
dt race.o rg http://dtrace.org/blogs/brendan/2009/03/17/heat-map-analytics/

Heat Map Analytics

Brendan Gregg's professional blog

Brendan's blog

I’ve been recently posting screenshots of heat maps f rom Analytics – the observability tool shipped with the
Sun Storage 7000 series.

These heat maps are especially interesting, which I’ll describe here in more detail.

Introduction

To start with, when you f irst visit Analytics you have an empty worksheet and need to add statistics to plot.
Clicking on the plus icon next to “Add statistic” brings up a menu of statistics, as shown on the right.

I’ve clicked on “NFSv3 operations” and a sublist of possible breakdowns are shown. The last three (not
including “as a raw statistic”) are represented as heat maps. Clicking on “by latency” would show “NFSv3
operations by latency” as a heat map. Great.

http://dtrace.org
http://dtrace.org/blogs/brendan/2009/03/17/heat-map-analytics/
http://dtrace.org/blogs/brendan/feed/rss/
http://dtrace.org/blogs/brendan
http://dtrace.org/resources/brendan/analytics-3/analytics-3-nfs0-crop.png
http://dtrace.org/blogs/brendan/2009/03/12/latency-art-rainbow-pterodactyl/
http://dtrace.org/resources/bmc/cec_analytics.pdf
http://www.sun.com/storage/disk_systems/unified_storage

But it ’s actually much more powerf ul than it looks. It is possible to drill down on each breakdown to f ocus on
behavior of interest. For example, latency may be more interesting f or read or write operations, depending on
the workload. If our workload was perf orming synchronous writes, we may like to see the NFS latency heat map
f or ‘write’ operations separately – which we can do with Analytics.

To see an example of this, I’ve selected “NFS operations by type of operation”, then selected ‘write’, then right-
clicked on the “write” text to see the next breakdowns that are possible:

This menu is also visible by clicking the drill icon (3rd f rom the right) to drill down f urther.

By clicking on latency, it will now graph “NFSv3 operations of type write broken down by latency”. So these
statistics can be shown in whatever context is most interesting – perhaps I want to see NFS operations f rom a
particular client, or f or a particular f ile. Here are NFSv3 writes f rom the client ‘deimos’, showing the f ilenames
that are being written:

Awsome. Behind the scenes, DTrace is building up dynamic scripts to f etch this data. We just click the mouse.

This was important to mention – the heat maps I’m about to demonstrate can be customized very specif ically,
by type of operation, client, f ilename, etc.

Sequential reads

I’ll demonstrate heat maps at the NFS level by running the /usr/bin/sum command on a large f ile a f ew times,
and lett ing it run longer each time bef ore hitt ing Ctrl-C to cancel it. The sum command calculates a f ile’s
checksum, and does so by sequentially reading through the f ile contents. Here is what the three heat maps
f rom Analytics shows:

http://dtrace.org/resources/brendan/analytics-3/analytics-3-nfs3-crop.png
http://dtrace.org/resources/brendan/analytics-3/analytics-3-nfs4-crop.png

The top heat map of offset clearly shows the client’s behavior – the stripes show sequential I/O. The blocks
show the of f sets of the read operations as the client creeps through the f ile. I mounted the client using
forcedirectio, so that NFS would not cache on the f ile contents on the client – and would be f orced to keep
reading the f ile each time.

The middle heat map shows the size of the client I/O requests. This shows the NFS client is always requesting
8 Kbyte reads. The bottom heat map shows NFS I/O latency. Most of the I/O was between 0 and 35
microseconds – but there are some odd clouds of latency on the 2nd and 3rd runs.

These latency clouds would be almost invisible if a linear color scheme was used – these heat maps use f alse
color to emphasize detail. The lef t panel showed that on average there were 1771 ops/sec f aster than 104 us
(adding up the numbers), and that the entire heat map averaged at 1777 ops/sec; this means that the latency
clouds (at about 0.7 ms) represent 0.3% of the I/O. The f alse color scheme makes them clearly visible, which is
important f or latency heat maps – as these slow outliers can hurt perf ormance – even though they are
relatively inf requent.

For those interested in more detail, I’ve included a couple of extra screenshots to explain this f urther:

http://dtrace.org/resources/brendan/analytics-3/analytics-3-sum1-crop.png

Screenshot 1: NFS operations and disk throughput. From the top graph, it ’s clear how long I lef t the sum
command running each time. The bottom graph of disk I/O bytes shows that the f ile I was checksumming
had to be pulled in f rom disk f or the entire f irst run, but only later in the second and third runs.
Correspond the times to the of f set heat map above – the 2nd and 3rd runs are reading data that is now
cached, and doesn’t need to be read f rom disk.

Screenshot 2: ARC hits/misses. This shows what the ZFS DRAM cache is doing (which is the ‘ARC’ – the
Adaptive Replacement Cache). I’ve shown the same statistic twice, so that I can highlight breakdowns
separately. The top graph shows a data miss at 22:30:24, which triggers ZFS to pref etch the data (since
ZFS detects that this is a sequential read). The bottom graph shows data hits are kept high, thanks to
ZFS pref etch, and ZFS pref etch in operation: the “pref etched data misses” shows requests triggered by
pref etch that were not already in the ARC, and read f rom disk; and the “pref etched data hits” shows
pref etch requests that were already satisf ied by the ARC. The latency clouds correspond to the later
pref etch data misses, where some client requests are arriving while pref etch is still reading f rom disk –
and are waiting f or that to complete.

Random reads

While the rising stripes of a sequential workload are clearly visible in the of f set heat map, random workloads
are also easily identif iable:

The NFS operations by of f set shows a random and f airly unif orm pattern, which matches the random I/O I now
have my client requesting. These are all hitt ing the ZFS DRAM cache, and so the latency heat map shows most
responses in the 0 to 32 microsecond range.

Checking how these known workloads look in Analytics is valuable, as when we are f aced with the unknown we
know what to look f or.

Disk I/O

http://dtrace.org/resources/brendan/analytics-3/analytics-3-sum2-crop.png
http://dtrace.org/resources/brendan/analytics-3/analytics-3-sum3-crop.png
http://dtrace.org/resources/brendan/analytics-3/analytics-3-rand-crop.png

The heat maps above demonstrated Analytics at the NFS layer; Analytics can also trace these details at the
back-end: what the disks are doing, as requested by ZFS. As an example, here is a sequential disk workload:

The heat maps aren’t as clear as they are at the NFS layer, as now we are looking at what ZFS decides to do
based on our NFS requests.

The sequential read is mostly reading f rom the f irst 25 Gbytes of the disks, as shown in the of f set heat map.
The size heat map shows ZFS is doing mostly 128 Kbyte I/Os, and the latency heat map shows the disk I/O
time is of ten about 1.20 ms, and longer.

Latency at the disk I/O layer doesn’t directly correspond to client latency – it depends on the type of I/O.
Asynchronous writes and pref etch I/O won’t necessarily slow the client, f or example.

Vert ical Zoom

There is a way to zoom these heat maps vertically. Zooming horizontally is obvious (the f irst 10 buttons above
each heat map do that – by changing the time range), but the vertical zoom isn’t so obvious. It is documented
in the online help – I just wanted to say here that it does exist. In a nutshell: click the outliers icon (last on the
right) to switch outlier elimination modes (5%, 1%, 0.1%, 0.01%, none), which of ten will do what you want (by
zooming to exclude a percentage of outliers); otherwise lef t click a low value in the lef t panel, shif t click a high
value, then click the outliers icon.

http://dtrace.org/resources/brendan/analytics-3/analytics-3-diskio-crop.png

Overheads

As mentioned earlier, these heat maps use optimal resolutions at dif f erent ranges to conserve disk space,
while maintaining visual resolution. They are also saved on the system disks, which have compression enabled.
Still, when recording this data every second, 24 hours a day, the disk space can add up. Check their disk usage
by going to Analytics->Datasets and clicking the “ON DISK” tit le to sort by size:

The size is listed bef ore compression, so the actual consumed bytes is lower. These datasets can be
suspended by clicking the power button, which is handy if you’d like to keep interesting data but not continue
to collect new data.

Playing around…

While using these heat maps we noticed some unusual and detailed plots. Bryan and I starting wondering if it
were possible to generate artif icial workloads that plotted arbitrary patterns, such as spelling out words in 8
point text. This would be especially easy f or the of f set heat map at the NFS level – since the client requests
the of f sets, we just need to write a program to request reads or writes to the of f sets we want. Moments af ter
this idea, Bryan and I were f uriously coding to see who could f inish it f irst (and post comical messages to each
other). Bryan won, af ter about 10 minutes. Here is an example:

Awsome, dude! … (although that wasn’t the f irst message we printed … when I realized Bryan was winning, I
logged into his desktop, f ound the binary he was compiling, and posted the f irst message to his screen bef ore
he had f inished writ ing the sof tware. However my message appeared as: “BWC SnX” (Bryan’s username is
“bmc”.) Bryan was looking at the message, puzzled, while I’m saying “it ’s upside down – your program prints
upside down!”)

http://dtrace.org/resources/brendan/analytics-3/analytics-3-datasets-crop.png
http://dtrace.org/blogs/brendan/2009/03/12/latency-art-rainbow-pterodactyl/
http://dtrace.org/blogs/bmc
http://dtrace.org/resources/brendan/analytics-3/analytics-3-hello-crop.png

I later modif ied the program to work f or the size heat maps as well, which was easy as the client requests it.
But what about the latency heat maps? Latency isn’t requested – it depends on many f actors: f or reads, it
depends on whether the data is cached, and if not, whether it is on a f lash memory based read cache (if one is
used), and if not, then it depends on how much disk head seek and rotation time it takes to pull it in – which
varies depending on the previous disk I/O. Maybe this can’t be done…

Actually, it can be done. Here is all three:

Ok, the latency heat map looks a bit f uzzy, but this does work. I could probably improve it if I spent more than
30 mins on the code – but I have plenty of actual work to do.

I got the latency program to work by requesting data which was cached in DRAM, of large increasing sizes. The
latency f rom DRAM is consistent and relative to the size requested, so by calling reads with certain large I/O
sizes I can manuf acture a workload with the latency I want (close to). The client was mounted f orcedirectio, so
that every read caused an NFS I/O (no client caching.)

http://dtrace.org/resources/brendan/analytics-3/analytics-3-heatmaps-crop.png

If you are interested in the client programs that injected these workloads, they are provided here (completely
unsupported) f or your entertainment: of f setwriter.c, sizewriter.c and latencywriter.c. If you don’t have a Sun
Storage 7000 series product to try them on, you can try the f ully f unctional VMware simulator (although they
may need adjustments to compensate f or the simulator ’s slower response times).

Summary

Heat maps are an excellent visual tool f or analyzing data, and identif ying patterns that would go unnoticed via
text based commands or plain graphs. Some may remember Richard McDougall’s Taztool, which used heat
maps f or disk I/O by of f set analysis, and was very usef ul at the time (I reinvented it later f or Solaris 10 with
DTraceTazTool).

Analytics takes heat maps much f urther:

visibility of dif f erent layers of the sof tware stack: disk I/O, NFS, CIFS, …

drilldown capabilit ies: f or a particular client or f ile only, …

I/O by of f set, I/O by size and I/O by latency

can archive data 24×7 in production environments

optimal disk storage

With this new visibility, heat maps are illuminating numerous perf ormance behaviors that we previously didn’t
know about and some we still don’t yet understand – like the Rainbow Pterodactyl. DTrace has made this data
available f or years, Analytics is making it easy to see.

Posted on March 17, 2009 at 10:00 am by Brendan Gregg · Permalink In: Fishworks · Tagged with: analytics,
heatmaps, visualizations

« Previous post
Next post »

http://dtrace.org/resources/brendan/analytics-3/offsetwriter.c
http://dtrace.org/resources/brendan/analytics-3/sizewriter.c
http://dtrace.org/resources/brendan/analytics-3/latencywriter.c
http://www.sun.com/storage/disk_systems/unified_storage/resources.jsp
http://www.solarisinternals.com/si/tools/taz/index.php
http://www.brendangregg.com/dtrace#DTraceTazTool
http://dtrace.org/blogs/brendan/2009/03/12/latency-art-rainbow-pterodactyl/
http://dtrace.org/blogs/brendan/2009/03/17/heat-map-analytics/
http://dtrace.org/blogs/brendan/category/fishworks/
http://dtrace.org/blogs/brendan/tag/analytics/
http://dtrace.org/blogs/brendan/tag/heatmaps/
http://dtrace.org/blogs/brendan/tag/visualizations/
http://dtrace.org/blogs/brendan/2009/03/16/dave-tests-compression/
http://dtrace.org/blogs/brendan/2009/03/23/performance-testing-the-7000-series-part-1-of-3/

	Heat Map Analytics
	Brendan Gregg's professional blog

	Brendan's blog
	Introduction
	Sequential reads
	Random reads
	Disk I/O
	Vertical Zoom
	Overheads
	Playing around…
	Summary

