
dt race.o rg http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/

Linux Kernel Performance: Flame Graphs

To get the most out of your systems, you want detailed insight into what the operating system kernel is doing.
A typical approach is to sample stack traces; however, the data collected can be time consuming to read or
navigate. Flame Graphs are a new way to visualize sampled stack traces, and can be applied to the Linux kernel
f or some usef ul (and stunning!) visualizations.

I’ve used these many times to help solve other kernel and application issues. Since I posted the source to
github, others have been using it too (eg, f or node.js and IP scaling). I’ve recently been using them to
investigate Linux kernel perf ormance issues (under KVM), which I’ll demonstrate in this post using a couple of
dif f erent prof iling tools: perf _events and SystemTap.

Linux Perf Events

This f lame graph shows a network workload f or the 3.2.9-1 Linux kernel, running as a KVM instance:

click image for interactive SVG; larger PNG here

Flame Graphs show the sample population across the x-axis, and stack depth on the y-axis. Each f unction
(stack f rame) is drawn as a rectangle, with the width relative to the number of samples. See my previous post
f or the f ull description of how these work.

You can use the mouse to explore where kernel CPU time is spent, quickly quantif ying code-paths and
determining where perf ormance tuning ef f orts are best spent. This example shows that most t ime was spent in
the vp_notif y() code-path, spending 70.52% of all on-CPU samples perf orming iowrite16().

This was generated using perf _events and the FlameGraph tools:

http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
https://github.com/brendangregg/FlameGraph
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://smartos.org/2012/02/28/using-flamegraph-to-solve-ip-scaling-issue-dce/
http://www.beginningwithi.com/brendan/perf-kernel.svg
http://dtrace.org/blogs/brendan/files/2012/03/perf-kernel.png
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
https://github.com/brendangregg/FlameGraph

perf record -a -g -F 1000 sleep 60
perf script | ./stackcollapse-perf.pl > out.perf-folded
cat out.perf-folded | ./flamegraph.pl > perf-kernel.svg

The f irst command runs perf in sampling mode (polling) at 1000 Hertz (-F 1000; more on this later) across all
CPUs (-a), capturing stack traces so that a call graph (-g) of f unction ancestry can be generated later. The
samples are saved in a perf .data f ile:

ls -lh perf.data
-rw-------. 1 root root 15M Mar 12 20:13 perf.data

This can be processed in a variety of ways. On recent versions, the perf report command launches an
ncurses navigator f or call graph inspection. Older versions of perf (or if you pipe the new version) print the call
graph as a tree, annotated with percentages:

perf report | more
========
captured on: Wed Mar 14 00:09:59 2012
hostname : fedora1
os release : 3.2.9-1.fc16.x86_64
perf version : 3.2.9-1.fc16.x86_64
arch : x86_64
nrcpus online : 1
nrcpus avail : 1
cpudesc : QEMU Virtual CPU version 0.14.1
cpuid : GenuineIntel,6,2,3
total memory : 1020560 kB
cmdline : /usr/bin/perf record -a -g -F 1000 sleep 60
event : name = cycles, type = 1, config = 0x0, config1 = 0x0, config2 = 0x0, excl_usr = ...
HEADER_CPU_TOPOLOGY info available, use -I to display
HEADER_NUMA_TOPOLOGY info available, use -I to display
========
#
Events: 60K cpu-clock
#
Overhead Command Shared Object Symbol
........
#
 72.18% iperf [kernel.kallsyms] [k] iowrite16
 |
 --- iowrite16
 |
 |--99.53%-- vp_notify
 | virtqueue_kick
 | start_xmit
 | dev_hard_start_xmit
 | sch_direct_xmit
 | dev_queue_xmit
 | ip_finish_output
 | ip_output
 | ip_local_out
 | ip_queue_xmit
 | tcp_transmit_skb
 | tcp_write_xmit
 | |
 | |--98.16%-- tcp_push_one
 | | tcp_sendmsg
 | | inet_sendmsg
 | | sock_aio_write
 | | do_sync_write
 | | vfs_write
 | | sys_write
 | | system_call
 | | 0x369e40e5cd
 | |
 | --1.84%-- __tcp_push_pending_frames
[...]

This tree starts with the on-CPU f unctions and works back through the ancestry (this is a “callee based call
graph”). This f ollows the f lame graph when reading the f lame graph top-down. (This behavior can be f lipped by
using the “caller” option to -g/–call-graph, instead of the “callee” def ault, generating a tree that f ollows the
f lame graph when read bottom-up.) The hottest (most f requent) stack trace in the f lame graph (@70.52%) can
be seen in this perf call graph as the product of the top three nodes (72.18% x 99.53% x 98.16%, which are

relative rates). perf report can also be run with “-g graph” to show absolute overhead rates, in which case
“70.52%” is directly displayed on the node.

The perf report tree (and the ncurses navigator) do an excellent job at presenting this inf ormation as text.
However, with text there are limitations. The output of ten does not f it in one screen (you could say it doesn’t
need to, if the bulk of the samples are identif ied on the f irst page). Also, identif ying the hottest code paths
requires reading the percentages. With the f lame graph, all the data is on screen at once, and the hottest
code-paths are immediately obvious as the widest f unctions.

For generating the f lame graph, the perf script command (a newer addition to perf) was used to dump the
stack samples, which are then aggregated by stackcollapse-perf .pl and f olded into single lines per-stack. That
output is then converted by f lamegraph.pl into the SVG. I included a gratuitous “cat” command to make it clear
that f lamegraph.pl can process the output of a pipe, which could include Unix commands to f ilter or preprocess
(grep, sed, awk).

The last two commands could be connected via a pipe:

perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf-kernel.svg

In practice I don’t do this, as I of ten re-run f lamegraph.pl multiple t imes, and this one- liner would execute
everything multiple t imes. The output of perf script can be many Mbytes, taking many seconds to process.
By writ ing stackcollapse-perf .pl to a f ile, you’ve cached the slowest step, and can also edit the f ile (vi) to delete
unimportant stacks. The one- line-per-stack output of stackcollapse-perf .pl is also great f ood f or grep(1). Eg:

perf script | ./stackcollapse-perf.pl > out.perf-folded
grep -v cpu_idle out.perf-folded | ./flamegraph.pl > nonidle.svg
grep ext4 out.perf-folded | ./flamegraph.pl > ext4internals.svg
egrep 'system_call.*sys_(read|write)' out.perf-folded | ./flamegraph.pl > rw.svg

Note that it would be a litt le more ef f icient to process the output of perf report instead of perf script;
better still, perf report could have a report style (eg, “-g f olded”) that output f olded stacks directly, obviating
the need f or stackcollapse-perf .pl. There could even be a perf mode that output the SVG directly (which
wouldn’t be the f irst one; see perf - t imechart), although, that would miss the value of being able to grep the
f olded stacks (which I use f requently).

If you’ve never used perf _events bef ore, you may want to test bef ore production use (it has had kernel panic
bugs in the past). My experience has been a good one (no panics).

SystemTap

SystemTap can also sample stack traces via the timer.prof ile probe, which f ires at the system clock rate
(CONFIG_HZ). Unlike perf , which dumps samples to a f ile f or later aggregation and reporting, SystemTap can
do the aggregation in-kernel and pass a (much smaller) report to user- land. The data collected and output
generated can be customized much f urther via its scripting language. The examples here were generated on
Fedora 16 (where it works much better than Ubuntu/CentOS).

http://web.eecs.utk.edu/~vweaver1/projects/perf-events/kernel_panics.html
http://dtrace.org/blogs/brendan/2011/10/15/using-systemtap/

The commands f or SystemTap version 1.6 are:

stap -s 32 -D MAXTRACE=100 -D MAXSTRINGLEN=4096 -D MAXMAPENTRIES=10240 \
 -D MAXACTION=10000 -D STP_OVERLOAD_THRESHOLD=5000000000 --all-modules \
 -ve 'global s; probe timer.profile { s[backtrace()] <<< 1; }
 probe end { foreach (i in s+) { print_stack(i);
 printf("\t%d\n", @count(s[i])); } } probe timer.s(60) { exit(); }' \
 > out.stap-stacks
./stackcollapse-stap.pl out.stap-stacks > out.stap-folded
cat out.stap-folded | ./flamegraph.pl > stap-kernel.svg

The six options used (-s 32, -D …) increase various SystemTap limits. The only ones really necessary f or
f lame graphs are “-D MAXTRACE=100 -D MAXSTRINGLEN=4096″, so that stack traces aren’t truncated; the
others became necessary when sampling f or long periods (in this case, 60 seconds) on busy workloads, since
you can get errors such as:

WARNING: There were 233 transport failures.

ERROR: Array overflow, check MAXMAPENTRIES near identifier 's' at <input>:1:33

MAXACTION:
ERROR: MAXACTION exceeded near operator '{' at <input>:1:87

STP_OVERLOAD_THRESHOLD:
ERROR: probe overhead exceeded threshold

The “transport f ailures” is f ixed by increasing the buf f er size (-s); the other messages include the names of
the tunables that need to be increased.

Also, be sure you have the f ix f or the #13714 kernel panic (which led to CVE-2012-0875), or the latest version
of SystemTap.

http://www.beginningwithi.com/brendan/stap-kernel.svg
http://sourceware.org/bugzilla/show_bug.cgi?id=13714
https://bugzilla.redhat.com/show_bug.cgi?id=795913

On SystemTap v1.7 (latest):

stap -s 32 -D MAXBACKTRACE=100 -D MAXSTRINGLEN=4096 -D
MAXMAPENTRIES=10240 \
 -D MAXACTION=10000 -D STP_OVERLOAD_THRESHOLD=5000000000 --all-modules \
 -ve 'global s; probe timer.profile { s[backtrace()] <<< 1; }
 probe end { foreach (i in s+) { print_stack(i);
 printf("\t%d\n", @count(s[i])); } } probe timer.s(60) { exit(); }' \
 > out.stap-stacks
./stackcollapse-stap.pl out.stap-stacks > out.stap-folded
cat out.stap-folded | ./flamegraph.pl > stap-kernel.svg

The only dif f erence is that MAXTRACE became MAXBACKTRACE.

The “-v” option is used to provide details on what SystemTap is doing. When running this one- liner f or the f irst
t ime, it printed:

Pass 1: parsed user script and 82 library script(s) using 200364virt/23076res/2996shr kb, in
100usr/10sys/260real ms.
Pass 2: analyzed script: 3 probe(s), 3 function(s), 0 embed(s), 1 global(s) using
200892virt/23868res/3228shr kb, in 0usr/0sys/9real ms.
Pass 3: translated to C into "/tmp/stapllG8kv/stap_778fac70871457bfb540977b1ef376d3_2113_src.c"
using 361936virt/48824res/16640shr kb, in 710usr/90sys/1843real ms.
Pass 4: compiled C into "stap_778fac70871457bfb540977b1ef376d3_2113.ko" in
7630usr/560sys/19155real ms.
Pass 5: start ing run.

This provides timing details f or each init ialization stage. Compilation took over 18 seconds, during which the
perf ormance of the system dropped by 45%. Fortunately, this only occurs on the f irst invocation. SystemTap
caches the compiled objects under ~/.systemtap, which subsequent executions use. I haven’t tried, but I
suspect it ’s possible to compile on one machine (eg, lab, to test f or panics), then transf er the cached objects
to the target f or execution – avoiding the compilation step.

1000 Hertz

The above examples both used 1000 Hertz, so that I could show them both doing the same thing. Ideally, I’d
sample at 997 Hertz (or something similar) to avoid sampling in lock-step with t imed tasks (which can lead to
over-sampling or under-sampling, misrepresenting what is actually happening). With perf _events, the f requency
can be set with -F; f or example, “-F 997″.

For SystemTap, sampling at 997 Hertz (or anything other than CONFIG_HZ) is currently dif f icult: the
timer.hz(997) probe f ires at the correct rate, but can’t read stack backtraces. It ’s possible that it can be done
via the perf probes based on CPU ref erence cycle counts (eg, “probe perf .type(0).conf ig(0). sample(N)”, where
N = CPU_MHz * 1000000 / Sample_Hz). See #13820 f or the status on this.

File System

As an example of a dif f erent workload, this shows the kernel CPU time while an ext4 f ile system was being
archived:

http://sourceware.org/bugzilla/show_bug.cgi?id=13820

This used perf _events (PNG version); the SystemTap version looks almost identical (SVG, PNG).

This shows how the f ile system was being read and where kernel CPU time was spent. Most of the kernel t ime
is in sys_newf statat() and sys_getdents() – metadata work as the f ile system is walked. sys_openat() is on
the right, as f iles are opened to be read, which are then mmap()d (look to the right of sys_getdents(), these
are in alphabetical order), and f inally page f aulted into user-space (see the page_f ault() mountain on the lef t).
The actual work of moving bytes is then spent in user- land on the mmap’d segments (and not shown in this
kernel f lame graph). Had the archiver used the read() syscall instead, this f lame graph would look very
dif f erent, and have a large sys_read() component.

Short Lived Processes

For this f lame graph, I executed a workload of short- lived processes to see where kernel t ime is spent creating
them (PNG version):

Apart f rom perf ormance analysis, this is also a great tool f or learning the internals of the Linux kernel.

oprof ile

Bef ore anyone asks, oprof ile could also be used f or stack sampling. I haven’t written a stackcollapse.pl version
f or oprof ile yet.

Notes

All of the above f lame graphs were generated on the Linux 3.2.9 kernel (Fedora 16 guest) running under KVM
(Ubuntu host), with one virtual CPU. Some code paths and sample ratios will be very dif f erent on bare-metal:

http://www.beginningwithi.com/brendan/perf-ext4.svg
http://dtrace.org/blogs/brendan/files/2012/03/perf-ext4.png
http://www.beginningwithi.com/brendan/stap-ext4.svg
http://dtrace.org/blogs/brendan/files/2012/03/stap-ext4.png
http://dtrace.org/blogs/brendan/files/2012/03/perf-execs.png
http://www.beginningwithi.com/brendan/perf-execs.svg

networking won’t be processed via the virt io-net driver, f or a start. On systems with a high degree of idle t ime,
the f lame graph can be dominated by the idle task, which can be f iltered using “grep -v cpu_idle” of the f olded
stacks. Note that by def ault the f lame graph aggregates samples f rom multiple CPUs; with some shell scripting,
you could aggregate samples f rom multiple hosts as well. Although, it ’s sometimes usef ul to generate separate
f lame graphs f or individual CPUs: I’ve done this f or mapped hardware interrupts, f or example.

Conclusion

With the Flame Graph visualization, CPU time in the Linux kernel can be quickly understood and inspected. In
this post, I showed Flame Graphs f or dif f erent workloads: networking, f ile system I/O, and process execution.
As a SVG in the browser, they can be navigated with the mouse to inspect element details, revealing
percentages so that perf ormance issues or tuning ef f orts can be quantif ied.

I used perf _events and SystemTap to sample stack traces, one task out of many that these powerf ul tools can
do. It shouldn’t be too hard to use oprof ile to provide the data f or Flame Graphs as well.

References

Thanks to those using f lame graphs and putting it to use in other new areas, and to the SystemTap engineers
f or answering questions and f ixing bugs.

Posted on March 17, 2012 at 9:24 am by Brendan Gregg · Permalink In: Perf ormance · Tagged with: f lamegraphs,
linux, perf ormance, perf _events, systemtap, visualizations

« Previous post
Next post »

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/
http://dtrace.org/blogs/brendan/category/performance/
http://dtrace.org/blogs/brendan/tag/flamegraphs/
http://dtrace.org/blogs/brendan/tag/linux-2/
http://dtrace.org/blogs/brendan/tag/performance-2/
http://dtrace.org/blogs/brendan/tag/perf_events/
http://dtrace.org/blogs/brendan/tag/systemtap/
http://dtrace.org/blogs/brendan/tag/visualizations/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/26/subsecond-offset-heat-maps/

	Linux Kernel Performance: Flame Graphs
	Linux Perf Events
	SystemTap
	1000 Hertz
	File System
	Short Lived Processes
	oprofile
	Notes
	Conclusion
	References

