com/psio.html
9 also at http://www.brendangregg.com/psio.html
10 http://www.opensolaris.org/os/community/dtrace/dtracetoolkit, or http://www.brendangregg.com/dtrace.html
11 And there are already some good books on this. See section 5. References.

Solaris Performance Metrics – Disk Utilisation by Process 5

3. Details

A close look at existing tools, additional tools, strategies and solutions.

3.1. Utilisation

How much is each process utilising the disks. We could either examine the size of the disk events, or the
service times of the disk events. We are after a value that can be used for comparisons, such as a
percentage.

3.1.1. iostat

Since we are talking disk usage, we'll start with our old friend iostat,

This gives us disk I/O utilisation and saturation systemwide, and
is useful to first identify that a problem exists.12 Just a quick
rundown while we are here: utilisation is best determined from
the percent busy column “%b”, and saturation from the wait
queue length column “wait”. The first output is a summary since
boot, followed by samples per interval.

We are interested in disk I/O by process, however iostat
does not have a “by process” switch. iostat fetches its info
from Kstat13, the Kernel statistics framework. Kstat is a great resource, and is used by tools such as
vmstat, mpstat and sar. While Kstat does track statistics by disk and by CPU, it does not track
statistics by process – that's what procfs is for.

12 See my forthcoming paper titled “Solaris Performance Monitoring – Disk by System”.
13 For info on Kstat, try a “man -l kstat” on Solaris.

Solaris Performance Metrics – Disk Utilisation by Process 6

$ iostat -xnmpz 5

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 0.0 0.0 0.2 0.1 0.0 0.0 12.4 6.3 0 0 c0t0d0

 0.0 0.0 0.2 0.1 0.0 0.0 12.4 6.2 0 0 c0t0d0s0 (/)

 0.0 0.0 0.0 0.0 0.0 0.0 39.0 20.4 0 0 c0t0d0s1

 0.0 0.0 0.0 0.0 0.0 0.0 2.2 9.6 0 0 c0t0d0s3 (/var)

 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0 0 c0t2d0

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 167.9 0.2 217.1 0.2 0.0 0.6 0.0 3.5 0 59 c0t0d0

 166.3 0.2 204.2 0.2 0.0 0.6 0.0 3.4 0 57 c0t0d0s0 (/)

 0.4 0.0 3.2 0.0 0.0 0.0 0.0 19.9 0 1 c0t0d0s3 (/var)

[...]

Figure 1 Output of iostat

Tip
“iostat -xnmp” is a nice combination,
but don't forget to check for errors;

“iostat -xnmpe” will also print error
counts, and “iostat -E” prints an
extended summary.

3.1.2. procfs

procfs is responsible for tracking statistics by process, it would be the first place to look for “by process”
information. In this section we try and then fail to find suitable details in procfs, however you may find the
journey interesting. If you'd like to cut to the chase, please skip to the next section on TNF tracing.

The ps command

If you haven't encountered procfs before, the following demonstrates that procfs is used by ps,

A “truss -ftopen” often reveals how tools work, here we see many files were read from /proc. /proc is
the process filesystem14 “procfs”, a pseudo in-memory filesystem that contains per-process information. This
exists so that user level commands can read process info via an easy15 and well defined interface, rather than
fishing this info from the depths of kernel memory. Both the ps and the prstat commands read /proc.

Neither ps nor the traditional “ps -ef” prints disk I/O by process. The “-o” option to ps does lets us
customise what is printed16, for example “ps -eo pid,pcpu,pmem,args”. However disk I/O statistics
is not currently in the list of fields that ps can provide, listed in Figure 3.

14 The man page is proc(4).
15 Since it is a filesystem, a programmer immediately knows how to do a read, write, open and close.
16 The fields are documented in the man page for ps.

Solaris Performance Metrics – Disk Utilisation by Process 7

$ ps -o

ps: option requires an argument -- o

usage: ps [-aAdeflcjLPyZ] [-o format] [-t termlist]

 [-u userlist] [-U userlist] [-G grouplist]

 [-p proclist] [-g pgrplist] [-s sidlist] [-z zonelist]

 'format' is one or more of:

 user ruser group rgroup uid ruid gid rgid pid ppid pgid sid taskid ctid

 pri opri pcpu pmem vsz rss osz nice class time etime stime zone zoneid

 f s c lwp nlwp psr tty addr wchan fname comm args projid project pset

Figure 3 conventional ps doesn't print disk I/O

$ truss -ftopen ps

[...]

15153: open("/proc/0/psinfo", O_RDONLY) = 4

15153: open("/proc/1/psinfo", O_RDONLY) = 4

15153: open("/proc/2/psinfo", O_RDONLY) = 4

15153: open("/proc/3/psinfo", O_RDONLY) = 4

[...]

$
$ df -k /proc

Filesystem kbytes used avail capacity Mounted on

proc 0 0 0 0% /proc

Figure 2 Examining how ps works

The prusage struct

There are disk statistics in procfs somewhere. Lets take a look at the procfs header file,

The procfs header file lists many structs of related process information. Above is a portion of the “prusage”
struct, which is accessible from procfs as “/proc/<pid>/usage”.

I've highlighted the values pr_inblk and pr_oublk, which provide us with input and output “blocks” by
process; and pr_ioch for characters read and written. As they are by process statistics that cover disk
activity they are worth investigating here, if at the very least to explain why they can't be used.

Solaris Performance Metrics – Disk Utilisation by Process 8

$ cat /usr/include/sys/procfs.h

[...]

/*

 * Resource usage. /proc/<pid>/usage /proc/<pid>/lwp/<lwpid>/lwpusage

 */

typedef struct prusage {

[...]

 ulong_t pr_nswap; /* swaps */

 ulong_t pr_inblk; /* input blocks */

 ulong_t pr_oublk; /* output blocks */

 ulong_t pr_msnd; /* messages sent */

 ulong_t pr_mrcv; /* messages received */

 ulong_t pr_sigs; /* signals received */

 ulong_t pr_vctx; /* voluntary context switches */

 ulong_t pr_ictx; /* involuntary context switches */

 ulong_t pr_sysc; /* system calls */

 ulong_t pr_ioch; /* chars read and written */

 ulong_t filler[10]; /* filler for future expansion */

} prusage_t;

[...]

Figure 4 The prusage structure from procfs

Foresight
The prusage structure, like many structures in
procfs, is future safe.

As of Solaris 10 there are six timestruc_t for
“future expansion” and ten ulong_t.

If you are reading this many years since
Solaris 10, check what is in prusage now
(assuming it hasn't been superseded by then).
More disk statistics may have been added.

A while ago I wrote a freeware tool called prusage17 to print out this prusage struct data and other
statistics. The default output of prusage looks like this,

The highlighted columns are taken from the pr_inblk, pr_oublk and pr_ioch values.

Another tool to view these statistics is from the the SE Toolkit, pea.se,18

The highlighted columns also print pr_inblk,
pr_oublk and pr_ioch. If needed, it would be
easy to write a tool to just print these columns
plus PID and process name, in the SE Toolkit's
own language – SymbEL.

17 http://www.brendangregg.com/Solaris/prusage
18 the output of “se -DWIDE pea.se” is very wide, > 80 chars. I've used a cut command to keep things tidy.

Solaris Performance Metrics – Disk Utilisation by Process 9

$ prusage

 PID MINF MAJF INBLK OUBLK CHAR-kb COMM

 3 0 0 852 57487 0 fsflush

 2143 0 11 13 4316 44258 setiathome

 407 0 897 1034 356 2833 poold

 9 0 76 155 1052 117082 svc.configd

 491 0 653 771 7 282161 Xorg

 611 0 360 407 1 2852 afterstep

 593 0 190 268 0 1062 snmpd

 7 0 73 128 24 7248 svc.startd

 1 0 91 122 0 6338 init

Figure 5 The prusage tool prints the prusage data

$ se -DWIDE pea.se 1 | cut -c1-36,91-118

13:05:41 name set lwmx pid ppid inblk outblk chario sysc

bash -1 1 19768 19760 0.00 0.00 0 0

ssh -1 1 9068 16378 0.00 0.00 6 0

ttsession -1 2 19746 1 0.00 0.00 0 0

bash -1 1 26061 2408 0.00 0.00 0 0

bash -1 1 19732 19730 0.00 0.00 0 0

se.sparcv9.5.9 -1 1 10283 2533 0.00 0.00 376516 3550

dsdm -1 1 19729 1 0.00 0.00 0 0

bash -1 1 16378 2408 0.00 0.00 0 0

tail -1 1 3695 3694 0.00 0.00 3 10

bash -1 1 5412 2408 0.00 0.00 0 0

sshd -1 1 8149 2324 0.00 0.00 437 9

[...]

Figure 6 The pea.se program prints prusage data

Myth
A common belief is that the SE Toolkit is just a
collection of tools. It is much more than that – it
contains a powerful interpreter for writing your own
tools that gathers kernel statistics together in a
meaningful way.

Testing pr_inblk, pr_oublk

What do pr_inblk and pr_oublk really measure?19 Their meaning appears lost in the mists of time, however
it would seem sensible to assume that they once measured blocks, and that 1 block == 8 Kb. To quickly test
what they are now I wrote two programs in C to do 100 well spaced reads20, then used the prusage tool to
see their value. The first program did reads of 50 bytes in size, the second 50 Kilobytes,

In Figure 7 the pr_ioch values of 5 Kb and 5000 Kb were expected, however the pr_inblk values of 106 and
125 blocks don't relate. This means there is no correlation between block count and size, such as 1 block
equalling 8 Kb.

The pr_inblk and pr_oublk counters are best understood by reading the OpenSolaris source, much of which
is the same as the Solaris 10 source21. For some paths to a disk event we increment pr_inblk and pr_oublk22

correctly, but for others this doesn't seem to occur23.

Both pr_inblk and pr_oublk are still useful as indicators of disk I/O, perhaps you just wanted to know which
processes were using the disks. So long as they aren't used as an accurate measurement of I/O size.

It is worth noting that no bundled Solaris tool actually uses these. Any statistic used by a Solaris tool is
carefully tested and maintained, and bugs are submitted if the statistic breaks. pr_inblk and pr_oublk simply
aren't used.

Testing pr_ioch

What about pr_ioch? That can be seen in the “CHAR-kb” column of prusage, and for those simple tests
the values look accurate. pr_ioch is tracking the total size of read and write system calls.

In Figure 7 pr_ioch for the first test was 5 Kb, which is correct at that level: 100 x 50 byte reads =~ 5 Kb.
However if we are tracking disk usage by process this isn't quite correct – 100 different disk events must at
least be a disk sector in size, such that the total should be 100 x 512 bytes == 50 Kb. Other tools indicate the
disk actually read 8 Kb per read – so what the disks really did should be 100 x 8 Kb == 800 Kb, not 5 Kb as
reported.

19 Google didn't help – the first two hits were my own!
20 to avoid read ahead.
21 so long as the bits we are reading haven't changed between Solaris and OpenSolaris.
22 Via per thread counters: see bread_common in /usr/src/uts/common/os/bio.c for “lwp->lwp_ru.inblock++”.
23 It's not obvious how UFS read aheads are measured correctly. Check for bugs related to this.

Solaris Performance Metrics – Disk Utilisation by Process 10

$ prusage -Cp `pgrep read1` 1 1

 PID MINF MAJF INBLK OUBLK CHAR-kb COMM

 16119 0 101 106 0 5 read1

$

$ prusage -Cp `pgrep read2` 1 1

 PID MINF MAJF INBLK OUBLK CHAR-kb COMM

 16128 0 2 125 0 5000 read2

$

Figure 7 Examining values from the prusage data with known activity

Tip
Writing test programs is a
great way to confirm what
statistics really are.

For disk I/O, remember to
take caching effects into
account. You could mount
remount filesystems first to
clear the cache.

Another simpler reason why we can't use pr_ioch for tracking disk I/O size goes like this,

The yes command hasn't caused over 100 Mb of disk activity, pr_ioch is measuring reads and writes
whether they are to disk or not. pr_ioch isn't going to help us much. It can be used as an estimate if we know
the activity is mostly disk I/O.

Disk I/O size is the wrong track

So we didn't find accurate statistics for disk I/O size. pr_oublk and pr_inblk should probably have worked,
so an outcome from this may be to dive into the kernel code and fix them.

However disk I/O size by process cannot be used to determine disk utilisation by process anyway, even if we
had accurate size information it is at best an approximation24. The problem is that a byte count alone does
not identify random or sequential behaviour. Many readers will be quite familiar with this principle, if not
the following sections on sequential and random disk I/O should demonstrate this clearly.

Sequential Disk I/O

The dd command can be used to generate sequential I/O, as demonstrated in Figure 9,

So when the disk is 100% busy it is pulling around 13.5 Mb/sec.

24 Consider the following: your application does mostly sequential I/O. You know the maximum disk throughput, say
80 Mb/s. If it was currently 40 Mb/s, you could estimate a utilisation of 50%. This is our best case approximation.

Solaris Performance Metrics – Disk Utilisation by Process 11

$ yes > /dev/null &

[1] 3211

$ prusage -Cp 3211 1 1

 PID MINF MAJF INBLK OUBLK CHAR-kb COMM

 3211 0 1 2 0 107544 yes

Figure 8 The pr_ioch vaulue matches all read/write traffic

dd if=/dev/dsk/c0t0d0s0 of=/dev/null bs=128k &

[1] 3244

#

iostat -xnmpz 5

[...]

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 106.1 0.0 13578.4 0.0 0.0 1.7 0.0 15.9 0 100 c0t0d0

 106.1 0.0 13578.6 0.0 0.0 1.7 0.0 15.9 0 100 c0t0d0s0 (/)

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 105.8 0.0 13543.1 0.0 0.0 1.7 0.0 16.0 0 100 c0t0d0

 105.8 0.0 13543.0 0.0 0.0 1.7 0.0 16.0 0 100 c0t0d0s0 (/)

[...]

Figure 9 An iostat output with sequential I/O

Random Disk I/O

The find command generates random I/O by walking scattered directories, as shown in Figure 10,

When the disk is 100% busy, now we are pulling 244.3 Kb/sec (71.8 + 172.5).

Both disks are equally busy25, but the Kb/sec transferred is dramatically different. If we were using Kb/sec
as our measure of utilisation, then we may well have grossly underestimated how busy the find command
was causing the disks to be.

The problem with size information is that we don't know if it is 244 random Kb, or 244 sequential Kb. The
difference between these disk access patterns in terms of utilisation can be great – 244 random Kb may
equal 100% utilisation (Figure 10), but 244 sequential Kb may only equal 1.8% utilisation (calculated from
Figure 9). So we must take random/sequential access into account.

How do we differentiate between random and sequential access patterns? One way would be to look at the
block addresses for each disk event. Another would be to analyse the time of each event, as random access
involves seeking the disk heads and rotating the disk, consuming time.

We can try the above techniques if we can trace timestamps and block addresses per disk event. The Solaris
TNF tracing facility allows us to do this.

25 assuming that busy “%b” is a measurement that we can trust (yes, we pretty much can).

Solaris Performance Metrics – Disk Utilisation by Process 12

Myth

Myth: it's the size that counts!

Fact: The type of I/O (random or sequential) may be
more important. Looking at I/O size (“kr/s” and “kw/s”
in iostat) is a useful indicator of disk I/O, but you don't
know if it is random or sequential.

(To be fair to iostat, there are techniques to estimate
this behaviour based on other details iostat provides:
“asvc_t” and the (r+w)/(kr+kw) ratio).

find / > /dev/null 2>&1 &

[1] 3237

#

iostat -xnmpz 5

[...]

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 223.4 0.0 342.7 0.0 0.0 0.8 0.0 3.7 0 82 c0t0d0

 223.4 0.0 342.7 0.0 0.0 0.8 0.0 3.7 0 82 c0t0d0s0 (/)

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 15.6 82.4 71.8 172.5 5.0 2.0 51.3 20.2 51 100 c0t0d0

 15.6 82.4 71.8 172.5 5.0 2.0 51.3 20.2 51 100 c0t0d0s0 (/)

[...]

Figure 10 An iostat output with random I/O

3.1.3. TNF tracing

The TNF tracing facility was added to the Solaris 2.5 release. It provided a standard format for adding
debugging probes to programs, and tools such as prex, tnfxtract and tnfdump to activate and extract
probe info. TNF is for Trace Normal Form, the binary output format for the probe data.

A developer could leave TNF probes in production code and only activate them on customer sites if needed,
especially to analyse performance problems that only present themselves in production. An excellent
overview and demonstration of TNF tracing is in Sun Performance and Tuning, 2nd edition, chapter 8.
There is also an overview in the tracing(3TNF) man page.

The kernel can also be traced as around thirty TNF probes have been inserted in strategic locations. They
included such probes as,

• System Call probes: syscall_start, syscall_end

• Page Fault probes: address_fault, major_fault, ...

• Local I/O probes: strategy, biodone

A full list can be found in tnf_kernel_probes(4).

strategy, biodone

Of interest here are the strategy and biodone probes from the block I/O driver.

strategy – probes the function used to initiate a block I/O event26.

biodone – probes the function called when a block I/O event completes27.

A disk event is requested with a strategy and then completes with a biodone.

These probes also provide details on the PID, device, block address, I/O size and time. This lets us not only
examine size accurately by process, but also lets us identify random or sequential access based on the block
address and device details, and to fetch timestamps for disk driver events.

26 There is a man page for this function, strategy(9E)
27 There is a man page for this function, biodone(9F)

Solaris Performance Metrics – Disk Utilisation by Process 13

Warning
The way prex works may seem a little unusual.

It allows us to communicate with the kernel and send various commands: create a buffer,
enable these probes, begin tracing, stop tracing, return the buffer.

It some ways it is like sending commands to an interplanetary probe: Earth to TNF,
enable these instruments! begin measurement. stop measurement. return data.

Once instructed to download, TNF will return a stream of raw data that requires post
processing. You may then find you sent the wrong instructions, and need to repeat the
process.

There are qualities about the prex and TNF tracing implementation to admire: it is really
simple, and it does work. (unusual is subjective anyway).

prex, tnfxtract, tnfdump

The following demonstrates using TNF tracing to examine the strategy and biodone probes,

The prex command was used to create a 1 Mb buffer, enable the I/O probes and activate kernel tracing using
“ktrace on”. Trace details are stored in the ring buffer until “ktrace off” is issued. “trace io” indicates disk
I/O probes (including strategy and biodone) should return probe data, and “enable io” activates them.

The tnfxtract command was used to fetch the kernel buffer and save it to a file on disk. It is in TNF
format, so we use tnfdump to convert it into a text format for reading by eyeballs or other scripts28.

28 You can read TNF binary files directly if you like, see /usr/include/sys/tnf_com.h. There is also libtnf, which you can
decipher by picking through /usr/src/lib/libtnf and /usr/src/cmd/tnf/tnfdump. Or just use tnfdump.

Solaris Performance Metrics – Disk Utilisation by Process 14

prex -k

Type "help" for help ...

prex> buffer alloc 1m

Buffer of size 1048576 bytes allocated

prex> trace io

prex> enable io

prex> ktrace on

(tracing happens here)

prex> ktrace off

prex> quit

#

tnfxtract io01.tnf

ls -l io01.tnf

-rw------- 1 root root 1048576 Sep 13 02:22 io01.tnf

#

Figure 11 Using TNF tracing

tnfdump io01.tnf

probe tnf_name: "pagein" tnf_string: "keys vm pageio io;file ../../
common/os/bio.c;line 1333;"

probe tnf_name: "strategy" tnf_string: "keys io blockio;file ../../
common/os/driver.c;line 411;"

probe tnf_name: "biodone" tnf_string: "keys io blockio;file ../../
common/os/bio.c;line 1222;"

probe tnf_name: "pageout" tnf_string: "keys vm pageio io;file ../../
common/vm/vm_pvn.c;line 558;"

---------------- ---------------- ----- ----- ---------- ---
------------------------- ------------------------

 Elapsed (ms) Delta (ms) PID LWPID TID CPU Probe Name

 Data / Description . . .

---------------- ---------------- ----- ----- ---------- ---
------------------------- ------------------------

[...continued...]

The output above has wrapped badly, but all the information is there. This includes,

• PID 917 caused the first pagein and strategy event (and in turn the biodone event)

• The size of this event is 4096

• The block address of this event is 205888 on device 26738689

• The elapsed or delta times can be used to determine the event took around 55 ms

• The flags provide details such as direction, read or write

PIDs for strategy look correct, but for biodone they are always 0. This is because the disk event completion
is asynchronous to the process.

To clean up after tracing (or before tracing), run prex -k and issue a “buffer dealloc”, “untrace $all”,
“disable $all”. At any time run a “list probes $all” to check the trace/enable state of every probe.

Using block addresses

Block addresses are available such that random vs sequential patterns can be identified; but if we choose this
approach – how do we provide a meaningful value which represents our goal of disk utilisation by process?

Just the count of how many events were or weren't random may not work – some events may be very random
as compared to others. We could try to solve this by taking the byte size of the seek into account, however
this proves difficult without information about the disk density; a high density disk may seek 1 mm to cover
10 Gb, where a low density disk may seek 5 mm to cover the same size, taking longer. There are also
problems when a single disk has several active slices - each provides their own range of blocks to seek
across. Calculating the total seek across slices adds to the complexity of this tactic.

So these block addresses may be useful for understanding the nature of the disk activity, but they don't easily
equate into a utilisation value.

Solaris Performance Metrics – Disk Utilisation by Process 15

 0.000000 0.000000 917 1 0xd590de00 0 pagein

 vnode: 0xd66fd480 offset: 476545024 size: 4096

 0.011287 0.011287 917 1 0xd590de00 0 strategy

 device: 26738689 block: 205888 size: 4096 buf: 0xdb58c2c0 flags: 34078801

 55.355558 55.344271 0 0 0xd41edde0 0 biodone

 device: 26738689 block: 205888 buf: 0xdb58c2c0

 55.529550 0.173992 917 1 0xd590de00 0 pagein

 vnode: 0xd4eda480 offset: 3504209920 size: 4096

 55.532130 0.002580 917 1 0xd590de00 0 strategy

 device: 26738689 block: 206232 size: 4096 buf: 0xdb58c2c0 flags: 34078801

 66.961196 11.429066 0 0 0xd41edde0 0 biodone

 device: 26738689 block: 206232 buf: 0xdb58c2c0

 378.803659 311.842463 0 0 0xd41edde0 0 biodone

 device: 0 block: 0 buf: 0xd53f0330

[...]

Figure 12 TNF trace data

Using delta times

Since the TNF probes give us timestamps for the start and end of each disk event, delta times can be
calculated. I wrote the freeware psio29 tool to do this. psio runs prex, activates TNF tracing, runs
tnfxtract, then processes the output of tnfdump. It associates the start event with the end event by
using the device number and block address provided by the TNF probes as a key.

The default output of psio prints a disk %I/O value (I/O time based) by process,

Figure 13 shows a grep process consuming 65.4% of I/O time. Great. psio can print sizes and counts too.

Using sizes and counts

The TNF probes also provide the size of each I/O event, and by counting the number of probes seen we also
know the count of I/O events. The following output of psio demonstrates using this information; the “-n”
prints raw values for IOTIME (ms), IOSIZE (bytes), and IOCOUNT (number); the “-f” option prints
details by filesystem, with the first line for each process the totals,

pine has I/O totals of 189 ms for time, 303104 bytes for size, and a total count of 34 events.

To turn the bytes value into a percentage for easier comparisons, as psio did with I/O time, how do we
determine the maximum bytes possible per second? This road leads back to the random vs sequential bytes
problem. I/O size is an interesting statistic, but we will focus on I/O time instead

29 psio is at http://www.brendangregg.com/psio.html, and is useful for Solaris 9 and earlier.

Solaris Performance Metrics – Disk Utilisation by Process 16

psio

 UID PID PPID %I/O STIME TTY TIME CMD

 brendan 13271 10093 65.4 23:20:16 pts/20 0:01 grep brendan contents

 root 0 0 0.0 Mar 16 ? 0:16 sched

 root 1 0 0.0 Mar 16 ? 0:10 /etc/init -

 root 2 0 0.0 Mar 16 ? 0:00 pageout

[...]

Figure 13 psio uses the TNF trace data for %I/O

psio -nf 10

 UID PID IOTIME IOSIZE IOCOUNT CMD

 brendan 25128 1886 347648 221 find /var

 " " 1886 347648 221 /dev/dsk/c0t0d0s5, /var

 root 0 212 66560 27 sched

 " " 112 45568 13 /dev/dsk/c0t0d0s5, /var

 " " 68 11264 11 /dev/dsk/c0t0d0s6, /export/home

 " " 33 9728 3 /dev/dsk/c0t0d0s4, /opt

 brendan 25125 189 303104 34 pine

 " " 189 303104 34 /dev/dsk/c0t0d0s6, /export/home

[...]

Figure 14 psio can also print raw counts

3.1.4. I/O Time Algorithms

Disk I/O time is the most promising metric for disk utilisation, represented in previous figures as %I/O and
IOTIME. I/O time takes into account seek time, rotation time, transfer time, controller and bus times, etc,
and as such is an excellent metric for disk utilisation. It also has a known maximum: 1000 ms per second.

Recapping, TNF probes provide,

• strategy – the request for the disk event from the device driver.

• biodone – the disk event completion.

We can read timestamps plus other I/O details for each of these.

Simple Disk Event

We want the time the disk spends satisfying a disk request, which we'll call the “Disk Response Time”. Such
a measurement is often called the “service time”30. Ideally we would be able to read event timestamps from
the disk controller itself, so that we knew exactly when the heads seeked, sectors were read, etc. Instead, we
have strategy and biodone events from the driver.

By measuring the time from the strategy to the biodone we have a “Driver Response Time”. It is the closest
information available to measure the disk response. In reality it includes a little extra time to arbitrate and
send the request over the I/O bus, which in comparison to the disk time (which is usually measured in
milliseconds) will often be negligible.

We want disk response time and we can measure driver response time. For a simple disk event they are close
to being equal, so we'll start by assuming they are equal. This is illustrated in Figure 15.

The strategy event is represented by a blue rectangle, the biodone by a red spot. The location of the disk
head over time is traced in red31. The disk response time or the service time is drawn in grey.

30 The term “service time” makes more sense on older disks where it originated. For a detailed explanation and history
lesson see “Clarifying disk measurements and terminology”, SunWorld Online, September 1997.

31 Assuming this is an ordinary disk. Storage arrays use large front end caches, and many events will return quickly if
they hit the cache. Even so, our algorithms are still of value as we concentrate on time consumed by the disk to
service a request, whether that time was for mechanical events or cache activity.

Solaris Performance Metrics – Disk Utilisation by Process 17

Figure 15 Visualising a single disk event
Time

Location Driver
Request
(strategy)

Disk
Completion
(biodone)

Disk Response Time, Service Time

Simple Disk Event

disk heads se
eking

The algorithm to measure disk response time would then be,

time(disk response) = time(biodone) – time(strategy)

A total by process would sum all disk response times.

Looks simple, doesn't work. Disks these days will allow multiple events to be sent to the disk where they
will be queued. Modern disks will reorder the queue for optimisation, completing disk events with a minimal
sweep of the heads – sometimes called “elevator seeking”. The following example will illustrate the
multiple event problem.

Concurrent Disk Events 1

Lets consider five concurrent disk requests are sent at time = 0, they complete at times = 10, 20, 30, 40 and
50 ms. This is represented in Figure 16. The disk is busy processing these events from time = 0 to 50 ms,
and so is busy for 50 ms.

The previous algorithm gives disk response times of 10, 20, 30, 40 and 50 ms. The total would then be 150
ms, implying the disk has delivered 150 ms of disk response time in only 50 ms. The problem is that we are
over counting response times; just adding them together assumes the disk processes events one by one,
which isn't always the case.

Solaris Performance Metrics – Disk Utilisation by Process 18

Figure 16 Measuring concurrent disk event times from strategy to biodone

Terminology
Disk Response Time will be used to describe the time
consumed by the disk to service the event in question only.

This time starts when the disk begins to service that event,
which may mean the heads begin to seek. The time ends when
the disk completes the request.

The advantage of this measurement is it provides a known
maximum for the disk – 1000 ms of disk response time per
second. This helps calculate utilisation percentages.

Time (ms)

Location
Disk
Completions
(biodone)

Disk Response Times ?

Concurrent Disk Events 1

disk heads se
eking

0 10 20 30 40 50

Concurrent Disk Events 2

An improved algorithm for concurrent disk requests may be to ignore the strategy events, and only measure
time between the biodone events as shown in Figure 17.

(I've deliberately missed the first response time, from 0 to 10 ms. I'll get back to that)...

The following algorithm measures disk response as time between biodones,

time(disk response) = time(biodone) – time(previous biodone)

So the last four disk events would give disk response times of 10, 10, 10, 10 ms – and a total of 40 ms. That
bit makes sense.

Now we must take into account if the previous biodone event was on a different disk entirely. The algorithm
is better as,

time(disk response) = time(biodone) – time(previous biodone on the same disk device)

What about the first response time? This would be calculated correctly if the previous disk event
conveniently finished at time = 0, but not if it finished some time before that. The next scenario will
illustrate this clearly.

Solaris Performance Metrics – Disk Utilisation by Process 19

Figure 17 Measuring concurrent disk event times from consecutive biodones

Time (ms)

Location

Disk
Completions
(biodone)

Disk Response Times

Concurrent Disk Events 2

disk heads se
eking

0 10 20 30 40 50

Driver
Requests
(strategy)

Sparse Disk Events

Consider two disk requests at time = 0 ms and time = 40 ms, each taking 10 ms to complete,

The disk response time for the second request will be 50 ms – 10 ms = 40 ms. That's not right – the disk
response time should be 10 ms, now we are counting idle time as disk response time.

A simple algorithm to take both concurrent and sparse events into account is,

time(disk response) = MIN(time(biodone) - time(previous biodone, same disk device),
time(biodone) - time(previous strategy, same disk device))

Which, by deliberately choosing the minimum times from each approach, avoids over counting. This is
depicted in Figure 19 below, and is the algorithm that the psio tool currently uses (version 0.68).

But not so fast! In Figure 19 two disk strategies cleanly occurred at time 10 ms, but what if they occurred at
10ms and 12ms, such that they were mixed and not in sync? By the minimum disk I/O time algorithm the
first disk response time would be incorrectly reported as 8ms. While this minimum disk I/O time algorithm
is simple to implement, it is possible that it undercounts actual disk response time.

Before I get too carried away drawing more diagrams, let me cut to the chase with the final algorithm.

Solaris Performance Metrics – Disk Utilisation by Process 20

Figure 18 A problem with measuring times by consecutive biodones
Time (ms)

Location
Disk
Completions
(biodone)

Disk Response Time ?

Sparse Disk Events

disk seeking

0 10 20 30 40 50

Driver
Requests
(strategy)

disk idle

Figure 19 Measuring both concurrent and sparse events correctly

Location

Disk
Completions
(biodone)

Disk Response Times

Minimum Disk I/O Time

0 10 20 30 40 50

Driver
Requests
(strategy)

disk idle

Time (ms)
60

Adaptive Disk I/O Time Algorithm

To cover simple, concurrent, sparse and mixed events we'll need to be a bit more creative,

time(disk response) = MIN(time(biodone) - time(previous biodone, same dev),
time(biodone) - time(previous idle -> strategy event, same dev))

Tracking idle -> strategy events is achieved by counting pending events, and matching on a strategy event
when pending == 0. Both “previous” times above refer to previous times on the same disk device.

This covers all scenarios, and is the algorithm currently used by the DTrace tools in the next section.

In the above example, both concurrent and post-idle events are measured correctly.

Taking things too far

But ... what if, PIDs 101 and 102 both request nearby disk events at time = 0. They complete at 10 ms for
PID 101 and 11 ms for PID 102. PID 101 will have 10 ms of I/O time, and PID 102 will have 1 ms. Is that
fair? While the heads are seeking they are on their way to satisfy both requests – if this happens often in the
exact same way you may be wondering why PID 102 is so fast, unable to realise that PID 101 is seeking the
heads nearby. In this example, should both PIDs be actually be given a disk response time of 5.5 ms? Erm. Is
this scenario even realistic? Or will such 'jitter' cancel out and be negligible?

If we keep throwing scenarios at our disk algorithm and are exceedingly lucky, we'll end up with an elegant
algorithm to covers everything in an obvious way. However I think there is a greater chance that we'll end up
with an overly complex beast-like algorithm, several contrived scenarios that still don't fit, and a pounding
headache.

We'll consider the last algorithm presented as sufficient, so long as we remember that it is a close estimate.

Solaris Performance Metrics – Disk Utilisation by Process 21

Figure 20 Best algorithm so far

Location

Disk
Completions
(biodone)

Disk Response Times

Adaptive Disk I/O Time

0 10 20 30 40 50

Driver
Requests
(strategy)

disk idle

Time (ms)
60

Other Response Times

Thread Response Time is the time that the requesting thread experiences. This can be measured from the
time that a read/write system call blocks to its completion, assuming the request made it to disk and wasn't
cached32. This time includes other factors such as the time spent waiting on the run queue to be rescheduled,
and the time spent checking the page cache – if used.

Application Response Time is the time for the application to respond to a client event, often transaction
orientated. Such a response time helps us to understand why an application may respond slowly.

Time by Layer

The relationship between the response times is summarised in Figure 21, which serves as a visual reference
for terminology used. This highlights different layers from which to consider response time.

32 This is fairly difficult to determine from the system call details alone.

Solaris Performance Metrics – Disk Utilisation by Process 22

Figure 21 The relationship between response times

Application Response Time

Thread Response Time

Driver Response Time

Disk Response Time

strategy biodone

on-cpublock

transaction
 start

transaction
 end

Layers of Response Time

Completion is Asynchronous

From the previous algorithms discussed, the final disk I/O time by process may be calculated when the
biodone event occurs. Lets look again at the TNF details available for this biodone event,

The strategy event has a PID of 917, but the biodone event has a PID of 0. This is because the completion
occurs asynchronously to the thread, or the process. Since we are interested in the process responsible, we
need some way to associate the strategy with the biodone.

Events are associated using the device number and the block address as a unique key. This assumes that we
are unlikely to issue concurrent disk events to the same block number.

Solaris Performance Metrics – Disk Utilisation by Process 23

tnfdump io01.tnf

[...]

 0.011287 0.011287 917 1 0xd590de00 0 strategy

 device: 26738689 block: 205888 size: 4096 buf: 0xdb58c2c0 flags: 34078801

 55.355558 55.344271 0 0 0xd41edde0 0 biodone

 device: 26738689 block: 205888 buf: 0xdb58c2c0

[...]

Figure 22 TNF details for the start and end events

Analogy
Some people have become quite confused by the concept of completions being asynchronous to
the process. Let me draw an analogy to make this point clear.

The scene is a popular coffee shop. The manager wonders why sometimes the staff seem
saturated with requests, and a queue of customers is forming. Perhaps the problem is that one
customer is ordering really weird coffees (containing numerous random ingredients) and they are
taking a while to make. They could be identified if we knew coffee response time by customer.

Customers order a coffee, it is made, placed on the counter, then the customer picks it up.
Measuring time between the customer ordering and picking it up may be unfair – they may have
wandered away for some reason adding time that isn't coffee preparation related. We ought to
measure the time from a coffee order to it being completed (strategy to coffeedone).

When an order is being placed, we know who the customer is – they are still standing there.
When the coffee is completed, the customer may or may not still be standing there (they may be
outside talking on the phone). To associate the two events by customer, we'd need to remember
who ordered what. (Or we could just blame the half caf soy chai late with extra froth person!).

Traps
Don't trust the process on I/O completion.

When a thread executes a read system call to a file on disk, the thread is blocked and leaves
the CPU until the read has completed. This gives other threads a chance to run during the 'slow'
disk response time, and is a voluntary context switch.

When an I/O event completes, the thread that requested the I/O is placed back on the run
queue where it can be scheduled to run.

But! At the moment the I/O event completes, the responsible thread is not on the CPU – it is on
the sleep queue. This means we cannot measure the thread or process ID from the CPU on I/O
completion.

Chapter 9 of Solaris Internals covers dispatcher operations such as context switching in detail.

Understanding psio's values

IOTIME gives us a close estimate of the number of milliseconds of time the disk spent satisfying requests
by process. That is quite a useful measurement, as I/O time does take into account both the size of the disk
events and the seek time involved.

%I/O, the default output of psio, takes IOTIME and divides it by the period of the psio sample. By
default this is one second, but can be changed on the command line – in Figure 14 this was made ten
seconds. So with a period of one second, 65.4% I/O time means that process caused 654 ms of I/O time.

If a process accessed two different disks at 600 ms I/O
time each, psio would add the I/O time values and
report 120% I/O. Hmm. For a while I capped %I/O to 100
to avoid confusion, but I've now returned it to this
uncapped value.

So %I/O represents a single disk's utilisation by process.

It is a useful measure of disk I/O utilisation by process, so
long as we understand its origin and limitations.

Asymmetric vs Symmetric Utilisation

If the vmstat tool reported 100% CPU utilisation, we know all CPUs are 100% utilised – which may well
indicate a resource problem. If it reported the CPUs were 20% utilised we'd not worry about CPU usage. I'll
describe this as a utilisation percentage for a symmetric resource, as CPU utilisation resembles a resource
where work can be evenly distributed across each provider (CPU).33

Disk I/O utilisation is not a symmetric resource. An application may use a filesystem that contains two disks
on a server which has ten disks. If those two disks become busy, work cannot be distributed to the other
disks. This can be described as an asymmetric resource.

If disk I/O utilisation was reported in a same way as CPU utilisation, then two disks busy out of ten would
report 20%. This may grossly understate the problem. The algorithm we do use would report 200%.
Examples of these algorithms are depicted below,

33 I'll discuss single-threaded/process issues in a paper on CPU utilisation by system.

Solaris Performance Metrics – Disk Utilisation by Process 24

food for thought
%I/O time, is a percentage of what?

I/O capacity across the entire server isn't as
useful as it seems, not all disks may be
useable by the application.

I/O for a single disk makes more sense.
This means an application running at 200%
is effectively using two disks at 100% each.

Figure 23 Symmetric resource utilisation %

0 1 2 3
0

25

50

75

100
50% Total CPU Utilisation

CPU

CP
U

Ut
ilis

at
io

n

Figure 24 Asymmetric resource utilisation %

sd0 sd1 sd2 sd3
0

25

50

75

100
200% Total Disk Utilisation

Disk

Di
sk

 U
tili

sa
tio

n

A problem with our asymmetric resource utilisation percentage is that it may overestimate the problem
rather than underestimate. It may be normal for a large database server to drive 16 disks at 50% utilisation
each, which would report 800%. Although it may be argued that it is safer to overstate than understate.

Another problem when generating a %I/O value occurs when metadevices are used. We may overcount disk
events if we see both block events to the metadevice and block events to the physical disks that it contains.

Is there a much better way to calculate resource utilisation percentages that is accurate for every scenario?
Probably not. This is a trade-off incurred when simplifying a complex resource into a single value.

Bear in mind percentages over time

Another important point to mention is the duration for
which we are measuring I/O utilisation. If we saw 10%
utilisation it would seem to indicate light resource usage.
If the sample was an hour it may have actually been 6
minutes of disk saturation (at 100% utilisation) and 54
minutes idle.

This problem applies to any percentage average over
time, and is one of the compromises made when using a
percentage rather than examining raw event details. This
is all fine, so long as we bear it in mind.

Duelling Banjos and Target Fixation

An interesting problem occurs if you focus on the disk utilisation value for your target process, while
ignoring the utilisation values for other processes.

Consider you have an application where you believe it should be performing numerous sequential events,
however the high disk utilisation value (which is time based) suggests that it is actually performing random
I/O. To try and understand the utilisation value better, you dump the raw I/O event details, grep for your
target process and eyeball the block address and size information for the strategy events. Still no answer!
Your process appears to be calling a number of sequential events, but not enough to warrant the I/O time
incurred that makes up the utilisation value.

Only when inspecting all events, not just those for your process, do you find an explanation: another process
is also using the disk at the same time, and is seeking the heads elsewhere on disk before many of your
target process events. The seek time to return the heads is counted in your target process's disk I/O time.

So the worst case scenario is where two processes are taking
turns to read from either end of the disk. This is called the
“duelling banjos condition”34. Focusing on the I/O time of one
process will be confusing without considering the other.

In summary, the disk utilisation value by process is influenced by
the value of other processes.

34 it isn't really, I just made that up.

Solaris Performance Metrics – Disk Utilisation by Process 25

Question
What sample duration should you use?

This depends on what collects the data
and how it is used.

A generic system monitoring tool may use
long intervals, such as every 5 minutes.

A system administrator troubleshooting a
problem may use quick intervals such as
every 5 seconds.

Tip
Don't grep your PID.

disk activity by other processes is
important to consider too, they may
be affecting the process you are
examining.

What %utilisation is bad?

We've previously used a value of 100% disk utilisation to indicate a resource usage problem. Is 80% a
problem, or 60%? The following table has been provided as a guide,

There is no simple rule for identifying disk throughput problems based on utilisation percents. It is a
complex system that is dependant on your applications, how they use the disks, why they use the disks, and
what it is that is “bad”. If you already have an idea for what %utilisation is bad for your server based on
experience, then stick with that.

There are, at least, two sides to the simple rule argument. Briefly,

for simple rules: Give me a simple rule to check whether I
have a disk performance problem. No, I don't have time to
learn the complexities of performance analysis. Just give me
any rule as a starting point to get a handle on disk
performance. No, I don't much care if the rule over simplifies
things – anything is better than nothing.

against simple rules: There is no simple rule for disk
performance. It is really dependant on your application, disk
configuration and what constitutes a problem. Providing a
simple rule may discourage proper analysis of other disk
statistics, which may clearly point out the real problem.

To provide a starting point35, it would be fair to say that a sustained per disk utilisation of 60% or more over
an interval of minutes rather than seconds is likely to reduce the performance of your application. Since

disks are a slow resource (compared to memory, for
example), any sustained disk utilisation over 20% is
certainly interesting.

To answer what %utilisation is bad, we need to ask
ourselves what “bad” actually means. Does it mean
a client experiences a slow response time?

Once we have our %utilisation value, it doesn't tell
us if that utilisation is “bad” or not. All it tells us
are which processes are keeping the disks busy.

35 from Chapter 21 of “Configuring & Tuning Databases on the Solaris Platform” which has a good reference of “what
to look for” on a system. Also see “Configuration and Capacity Planning on Sun Solaris Servers”.

Solaris Performance Metrics – Disk Utilisation by Process 26

Tip
Measuring response times.

If your clients experience slow response times,
consider using a program to simulate client
activity at regular intervals, time the response,
and write this info to a log. This data is great for
pattern analysis.

Another technique to get such data is to
instrument the application itself. There are many
ways to do this, such as TNF tracing and DTrace.

Utilisation per disk Performance problem

100% probably

75% maybe
50% maybe

25% maybe
0% no

Figure 25 What %utilisation is bad

Myth

Myth: Heavy disk I/O is always bad.

Fact: Sometimes doing a lot of disk
I/O is the price of doing business.

You may study how the application
uses the disks, how the disks are
performing, how software caching is
configured – only to discover that all is
well. Sometimes it is unavoidable that
an application does heavy disk I/O.

The revenge of random I/O

Lastly, lets return to the random vs sequential disk I/O issue. We've made great effort to measure the time
consumed by disk events, as this accurately reflects the extra time caused by random disk activity vs faster
sequential events. So a value of 60% utilisation (by disk I/O time) is indeed meaningful, and does mean that
there is another 40% of capacity available. Great.

But now we have a new problem to contend with: How do we know how much of this 60% disk utilisation
measurement was random events, and how much was sequential?

What!? Didn't we just take that into account? Well, yes. We turned apples and oranges into a more generic
“fruit” measurement by using a meaningful algorithm to take account of their appleyness or orangeyness.
Okay. And now that we have such a meaningful value, we can't tell what the “fruit” originally was. Without
eating it, of course.

Or, consider the scenario where you have a raft floating
down an Amazonian river. Standing on the raft are a
number of elephants and monkeys, as depicted in Figure
26.36 To calculate how utilised the raft is, you take the
combined weights of the elephants and monkeys and then
divide by the raft's capacity. That may tell you the raft is
75% utilised. How many elephants and how many
monkeys are there from this value?

This problem is another example of details lost when
summarising into one value. If a process is driving the
disks at 10% utilisation, it may actually be driving the disks in a clumsy random way, which if improved
may take the utilisation down to 2%. The value of 10% is not final, there is more to learn about what events
constituted a utilisation of 10%.

The point is, while our disk utilisation percent is a useful measurement it is not the end of the story.

For further reading on traps when creating performance metrics, read Chapter 26 from “Configuring &
Tuning Databases on the Solaris Platform”.

36 A pointless diagram.

Solaris Performance Metrics – Disk Utilisation by Process 27

Figure 26 The elephant/monkey problem

elephant elephant

river

raft

m
on

ke
y

m
on

ke
y

m
on

ke
y

m
on

ke
y

m
on

ke
y

raft at 75% utilisation

3.1.5. More TNF tracing

To complete our discussion on TNF tracing, the following tools deserve a mention.

taz

An earlier tool to use TNF probes for disk I/O analysis is taz37, the Tasmanian Devil Disk Tool by Richard
McDougall. It is bundled as RMCtaz, which provides a text based tool called “taz” and a GUI based tool
called “taztool”. taz prints disk activity with details such as block address, service time and seek
distance. taztool plots disk activity by block address and time.

A screenshot of taztool is in Figure 27.38 While taztool was running, sequential disk activity was
caused using the dd command (as was done in Figure 9), and then random disk activity was caused using
the find command (as with Figure 10).

In the upper plot, dd's sequential disk activity is drawn as a heavy red line beginning at block 0 and then
seeking gradually across the disk. In the last third of the plot we can see find's random disk activity, shown
as scattered block addresses of cooler colours (indicating smaller sizes). The way taztool has visualised
this disk behaviour is very effective.

The lower plot indicates seek distance, with blue the average and red the maximum. This plot begins dead
flat for sequential activity then becomes mountainous for random activity, as expected.

37 http://www.solarisinternals.com/si/tools/taz/index.php
38 this was RMCtaz ver 1.1 on a Solaris 8 server with a 32 bit kernel (ver 1.1 needs a 32 bit kernel).

Solaris Performance Metrics – Disk Utilisation by Process 28

Figure 27 taztool plotting sequential then random disk I/O

TNFView

This is a GUI tool to plot TNF data by time and by thread. It is part of the TNF Tracing Tools collection,
downloadable from the Sun Developers website39. It is really cute and helps trawl through TNF data quickly,
in a variety of creative ways.

TNF tracing dangers

psio was written as a demonstration tool40. Since it enabled kernel tracing, something that is not commonly
used, I considered the possibility that this could trigger an undiscovered bug in kernel code or cause an
unwanted conflict. I warned against running psio in production until I had studied the implications of TNF
tracing more thoroughly41.

It turns out that TNF tracing is fairly safe, there are no known bugs as of July 2005. Probably the worst
problem is the kernel ring buffer that TNF uses. You must provide a size – but what size? The psio tool
uses 300 Kb, plus an extra 100 Kb per second of the interval – but that's really just a guess. For very busy
servers that may not be enough, and the ring buffer may silently drop packets. A “-b” option was provided
with psio so a larger size could be picked from the command line.

DTrace from Solaris 10 is similar to TNF tracing as probes can be activated that write data to a buffer, and
we can match on the same strategy and biodone probes with process details. However there are thousands
more probes to pick from, customisable actions to run for each event, and the buffer size problem has been
solved.

39 http://developers.sun.com/solaris/developer/support/driver/tools/tnftl.html. There is also an introduction to TNFView
at http://developers.sun.com/solaris/articles/tnf.html, by John Murayamo.

40 after I read Sun Performance and Tuning and saw the opportunity to present TNF data in a more meaningful way
41 Many emails of thanks, none to say “psio crashed my server!”

Solaris Performance Metrics – Disk Utilisation by Process 29

Buried Treasure
TNF tracing is still quite useful for Solaris 9 and earlier,
before DTrace was available. Developers can add trace
points into their production code so that performance
statistics can be enabled and fetched as needed.

However few developers have been near TNF tracing. It
seems an undiscovered treasure from older Solaris, that has
now been surpassed by DTrace.

3.1.6. DTrace

DTrace is a tool added to Solaris 10 that allows users to write their own troubleshooting or performance
analysis scripts in a comfy C-like language. If you are new to DTrace, the following should serve as an
introduction.

DTrace is the Holy Grail of tracing tools, and is arguably one of the greatest achievements in operating
systems for over a decade. Some of its capabilities are similar to existing tools: such as tracking syscalls
with truss, library calls with apptrace, user functions with truss -ua.out, and navigating both
kernel and user virtual memory with mdb. However DTrace goes further with first of its kind features, such
as dynamically tracing all kernel functions, and being lightweight and safe to use – unlike truss42.

For analysing disk utilisation by process, DTrace extends what we were achieving with TNF tracing. With
DTrace it is more powerful, more reliable and safer to use.

fbt probes

Now, if I were really lazy, I could use DTrace to pull the same TNF probes out. The following lists them,

These probes give me access to the same data I was reading from tnfdump. (TNF called the bdev_strategy
function just “strategy”).

We begin to tap the real power of DTrace when we access the kernel functions for bdev_strategy and
biodone themselves, including access to all the input arguments and return values,

The above is a list of probes. A probe traces a single event and has a four components to its name: provider,
module, function, name. The provider could be described as a library of related probes, here we are looking
at fbt, function boundary tracing, a raw provider of kernel functions. The “FUNCTION” for the probes is the
kernel function name, such as bdev_strategy. The last component, “NAME”, provides a probe for the entry
to the function and the return – this lets us fetch both the input arguments and the return value.

42 See http://www.brendangregg.com/DTrace/dtracevstruss.html for a showdown of DTrace vs truss.

Solaris Performance Metrics – Disk Utilisation by Process 30

dtrace -ln 'fbt::*tnf_probe:entry'

 ID PROVIDER MODULE FUNCTION NAME

 3461 fbt genunix biodone_tnf_probe entry

 3988 fbt genunix bdev_strategy_tnf_probe entry

Figure 28 The TNF probes from DTrace

dtrace -ln 'fbt::bdev_strategy:,fbt::biodone:'

 ID PROVIDER MODULE FUNCTION NAME

 8422 fbt genunix bdev_strategy entry

 8423 fbt genunix bdev_strategy return

11184 fbt genunix biodone entry

11185 fbt genunix biodone return

Figure 29 Phwaorrr, these are the real strategy and biodone functions

The following traces the probes live,

DTrace gives us access to the arguments of functions, both bdev_strategy and biodone have one argument -
a pointer to the buf struct for this disk I/O event. From here we can walk through some kernel structures to
fetch plenty of information about this disk event, such as vnode, inode and vfs pointer, although it is some
work to do so. Fortunately DTrace has a provider that does the walking43 for you, “io”.

io probes

The io provider allows us to trace disk events with ease. It provides “io:::start” and “io:::done” probes,
which for disk events corresponds to the strategy and biodone probes previously used.

In Figure 31 we list the probes from the io provider. This provider also tracks NFS events, raw disk I/O
events and asynchronous disk I/O events.

The probes io::biowait:wait-start and io::biowait:wait-done track when the thread begins to wait, and when
the wait has completed. This could be used to study thread response time, if needed.44

43 See /usr/lib/dtrace/io.d for details
44 This is really useful, by the way.

Solaris Performance Metrics – Disk Utilisation by Process 31

dtrace -n 'fbt::bdev_strategy:,fbt::biodone:'

dtrace: description 'fbt::bdev_strategy:,fbt::biodone:' matched 4 probes

CPU ID FUNCTION:NAME

 0 8422 bdev_strategy:entry

 0 8423 bdev_strategy:return

 0 8422 bdev_strategy:entry

 0 8423 bdev_strategy:return

[...]

Figure 30 Tracing live probes

dtrace -lP io

 ID PROVIDER MODULE FUNCTION NAME

 1425 io nfs nfs4_bio done

 1426 io nfs nfs3_bio done

 1427 io nfs nfs_bio done

 1428 io nfs nfs4_bio start

 1429 io nfs nfs3_bio start

 1430 io nfs nfs_bio start

 9915 io genunix biodone done

 9916 io genunix biowait wait-done

 9917 io genunix biowait wait-start

 9926 io genunix default_physio start

 9927 io genunix bdev_strategy start

 9928 io genunix aphysio start

Figure 31 Probes available from the io provider

Details about each I/O event are provided by three arguments to these io probes. Their DTrace variable
names and contents are45,

• args[0], bufinfo. Useful details from the buf struct.

• args[1], devinfo. Details about the device: major and minor numbers, instance name, ...

• args[2], fileinfo. Details about the filename, pathname, filesystem, offset ...

These contain all of the desired details. Sheer luxury.

I/O size one liner

Fetching I/O event details with DTrace is very easy. The following command tracks PID, process name, I/O
event size and is a one liner,

This assumes that the correct PID is on the CPU for the start of an I/O event, which is fine.

For disk response time we'll need to measure the time at the start and the end of each event. As was done by
the psio tool, we associate the end event to the start event using the extended device number and the block
address as the unique key.

I've written two programs that use DTrace to calculate disk response time, iotop and iosnoop.

45 full documentation is in the “io” chapter in the DTrace Guide, http://docs.sun.com/db/doc/817-6223

Solaris Performance Metrics – Disk Utilisation by Process 32

dtrace -n 'io:::start { printf("%d %s %d",pid,execname,args[0]->b_bcount); }'

dtrace: description 'io:::start ' matched 6 probes

CPU ID FUNCTION:NAME

 0 9927 bdev_strategy:start 1122 grep 16384

 0 9927 bdev_strategy:start 1122 grep 57344

 0 9927 bdev_strategy:start 1122 grep 16384

 0 9927 bdev_strategy:start 1122 grep 57344

 0 9927 bdev_strategy:start 1122 grep 40960

 0 9927 bdev_strategy:start 1122 grep 57344

 0 9927 bdev_strategy:start 1122 grep 57344

 0 9927 bdev_strategy:start 1122 grep 8192

[...]

Figure 32 One liner for I/O size by process

iotop

iotop46 is a freeware program that uses DTrace to print disk I/O summaries by process, for details such as
size (bytes) and disk I/O time. The following is the default output of version 0.75, which prints size
summaries and refreshes the screen every five seconds,

In the above output, the bart process was responsible for around 17 Mb of disk read. Disk I/O time
summaries can also be printed “-o”, which is a more accurate measure of disk utilisation. Here we
demonstrate this with an interval of 10 seconds,

Note that iotop is printing totals, not per second values. In Figure 34 we read 11.5 Mb from disk during
those 10 seconds (disk_r), with the top process “bart” (PID 2078) consuming 1.66 seconds of disk time.
For this 10 second interval, 1.66 seconds would equate to a utilisation value of 17%.

46 It is available in the DTraceToolkit, http://www.opensolaris.org/os/communty/dtrace/dtracetoolkit

Solaris Performance Metrics – Disk Utilisation by Process 33

iotop -o 10

2005 Oct 24 19:15:02, load: 0.05, disk_r: 11553 Kb, disk_w: 12 Kb

 UID PID PPID CMD DEVICE MAJ MIN D DISKTIME

 0 2070 378 sshd cmdk0 102 0 W 489

 0 2078 2077 sh cmdk0 102 0 R 8701

 0 2079 2078 sh cmdk0 102 0 R 15728

 0 2065 1 nscd cmdk0 102 0 R 22912

 0 2077 2076 sshd cmdk0 102 0 R 26900

 0 2080 2078 sort cmdk0 102 0 R 32558

 0 2070 378 sshd cmdk0 102 0 R 218454

 0 2079 2078 find cmdk0 102 0 R 673775

 0 2078 2077 bart cmdk0 102 0 R 1657506

Figure 34 Measing disk I/O time by process

iotop

2005 Oct 24 23:52:41, load: 0.07, disk_r: 17460 Kb, disk_w: 20 Kb

 UID PID PPID CMD DEVICE MAJ MIN D BYTES

 0 2673 2672 locale cmdk0 102 0 R 1024

 0 2674 2671 sshd cmdk0 102 0 R 4096

 0 2675 2674 sh cmdk0 102 0 R 4096

 0 3 0 fsflush cmdk0 102 0 W 8192

 0 2666 2663 sshd cmdk0 102 0 R 8192

 0 2671 378 sshd cmdk0 102 0 W 12288

 0 2671 378 sshd cmdk0 102 0 R 12288

 1 116 1 kcfd cmdk0 102 0 R 131072

 0 2669 2668 find cmdk0 102 0 R 356352

 0 2668 2667 bart cmdk0 102 0 R 17156096

Figure 33 Default output of iotop

iotop can print %I/O utilisation using the “-P” option, here we also demonstrate “-C” to prevent the
screen from being cleared and provide a rolling output instead,

In the above output we can see the find and bart processes jostling for disk I/O. The command executed
was “find /var | bart create -I”, which outputs a database containing checksums for every file
in /var. This causes heavy disk activity, as find churns through the numerous directories in /var and bart
reads the file contents.

Figure 36 plots %I/O as find and bart read through /usr. This time bart causes heavier %I/O as there
are bigger files to read, and fewer directories for find to traverse.

Solaris Performance Metrics – Disk Utilisation by Process 34

iotop -CP 1

2005 Oct 24 23:46:06, load: 0.30, disk_r: 324 Kb, disk_w: 0 Kb

 UID PID PPID CMD DEVICE MAJ MIN D %I/O

 0 2631 942 bart cmdk0 102 0 R 44

 0 2630 942 find cmdk0 102 0 R 49

2005 Oct 24 23:46:07, load: 0.30, disk_r: 547 Kb, disk_w: 0 Kb

 UID PID PPID CMD DEVICE MAJ MIN D %I/O

 0 2630 942 find cmdk0 102 0 R 44

 0 2631 942 bart cmdk0 102 0 R 50

2005 Oct 24 23:46:08, load: 0.31, disk_r: 451 Kb, disk_w: 0 Kb

 UID PID PPID CMD DEVICE MAJ MIN D %I/O

 0 2630 942 find cmdk0 102 0 R 43

 0 2631 942 bart cmdk0 102 0 R 48

[...]

Figure 35 Viewing %disk I/O

Figure 36 %I/O as find and bart read through /usr

0

10

20

30

40

50

60

70

80

90
%I/O by process by time

find
bart

time (s)

%
I/O

Lets check if iotop's %I/O passes a sanity check; we compare an iotop output with an iostat output for
the same interval while running a tar command to create test load,

The %I/O values compare well between the iostat and iotop outputs.

Other options in iotop can be listed using “-h” (remember this is version 0.75),

Solaris Performance Metrics – Disk Utilisation by Process 35

iotop -CP 10 1

2005 Oct 24 23:39:55, load: 0.14, disk_r: 86681 Kb, disk_w: 214 Kb

 UID PID PPID CMD DEVICE MAJ MIN D %I/O

 0 3 0 fsflush cmdk0 102 0 W 0

 0 0 0 sched cmdk0 102 0 W 0

 0 942 938 bash cmdk0 102 0 R 0

 0 2593 942 tar cmdk0 102 0 R 56

Figure 37 iotop output for test load

iostat -xnz 10 2

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 2.4 0.4 26.1 1.2 0.0 0.0 1.3 1.7 0 0 c0d0

 0.0 0.0 0.0 0.0 0.0 0.0 0.2 48.1 0 0 c1t0d0

 extended device statistics

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device

 313.8 5.2 8685.5 21.4 0.1 0.9 0.3 2.7 6 56 c0d0

Figure 38 iostat output for test load

iotop -h

USAGE: iotop [-C] [-D|-o|-P] [-j|-Z] [-d device] [-f filename]

 [-m mount_point] [-t top] [interval [count]]

 -C # don't clear the screen

 -D # print delta times, elapsed, us

 -j # print project ID

 -o # print disk delta times, us

 -P # print %I/O (disk delta times)

 -Z # print zone ID

 -d device # instance name to snoop

 -f filename # snoop this file only

 -m mount_point # this FS only

 -t top # print top number only

 eg,

 iotop # default output, 5 second samples

[...]

Figure 39 Listing iotop's options

iosnoop

iosnoop is a freeware program that uses DTrace to monitor disk events live47. The default output prints
straightforward details such as PID, block address and size,

In the above output, we can see a grep process is reading several files from the /etc/default directory.

Options allow us to dig deeper. Here we use “-e” for the device name (DEVICE), and “-o” for the disk
response time (DTIME) which uses the adaptive disk I/O time algorithm previously discussed,

In Figure 41 the disk response time, “DTIME”, is printed in microseconds. The largest event, 9705 us or
9.705 ms, corresponds to a jump in block address where the disk heads would have seeked. The sequential
disk events have a much smaller time, around 170 us or 0.17 ms.

47 It is also in the DTraceToolkit. iosnoop was my first released tool using DTrace, written during the Solaris 10 beta
program before the io provider existed.

Solaris Performance Metrics – Disk Utilisation by Process 36

iosnoop

 UID PID D BLOCK SIZE COMM PATHNAME

 0 1570 R 172636 2048 grep /etc/default/autofs

 0 1570 R 102578 1024 grep /etc/default/cron

 0 1570 R 102580 1024 grep /etc/default/devfsadm

 0 1570 R 108310 4096 grep /etc/default/dhcpagent

 0 1570 R 102582 1024 grep /etc/default/fs

 0 1570 R 169070 1024 grep /etc/default/ftp

 0 1570 R 108322 2048 grep /etc/default/inetinit

 0 1570 R 108318 1024 grep /etc/default/ipsec

 0 1570 R 102584 2048 grep /etc/default/kbd

 0 1570 R 102588 1024 grep /etc/default/keyserv

 0 1570 R 973440 8192 grep /etc/default/lu

 0 1570 R 973456 8192 grep /etc/default/lu

[...]

Figure 40 Default output of iosnoop

iosnoop -eo

DEVICE DTIME UID PID D BLOCK SIZE COMM PATHNAME

cmdk0 176 0 1604 R 103648 1024 ls /etc/volcopy

cmdk0 172 0 1604 R 103664 1024 ls /etc/wall

cmdk0 189 0 1604 R 103680 1024 ls /etc/whodo

cmdk0 9705 0 1604 R 171246 1024 ls /etc/rmt

cmdk0 464 0 1604 R 171342 1024 ls /etc/aliases

cmdk0 3929 0 1604 R 389290 1024 ls /etc/chroot

cmdk0 7631 0 1604 R 342798 1024 ls /etc/fuser

cmdk0 172 0 1604 R 342830 1024 ls /etc/link

cmdk0 169 0 1604 R 342862 1024 ls /etc/mvdir

[...]

Figure 41 iosnoop with device name and disk times

By default iosnoop provides a PID column, the “-o” gives the “DTIME” column needed to see disk I/O
time by process. This is disk utilisation information by process, this verbose event style output that
iosnoop provides is suitable for when more details about disk I/O are needed.

A list of available options for iosnoop can be fetched using “-h”. This is from iosnoop version 1.55,

Of particular interest is the major and minor numbers option, “-N”. The block addresses printed are relative
to the disk slice, so understanding them accurately requires disk slice details as well. Otherwise what may
appear to be similar block addresses may in fact be on different slices or disks.

Solaris Performance Metrics – Disk Utilisation by Process 37

iosnoop -h

USAGE: iosnoop [-a|-A|-DeghiNostv] [-d device] [-f filename]

 [-m mount_point] [-n name] [-p PID]

 iosnoop # default output

 -a # print all data (mostly)

 -A # dump all data, space delimited

 -D # print time delta, us (elapsed)

 -e # print device name

 -g # print command arguments

 -i # print device instance

 -N # print major and minor numbers

 -o # print disk delta time, us

 -s # print start time, us

 -t # print completion time, us

 -v # print completion time, string

 -d device # instance name to snoop

 -f filename # snoop this file only

 -m mount_point # this FS only

 -n name # this process name only

 -p PID # this PID only

 eg,

 iosnoop -v # human readable timestamps

 iosnoop -N # print major and minor numbers

 iosnoop -m / # snoop events on filesystem / only

Figure 42 iosnoop available options

Favourite
I like using iosnoop as it provides raw data
that isn't heavily processed and summarised, as
with iotop.

Often with iotop I find myself asking – why is
that utilisation so high? what is that process
doing? etc.

When looking at iosnoop outputs you already
have the answers. Although, for heavy disk
activity the iosnoop output can scroll very fast.

Plotting disk activity

Using the “-t” option for iosnoop prints the disk completion time in microseconds48. In combination with
“-N”, we can plot disk events by a process on one slice. Here we fetch the data for the find command,

which contains the time (printed above in microseconds since boot) and block address. These will be our X
and Y coordinates. We check we remain on the same slice (major and minor numbers) and then plot it,

A “find /” command was run to generate random disk activity, which can be seen in Figure 44. As the
disk heads seeked to different block addresses the position of the heads is plotted in red.

Woah now, are we really looking at disk head seek patterns? We are looking at block addresses for biodone
functions in the block I/O driver. We aren't using some X-ray vision to look at the heads themselves.

Now, if this is a simple disk device then the block address probably relates to disk head location49. But if
this is a virtual device, say a storage array, then block addresses could map to anything, depending on the
storage layout. However we could at least say that a large jump in block address probably means a seek. But
not so fast – storage arrays often have large front end caches, so while block I/O driver thinks that the event
has completed it may have just been cached on the array.

48 if you are on a multi-CPU server, it's a good idea to sort on this field afterwards.
49 even “simple” disks these days map addresses in firmware to an internal optimised layout, all we know is the image

of the disk that its firmware presents. The classic example here is “sector zoning”.

Solaris Performance Metrics – Disk Utilisation by Process 38

iosnoop -tN

TIME MAJ MIN UID PID D BLOCK SIZE COMM PATHNAME

131471871356 102 0 0 1693 R 201500 1024 find /usr/dt

131471877355 102 0 0 1693 R 198608 8192 find <none>

131471879231 102 0 0 1693 R 198640 8192 find <none>

131471879788 102 0 0 1693 R 198656 8192 find <none>

131471880831 102 0 0 1693 R 198672 8192 find <none>

Figure 43 Disk I/O events with completion times

Figure 44 Plotting disk activity, a random I/O example

0 200000 400000 600000 800000 1000000
0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

2750000

3000000

block address by time, find /

time (us)

bl
oc

k
ad

dr
es

s

The block addresses do help us visualise the pattern of completed disk activity. So long as we know that
completed means the block I/O driver thinks they completed. For simple disks that is probably the case, for
complex devices we must remember that disk events are remapped and may also be cached by the device.

Now for a demonstration of sequential disk I/O. A dd command is used on a raw disk device to deliberately
read sequential blocks,

Which is clearly sequential activity (and somewhat boring too).

What may be slightly more interesting is to run dd on the block device instead. A block device is a buffered
device, so some areas are found in the cache,

The steeper parts are caused by fewer disk reads as data is found in the page cache.

Solaris Performance Metrics – Disk Utilisation by Process 39

Figure 45 Plotting disk activity, sequential access of a raw device

Figure 46 Plotting disk activity, sequential access of a block device

0 100000 200000 300000 400000 500000 600000 700000 800000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

block address by time, dd if=/dev/dsk/...

time (us)

bl
oc

k
ad

dr
es

s

0 100000 200000 300000 400000 500000 600000
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

block address by time, dd if=/dev/rdsk/...

time (us)

bl
oc

k
ad

dr
es

s

Plotting Concurrent Activity

Previously we discussed concurrent disk activity and included a plot (Figure 17) to help us understand how
these events may occur. Since DTrace can easily trace this, it's irresistible to include a plot of actual activity.

The following DTrace script was written to provide input for a spreadsheet. We match on a device by its
major and minor numbers, then print out timestamps as the first column and block addresses for strategy and
biodone events in the remaining columns.

The output of the DTrace script in Figure 47 was plotted as Figure 48, using timestamps as X coordinates.

We can see many quick strategies followed by slower biodones, as the disk catches up at mechanical speeds.

Solaris Performance Metrics – Disk Utilisation by Process 40

#!/usr/sbin/dtrace -s

#pragma D option quiet

io:genunix::start

/args[1]->dev_major == 102 && args[1]->dev_minor == 0/

{

 printf("%d,%d,\n", timestamp/1000, args[0]->b_blkno);

}

io:genunix::done

/args[1]->dev_major == 102 && args[1]->dev_minor == 0/

{

 printf("%d,,%d\n", timestamp/1000, args[0]->b_blkno);

}

Figure 47 Capture raw driver event data for plotting

Figure 48 Plotting raw driver events: strategy and biodone

0 500 1000 1500 2000 2500 3000 3500 4000
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Concurrent Disk Events

strategy
biodone

time (us)

bl
oc

k
ad

dr
es

s

Other DTrace tools

Since we are on the topic of disk I/O by process, there are other tools from the DTraceToolkit that provide
disk I/O details. These details aren't utilisation values, but they are useful anyway. A tour for many of these
tools was recently published as a feature article in Sys Admin magazine50. I'll mention a couple here.

bitesize.d is a very simple DTrace program51 that prints a distribution plot of the size of disk events by
process. This helps us understand if a process is reading the disk by taking large “bites” or small ones.

In Figure 49 we can see the find command has made 459 disk events, all of which fell into the 1024 byte
bucket (1024 to 2047 bytes). This is due to the find command reading through many small directory files.

The bart process has a much more interesting distribution, since it is reading the file contents it can issue
much larger I/O requests for large files. We can see that most of its events were 32 Kb to 63 Kb.

If an application must go to disk, we generally like to see larger disk events rather than smaller. Larger is
often an indication of sequential access, or read ahead access, both of which help performance. Smaller
events can be an indication of scattered or random I/O access.

50 “Observing I/O Behavior with the DTraceToolkit”, Ryan Matteson, December 2005 issue. This has also been
available online at http://www.samag.com/documents/sam0512a .

51 as a one liner: dtrace -n 'io:::start { @size[execname] = quantize(args[0]->b_bcount); }'

Solaris Performance Metrics – Disk Utilisation by Process 41

bitesize.d

Sampling... Hit Ctrl-C to end.

^C

 PID CMD

 2705 find /\0

 value ------------- Distribution ------------- count

 512 | 0

 1024 |@@ 459

 2048 | 0

 2706 bart create -I\0

 value ------------- Distribution ------------- count

 512 | 0

 1024 |@@@@@@ 443

 2048 |@@ 155

 4096 |@@@ 217

 8192 |@ 51

 16384 | 32

 32768 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2123

 65536 | 0

Figure 49 bitesize.d example, disk I/O size distributions

seeksize.d provides distributions of the seek distance of disk events by process. To demonstrate this
script, a “find / | bart create -I” command is executed,

In Figure 50 we have measured the activity of a find process. The value here is the seek size in units of
sectors, and the find command has seeked over a wide number of different distances.

Solaris Performance Metrics – Disk Utilisation by Process 42

seeksize.d

Sampling... Hit Ctrl-C to end.

^C

 PID CMD

 2912 find /\0

 value ------------- Distribution ------------- count

 -1 | 0

 0 |@@@@@@ 11

 1 | 0

 2 | 0

 4 | 0

 8 |@ 2

 16 |@ 1

 32 | 0

 64 |@ 1

 128 |@ 2

 256 |@@ 3

 512 |@@ 3

 1024 | 0

 2048 |@@ 3

 4096 |@ 1

 8192 |@ 1

 16384 |@@@@@@ 10

 32768 |@@@@@ 9

 65536 |@@@ 6

 131072 |@@ 4

 262144 |@ 1

 524288 |@@@ 5

 1048576 |@ 1

 2097152 |@@@ 6

 4194304 | 0

[...]

Figure 50 seeksize.d example, find's random activity

Also in the seeksize.d output was the activity by the bart process,

Over half of the disk events requested for the bart command incurred a seek size of 0 – which is sequential
disk activity. There was also some degree of seeking.

Other disk I/O tools in the DTraceToolkit are either in the top directory (for the most popular ones), or in the
“Disk” subdirectory (for the rest).

Solaris Performance Metrics – Disk Utilisation by Process 43

[...]

 2913 bart create -I\0

 value ------------- Distribution ------------- count

 -1 | 0

 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 583

 1 | 0

 2 | 4

 4 |@ 13

 8 |@ 24

 16 |@ 26

 32 |@ 28

 64 | 4

 128 |@ 17

 256 |@ 26

 512 |@ 32

 1024 |@ 23

 2048 |@ 14

 4096 | 6

 8192 | 1

 16384 |@@ 44

 32768 |@@ 50

 65536 | 7

 131072 | 5

 262144 | 1

 524288 | 6

 1048576 | 0

Figure 51 seeksize.d example, bart's sequential activity

4. Conclusion

Utilisation by process is best measured in terms of disk I/O time, I/O size is at best an approximation.

An adaptive disk I/O time algorithm was presented to best measure the time consumed by the disk device to
satisfy the request. This disk response time can be calculated as an absolute value, such as in milliseconds,
or as a percentage. Due to the asymmetric nature of disk resources, the disk I/O percentage was calculated in
terms of a single disk – not a percentage of the disk capacity for the entire server.

There are no by process statistics to track disk I/O time, such as in procfs. Disk I/O time can be measured
event wise using TNF tracing in Solaris 9 and earlier, and by using DTrace in Solaris 10 onwards. DTrace
has allowed new tools such as iosnoop and iotop to be written, which provide both disk I/O time and
size information by process. iotop can print a percent disk utilisation by process, which best answers the
goal of this paper.

Presenting disk I/O time by process as a single value has lost some details about the original I/O events,
especially whether they were random or sequential events. This is a trade-off incurred when simplifying a
complex system down to a single value, in this case a percent disk utilised by process. This is fine as long as
we bear in mind what our disk utilisation measurement really is – a handy summary. If needed, deeper
details can then be fetched using tools such as the iosnoop program.

5. References

1. Cockcroft, A., Sun Performance and Tuning – Java and the Internet, 2nd Edition, Prentice Hall, 1998.

2. Cockcroft, A., Clarifying disk measurements and terminology, SunWorld Online, September 1997.

3. Cockcroft, A., Solving the iostat disk mystery, SunWorld Online, October 1998.

4. Gregg, B. D., DTrace Tools, http://www.brendangregg.com/dtrace.html.

5. Matteson, R., Observing I/O Behavior with the DTraceToolkit, Sys Admin Magazine, December 2005.

6. Mauro, J., McDougall, R., Solaris Internals, Prentice Hall, 2001.

7. OpenSolaris, DTrace Community, http://www.opensolaris.org/os/community/dtrace.

8. Packer, A. N., Configuring & Tuning Databases on the Solaris Platform, Prentice Hall, 2002.

9. Sun Microsystems, Solaris Dynamic Tracing Guide, http://docs.sun.com/app/docs/doc/817-6223.

10.Wong, B., Configuration and Capacity Planning on Sun Solaris Servers, Prentice Hall, 1997.

6. Acknowledgements

People who have contributed thoughts, ideas, reviews, ...

• Claire Black
• Dr Rex di Bona
• Allan Packer

Solaris Performance Metrics – Disk Utilisation by Process 44

7. Glossary

Since new terms have been introduced in this paper, the following glossary has been compiled.

• Adaptive Disk I/O Time – an algorithm to closely estimate the Disk Response Time from a series of
strategy and biodone events.

• Application Response Time – the time from the start of an application event to the end. the response
time experienced by the client.

• Asymmetric Resource Utilisation – is where load cannot be easily shared across components of a
resource. For example, network interface cards.

• bdev_strategy – see strategy.

• biodone – the block I/O driver function that receives the completion of a disk event.

• Disk Response Time – the time consumed by the disk to service a particular event.

• Disk Utilisation by Process – a measure of how a process is causing the disks to be. Presented in terms
of a single disk, hence 400% utilisation means 4 disks at 100%, or 8 at 50%, or some such combination.

• Driver Response Time – the time from the driver request for a disk event to its completion.

• DTrace – the Dynamic Tracing facility in the Solaris 10 operating system.

• Duelling Banjos – a condition where two processes repeatedly access either end of a disk, causing each
other to seek further than would be expected.

• procfs – the process filesystem, /proc. This contains by process statistics.

• Random Disk I/O – where a series of disk events access block addresses scattered across the disk. This
causes high seek times.

• Sequential Disk I/O – where a series of disk events access adjacent or sequential block addresses. This
increases disk performance as it reduces seek time.

• Symmetric Resource Utilisation – is where load is easily shared across components of a resource. For
example, banks of RAM.

• strategy – the block I/O driver function that requests a disk event.

• Target Fixation – a term to describe a condition a fighter pilot may experience when focusing too
heavily on a target at the expense of other dangers. Here it was used to warn against grepping your PID
and missing other import disk event details. (Any excuse to use fighter pilot terminology).

• Thread Response Time – the time from the thread blocking on an event, to waking up again.

• TNF tracing – Trace Normal Form tracing. A facility to add trace probes into production code, from
Solaris 2.5. Some kernel probes are also provided by default.

Solaris Performance Metrics – Disk Utilisation by Process 45

