i dtrace.org http://dtrace.org/blogs/brendan/2009/03/17/heat-map-analytics/

Heat Map Analytics

Brendan Gregg's professional blog

Brendan's blog

s
Add statistic...
BACKUP/RESTORE
MNOMP byles transfermed to/from disk
WOMP bytes transiemed toffrom tape
Percent wtilization
A CHE
L2ARC accesses
ARC accesses
L2ARG VO byles
DISK
VO operations
VO bytes
NETWORK
Denice byles
Interace bytes
CIFS operations
HTTR/WebDAV requests
ISCSI operations | = e tel]
WFSV3 operations Broken down by type of operation
NFSwi operations Broken down by client
Broken down by file name
Broken down by share
Broken down by project
Broken down by latency
Broken down by size
Broken down by offset
| Az araw statistic

've been recently posting screenshots of heat maps from Analytics — the observability tool shipped with the
Sun Storage 7000 series.

These heat maps are especially interesting, which I'll describe here in more detail.
Introduction

To start with, when you first visit Analytics you have an empty worksheet and need to add statistics to plot.
Clicking on the plus icon next to “Add statistic” brings up a menu of statistics, as shown on the right.

I've clicked on “NFSv3 operations” and a sublist of possible breakdowns are shown. The last three (not
including “as a raw statistic”) are represented as heat maps. Clicking on “by latency” would show “NFSv3
operations by latency” as a heat map. Great.

http://dtrace.org
http://dtrace.org/blogs/brendan/2009/03/17/heat-map-analytics/
http://dtrace.org/blogs/brendan/feed/rss/
http://dtrace.org/blogs/brendan
http://dtrace.org/resources/brendan/analytics-3/analytics-3-nfs0-crop.png
http://dtrace.org/blogs/brendan/2009/03/12/latency-art-rainbow-pterodactyl/
http://dtrace.org/resources/bmc/cec_analytics.pdf
http://www.sun.com/storage/disk_systems/unified_storage

But it’s actually much more powerful than it looks. It is possible to drill down on each breakdown to focus on
behavior of interest. For example, latency may be more interesting for read or write operations, depending on
the workload. If our workload was performing synchronous writes, we may like to see the NFS latency heat map
for ‘write’ operations separately — which we can do with Analytics.

To see an example of this, I've selected “NFS operations by type of operation”, then selected ‘write’, then right-
clicked on the “write” text to see the next breakdowns that are possible:

Protocol: NFSv3 operations per second broken down by type of operation &
«P» 1l QQ QREER AR XI': @d
Range average:

45 W rite
[Drilldown on ‘write":

0 setatt By client

0 leokuml gy file name
By share

By project
By latency

By size | T | I 1

By offset 4'\830]“ 21:48:40 21:48:50 2149 21:49:10 21:49:20
As a raw statistic |

45 ops pej

This menu is also visible by clicking the drill icon (3rd from the right) to drill down further.

By clicking on latency, it will now graph “NFSv3 operations of type write broken down by latency”. So these
statistics can be shown in whatever context is most interesting — perhaps | want to see NFS operations from a
particular client, or for a particular file. Here are NFSv3 writes from the client ‘deimos’, showing the filenames
that are being written:

Protocol: NFSv3 operations per second of type write for client 'deimos.sf.fishpong.com' broken down by file name &
e« QA QOEER AR XF @

Range average:

B85
M

25 lexportfs1/test
17 fexportifs1/1m file
Show hierarchy ‘
1 |

. 1 1 1 |
161 ops per second 20:49 20:49:10 20:49:20 20:49:30 20:49:40 20:49:50
2009-3-12

Awsome. Behind the scenes, DTrace is building up dynamic scripts to fetch this data. We just click the mouse.

This was important to mention — the heat maps I'm about to demonstrate can be customized very specifically,
by type of operation, client, filename, etc.

Sequential reads

Il demonstrate heat maps at the NFS level by running the /usr/bin/sum command on a large file a few times,
and letting it run longer each time before hitting Ctrl-C to cancel it. The sum command calculates a file’s
checksum, and does so by sequentially reading through the file contents. Here is what the three heat maps
from Analytics shows:

http://dtrace.org/resources/brendan/analytics-3/analytics-3-nfs3-crop.png
http://dtrace.org/resources/brendan/analytics-3/analytics-3-nfs4-crop.png

Protocol: NFSv3 operations per second broken down by offset &
e« A QAEER AR XF @FN0

Range average:
B38M

T31M

T45M

G98M

B52M

605M o

256M

512 = i - r"..-. .l-"r.

- | | | | | |
1777 ops per second 22:30:20 22:30:40 22:31 22:31:20 22:31:40 22:32

2009-3-10

—1G

TERREERE

{

Protocol: NFSv3 operations per second broken down by size &
PN QQ QREER AR XF @0

Range average:

1777 BK
1} [i]

—12K

s | | | | | |
1777 ops per second 22:30:20 22:30:40 22:31 22:31:20 22:31:40 22:32

2009-3-10

Protocol: NFSv3 operations per second of type read broken down by latency &
«»H QQ QRHEER AR XF @0

Range average:

o HMous Z‘
1} IMus

1} 276 us

1} 242 us

o 207 us

o 173 us

o 138 us

1} 104 us

1 69 us

8 35us

1762 Qus E e - -] ---I-I-d-l—l—l—-

- | 1 1 1 1 |
1777 ops per second 22:30:20 22:30:40 22:31 22:31:20 22:31:40 22:32

2009-3-10

The top heat map of offset clearly shows the client’s behavior — the stripes show sequential I/O. The blocks
show the offsets of the read operations as the client creeps through the file. | mounted the client using
forcedirectio, so that NFS would not cache on the file contents on the client — and would be forced to keep

reading the file each time.

The middle heat map shows the size of the client /O requests. This shows the NFS client is always requesting
8 Kbyte reads. The bottom heat map shows NFS /O latency. Most of the I/O was between 0 and 35
microseconds — but there are some odd clouds of latency on the 2nd and 3rd runs.

These latency clouds would be almost invisible if a linear color scheme was used — these heat maps use false
color to emphasize detail. The left panel showed that on average there were 1771 ops/sec faster than 104 us
(adding up the numbers), and that the entire heat map averaged at 1777 ops/sec; this means that the latency
clouds (at about 0.7 ms) represent 0.3% of the I/O. The false color scheme makes them clearly visible, which is
important for latency heat maps — as these slow outliers can hurt performance — even though they are
relatively infrequent.

For those interested in more detail, I've included a couple of extra screenshots to explain this further:

http://dtrace.org/resources/brendan/analytics-3/analytics-3-sum1-crop.png

e Screenshot 1: NFS operations and disk throughput. From the top graph, it’s clear how long | left the sum

command running each time. The bottom graph of disk I/O bytes shows that the file | was checksumming
had to be pulled in from disk for the entire first run, but only later in the second and third runs.
Correspond the times to the offset heat map above — the 2nd and 3rd runs are reading data that is now
cached, and doesn’t need to be read from disk.

e Screenshot 2: ARC hits/misses. This shows what the ZFS DRAM cache is doing (which is the ‘ARC’ — the
Adaptive Replacement Cache). 've shown the same statistic twice, so that | can highlight breakdowns
separately. The top graph shows a data miss at 22:30:24, which triggers ZFS to prefetch the data (since
ZFS detects that this is a sequential read). The bottom graph shows data hits are kept high, thanks to
ZFS prefetch, and ZFS prefetch in operation: the “prefetched data misses” shows requests triggered by
prefetch that were not already in the ARC, and read from disk; and the “prefetched data hits” shows
prefetch requests that were already satisfied by the ARC. The latency clouds correspond to the later
prefetch data misses, where some client requests are arriving while prefetch is still reading from disk —
and are waiting for that to complete.

Random reads

While the rising stripes of a sequential workload are clearly visible in the offset heat map, random workloads
are also easily identifiable:

< Protocol: NFSv3 operations per second broken down by offset @
«»1l QQ QOHEHHEB AR HF @dN

Range average:
TUS 3200
103 298M
105 272M
52 244M
102 217TM

101 120M
51 163M
102 136M
103 109M
51 B1.5M
131 54.3M
87 27.2M
8 0

| |
e D 22:49 22:49:20 22:49:40 22:50 22:50:20

< Protocol: NFSv3 operations per second of type read broken down by latency 9
el QQ QQEEER AR XHF @FN

Range average:

e um —T50us

250 us

2MBus

188 us

157 us

125 us

84 us

63 us

14 32us

3277 Ous e . |\
1 1 1 1 1 -

3296 ops per second 22:49 22:49:20 22:49:40 22:50 22:50:20

2009-3-10

——_, 00O 0Cg

The NFS operations by offset shows a random and fairly uniform pattern, which matches the random /O I now
have my client requesting. These are all hitting the ZFS DRAM cache, and so the latency heat map shows most
responses in the 0 to 32 microsecond range.

Checking how these known workloads look in Analytics is valuable, as when we are faced with the unknown we
know what to look for.

Disk 1/0

http://dtrace.org/resources/brendan/analytics-3/analytics-3-sum2-crop.png
http://dtrace.org/resources/brendan/analytics-3/analytics-3-sum3-crop.png
http://dtrace.org/resources/brendan/analytics-3/analytics-3-rand-crop.png

The heat maps above demonstrated Analytics at the NFS layer; Analytics can also trace these details at the
back-end: what the disks are doing, as requested by ZFS. As an example, here is a sequential disk workload:

Disk: VO operations per second broken down by offset e
PN R QAEER AR KF @FN

Range average:

o 451G
7T 351G
o 250G
5 751G
o 501G
24 25.0G
672 0

— 576G

—I----.-ll- B m o ml B "ol R afalaaw -I-. =
712 ops per second 22:53:20 22:53:40 22:54 22:54:20 22:54:40 22:55

2009-3-10

Disk: /O operations per second broken down by size @
PN QA QOEER Y& KF N

Range average:

— 192K

W o pepeepe—gy)y mt e, W w N,

|
SRR 2T R 22:53:20 22:53:40 22:54 22:54:20 22:54:40 22:55
2009-3-10
Disk: /O operations per second broken down by latency &

PN QA QAREER AR HF @0

Range average:
TS JBUMS
11 3.20ms
14 2.80ms
38 240ms
18 2.00ms
71 1.60ms
152 1.20ms
11 800us
18 400 us
1 Ous

| | | | | |
EEopelpensscond 22:53:20 22:53:40 22:54 22:54:20 22:54:40 22:55

2009-3-10

The heat maps aren’t as clear as they are at the NFS layer, as now we are looking at what ZFS decides to do
based on our NFS requests.

The sequential read is mostly reading from the first 25 Gbytes of the disks, as shown in the offset heat map.
The size heat map shows ZFS is doing mostly 128 Kbyte I/Os, and the latency heat map shows the disk I/O
time is often about 1.20 ms, and longer.

Latency at the disk I/O layer doesn’t directly correspond to client latency — it depends on the type of I/O.
Asynchronous writes and prefetch /O won’t necessarily slow the client, for example.

Vertical Zoom

There is a way to zoom these heat maps vertically. Zooming horizontally is obvious (the first 10 buttons above
each heat map do that — by changing the time range), but the vertical zoomisn’t so obvious. It is documented
in the online help — ljust wanted to say here that it does exist. In a nutshell: click the outliers icon (last on the
right) to switch outlier elimination modes (5%, 1%, 0.1%, 0.01%, none), which often will do what you want (by
zooming to exclude a percentage of outliers); otherwise left click a low value in the left panel, shift click a high
value, then click the outliers icon.

http://dtrace.org/resources/brendan/analytics-3/analytics-3-diskio-crop.png

Overheads

As mentioned earlier, these heat maps use optimal resolutions at different ranges to conserve disk space,
while maintaining visual resolution. They are also saved on the system disks, which have compression enabled.
Still, when recording this data every second, 24 hours a day, the disk space can add up. Check their disk usage
by going to Analytics->Datasets and clicking the “ON DISK” title to sort by size:

0 Super-User@turbot LOGOUT HELP
microsystems

Storage 7410

Configuration Maintenance Shares Status Analytics

OPEN WORKSHEETS SAVED WORKSHEETS DATASETS

NAME SINCE ON DISK » IN CORE
« Disk: VO bytes per second broken down by disk 2009-1-16 1.93G 2.78M
« Disk: VO operations per second broken down by disk 2009-1-16 1.93G 2.63M

1.20M
5.79M
« Disk: /O operations per second broken down by latency 21.5M e
w CPU: percent utilization broken down by CPU identifier 2009-1-16 5H18M 1.19M

« Disk: percent utilization broken down by disk

« Disk: VO operations per second of type read broken down by latency

The size is listed before compression, so the actual consumed bytes is lower. These datasets can be
suspended by clicking the power button, which is handy if you’d like to keep interesting data but not continue
to collect new data.

Playing around...

While using these heat maps we noticed some unusual and detailed plots. Bryan and | starting wondering if it
were possible to generate artificial workloads that plotted arbitrary patterns, such as spelling out words in 8
point text. This would be especially easy for the offset heat map at the NFS level — since the client requests
the offsets, we just need to write a program to request reads or writes to the offsets we want. Moments after
this idea, Bryan and | were furiously coding to see who could finish it first (and post comical messages to each
other). Bryan won, after about 10 minutes. Here is an example:

Protocol: NFSv3 operations per second broken down by offset @
) QA QOEER AR XY N

Range average:

0 240K
0 224K

. ettt ™ e e

— 288K

0 160K

0 144K

0 128K = I N I En . EN B | 1ImEm =

0 112K o
| | I | | |

BeTHRrE 21:19 21:19:20 21:19:40 21:20 21:20:20 21:20:40

2009-3-16

Awsome, dude! ... (although that wasn’t the first message we printed ... when | realized Bryan was winning, |
logged into his desktop, found the binary he was compiling, and posted the first message to his screen before
he had finished writing the software. However my message appeared as: “BWC SnX” (Bryan’s username is
“bmc”.) Bryan was looking at the message, puzzled, while 'm saying “it’s upside down — your program prints
upside down!’)

http://dtrace.org/resources/brendan/analytics-3/analytics-3-datasets-crop.png
http://dtrace.org/blogs/brendan/2009/03/12/latency-art-rainbow-pterodactyl/
http://dtrace.org/blogs/bmc
http://dtrace.org/resources/brendan/analytics-3/analytics-3-hello-crop.png

| later modified the program to work for the size heat maps as well, which was easy as the client requests it.
But what about the latency heat maps? Latency isn’t requested — it depends on many factors: for reads, it
depends on whether the data is cached, and if not, whether it is on a flash memory based read cache (if one is
used), and if not, then it depends on how much disk head seek and rotation time it takes to pull it in — which
varies depending on the previous disk I/O. Maybe this can’t be done...

Actually, it can be done. Here is all three:

BN EEEN - heat maps New Save Clone Close

& Add statistic...

Protocol: NFSv3 operations per second broken down by offset
PN QAQ QOHEHER AR XF @EFN

Range average:
1 240K

= MES oY mECcCT

5 144K

— 288K

5 128K
2 12K
2 96K -

| | | | | |
49 ops per second 22:57:40 22:58 22:58:20 22:58:40 22:59 22:59:20

2009-3-10

Protocol: NFSv3 operations per second broken down by size
) QAQ QOEER AR XEF @0

Range average:

0 BK
17K
0 6K

1 5K F-
0 2K LI 11 | 1 N

||

0 3K

1K 111N BN | 1 | 1 1
|

—12K

00

| | | | |
5 ops per second 23:00 23:00:20 23:00:40 23:01 23:01:20 23:01:40

2009-3-10

Protocol: NFSv3 operations per second of type read broken down by latency
) AQ QOEER AR IRE @0

Range average:
USRS
0 80D us
0 700 us
0 600 us

| 1
0 500n | o w0 Y T 'r' rr
ggus Fll I II1I qu”ll” Hllf1” Jl n IHIIIIII I:Im%l IIII I|; ! I
1

0 200 us

. He
Tom T e’ 1 el I 0 B i

6 ops per second 23 38 23 40 23 42 23.44
2009-3-10

—1.50ms

Ok, the latency heat map looks a bit fuzzy, but this does work. | could probably improve it if | spent more than
30 mins on the code — but | have plenty of actual work to do.

I got the latency program to work by requesting data which was cached in DRAM, of large increasing sizes. The
latency from DRAM is consistent and relative to the size requested, so by calling reads with certain large /O
sizes | can manufacture a workload with the latency | want (close to). The client was mounted forcedirectio, so
that every read caused an NFS I/O (no client caching.)

http://dtrace.org/resources/brendan/analytics-3/analytics-3-heatmaps-crop.png

If you are interested in the client programs that injected these workloads, they are provided here (completely
unsupported) for your entertainment: offsetwriter.c, sizewriter.c and latencywriter.c. If you don’t have a Sun
Storage 7000 series product to try them on, you can try the fully functional VMware simulator (although they
may need adjustments to compensate for the simulator’s slower response times).

Summary

Heat maps are an excellent visual tool for analyzing data, and identifying patterns that would go unnoticed via
text based commands or plain graphs. Some may remember Richard McDougall’s Taztool, which used heat
maps for disk /O by offset analysis, and was very useful at the time (I reinvented it later for Solaris 10 with
DTraceTazTool).

Analytics takes heat maps much further:

o visibility of different layers of the software stack: disk /O, NFS, CIFS, ...

drilldown capabilities: for a particular client or file only, ...

I/O by offset, /O by size and I/O by latency

can archive data 24x7 in production environments

optimal disk storage

With this new visibility, heat maps are illuminating numerous performance behaviors that we previously didn’t
know about and some we still don’t yet understand — like the Rainbow Pterodactyl. DTrace has made this data
available for years, Analytics is making it easy to see.

Posted on March 17, 2009 at 10:00 am by Brendan Gregg - Permalink In: Fishworks - Tagged with: analytics,
heatmaps, visualizations

« Previous post
Next post »

http://dtrace.org/resources/brendan/analytics-3/offsetwriter.c
http://dtrace.org/resources/brendan/analytics-3/sizewriter.c
http://dtrace.org/resources/brendan/analytics-3/latencywriter.c
http://www.sun.com/storage/disk_systems/unified_storage/resources.jsp
http://www.solarisinternals.com/si/tools/taz/index.php
http://www.brendangregg.com/dtrace#DTraceTazTool
http://dtrace.org/blogs/brendan/2009/03/12/latency-art-rainbow-pterodactyl/
http://dtrace.org/blogs/brendan/2009/03/17/heat-map-analytics/
http://dtrace.org/blogs/brendan/category/fishworks/
http://dtrace.org/blogs/brendan/tag/analytics/
http://dtrace.org/blogs/brendan/tag/heatmaps/
http://dtrace.org/blogs/brendan/tag/visualizations/
http://dtrace.org/blogs/brendan/2009/03/16/dave-tests-compression/
http://dtrace.org/blogs/brendan/2009/03/23/performance-testing-the-7000-series-part-1-of-3/

	Heat Map Analytics
	Brendan Gregg's professional blog

	Brendan's blog
	Introduction
	Sequential reads
	Random reads
	Disk I/O
	Vertical Zoom
	Overheads
	Playing around…
	Summary

