
291

5
File Systems

File systems—an integral part of any operating system—have long been one of the
most difficult components to observe when analyzing performance. This is largely
because of the way file system data and metadata caching are implemented in the
kernel but also because, until now, we simply haven’t had tools that can look into
these kernel subsystems. Instead, we’ve analyzed slow I/O at the disk storage layer
with tools such as iostat(1), even though this is many layers away from applica-
tion latency. DTrace can be used to observe exactly how the file system responds to
applications, how effective file system tuning is, and the internal operation of file
system components. You can use it to answer questions such as the following.

� What files are being accessed, and how? By what or whom? Bytes, I/O counts?

� What is the source of file system latency? Is it disks, the code path, locks?

� How effective is prefetch/read-ahead? Should this be tuned?

As an example, rwsnoop is a DTrace-based tool, shipping with Mac OS X and
OpenSolaris, that you can use to trace read and write system calls, along with the
filename for file system I/O. The following shows sshd (the SSH daemon) accept-
ing a login on Solaris:

rwsnoop
 UID PID CMD D BYTES FILE
 0 942611 sshd R 70 <unknown>
 0 942611 sshd R 0 <unknown>

continues

Gregg.book Page 291 Wednesday, February 2, 2011 12:35 PM

292 Chapter 5 � File Systems

Unlike iosnoop from Chapter 4, Disk I/O, the reads and writes shown previ-
ously may be served entirely from the file system in-memory cache, with no need
for any corresponding physical disk I/O.

Since rwsnoop traces syscalls, it also catches reads and writes to non–file sys-
tem targets, such as sockets for network I/O (the <unknown> filenames). Or
DTrace can be used to drill down into the file system and catch only file system I/O,
as shown in the “Scripts” section.

Capabilities

The file system functional diagram shown in Figure 5-1 represents the flow from user
applications, through the major kernel subsystems, down to the storage subsystem.
The path of a data or metadata disk operation may fall into any of the following:

1. Raw I/O (/dev/rdsk)

2. File system I/O

3. File system ops (mount/umount)

4. File system direct I/O (cache bypass)

5. File system I/O

6. Cache hits (reads)/writeback (writes)

7. Cache misses (reads)/writethrough (writes)

8. Physical disk I/O

 0 942611 sshd R 1444 /etc/gss/mech
 0 942611 sshd R 0 /etc/gss/mech
 0 942611 sshd R 0 /etc/krb5/krb5.conf
 0 942611 sshd R 1894 /etc/crypto/pkcs11.conf
 0 942611 sshd R 0 /etc/crypto/pkcs11.conf
 0 942611 sshd R 336 /proc/942611/psinfo
 0 942611 sshd R 553 /etc/nsswitch.conf
 0 942611 sshd R 0 /etc/nsswitch.conf
 0 942611 sshd R 916 /var/ak/etc/passwd
 0 942611 sshd R 4 /.sunw/pkcs11_softtoken/objstore_info
 0 942611 sshd R 16 /.sunw/pkcs11_softtoken/objstore_info
 0 942611 sshd W 12 /devices/pseudo/random@0:urandom
 0 942611 sshd R 0 /etc/krb5/krb5.conf
 0 942611 sshd W 12 /devices/pseudo/random@0:urandom
 0 942611 sshd R 0 /etc/krb5/krb5.conf
 0 942611 sshd W 12 /devices/pseudo/random@0:urandom
 0 942611 sshd R 0 /etc/krb5/krb5.conf
 0 942611 sshd W 12 /devices/pseudo/random@0:urandom
 0 942611 sshd W 520 <unknown>
[...]

Gregg.book Page 292 Wednesday, February 2, 2011 12:35 PM

Capabilities 293

Figure 5-2 shows the logical flow of a file system read request processing
through to completion. At each of the numbered items, we can use DTrace to
answer questions, such as the following.

1. What are the requests? Type? Count? Read size? File offset?

2. What errors occurred? Why? For who/what?

3. How many reads were from prefetch/read ahead? (ZFS location shown.)

4. What was the cache hit rate? Per file system?

5. What is the latency of read, cache hit (request processing)?

6. What is the full request processing time (cache lookup + storage lookup)?

7. What is the volume of disk I/O? (How does it compare to 1?)

8. What is the disk I/O latency?

9. Did any disk errors occur?

10. Latency of I/O, cache miss?

11. Error latency? (May include disk retries.)

Figure 5-1 File system functional diagram

Gregg.book Page 293 Wednesday, February 2, 2011 12:35 PM

294 Chapter 5 � File Systems

Figure 5-3 shows the logical flow of a file system write request processing
through to completion. At each of the numbered items, we can use DTrace to
answer questions, such as the following.

1. What are the requests? Type? Count? Write size? File offset?

2. What errors occurred? Why? For who/what?

3. How much of the write I/O was synchronous?

4. What is the latency of write, writeback (request processing)?

5. What is the full request processing time (cache insertion + storage lookup)?

6. What is the volume of disk I/O? (How does it compare to 1?)

7. What is the disk I/O latency for normal writes?

8. What is the disk I/O latency for synchronous writes (includes disk cache
sync)?

9. Did any disk errors occur?

10. What is the latency of an I/O on a cache miss?

11. What is the error latency? (This may include disk retries.)

Figure 5-2 File system read operation

Gregg.book Page 294 Wednesday, February 2, 2011 12:35 PM

Strategy 295

Logical vs. Physical I/O

Figure 5-1 labels I/O at the system call layer as “logical” and I/O at the disk layer
as “physical.” Logical I/O describes all requests to the file system, including those
that return immediately from memory. Physical I/O consists of requests by the file
system to its storage devices.

There are many reasons why the rate and volume of logical I/O may not match
physical I/O, some of which may already be obvious from Figure 5-1. These include
caching, read-ahead/prefetch, file system record size inflation, device sector size
fragmentation, write cancellation, and asynchronous I/O. Each of these are
described in the “Scripts” section for the readtype.d and writetype.d scripts,
which trace and compare logical to physical I/O.

Strategy

The following approach will help you get started with disk I/O analysis using
DTrace. Try the DTrace one-liners and scripts listed in the sections that follow.

1. In addition to those DTrace tools, familiarize yourself with existing file sys-
tem statistical tools. For example, on Solaris you can use df(1M) to list file
system usage, as well as a new tool called fsstat(1) to show file system I/O
types. You can use the metrics from these as starting points for customiza-
tion with DTrace.

Figure 5-3 File system write operation

Gregg.book Page 295 Wednesday, February 2, 2011 12:35 PM

296 Chapter 5 � File Systems

2. Locate or write tools to generate known file system I/O, such as running
the dd command to create files with known numbers of write I/O and to read
them back. Filebench can be used to generate sophisticated I/O. It is
extremely helpful to have known workloads to check against.

3. Customize and write your own one-liners and scripts using the syscall pro-
vider. Then try the vminfo and sysinfo providers, if available.

4. Try the currently unstable fsinfo provider for more detailed file system
scripts, and customize the fsinfo scripts in this chapter.

5. To dig deeper than these providers allow, familiarize yourself with how the
kernel and user-land processes call file system I/O by examining stack back-
traces (see the “One-Liners” section). Also refer to functional diagrams of the
file system subsystem, such as the generic one shown earlier, and others for
specific file system types. Check published kernel texts such as Solaris Inter-
nals (McDougall and Mauro, 2006) and Mac OS X Internals (Singh, 2006).

6. Examine kernel internals for file systems by using the fbt provider and
referring to kernel source code (if available).

Checklist

Table 5-1 describes some potential problem areas with file systems, with sugges-
tions on how you can use DTrace to troubleshoot them.

Table 5-1 File System I/O Checklist

Issue Description

Volume Applications may be performing a high volume of file system I/O, which
could be avoided or optimized by changing their behavior, for example, by
tuning I/O sizes and file locations (tmpfs instead of nfs, for example). The
file system may break up I/O into multiple physical I/O of smaller sizes,
inflating the IOPS. DTrace can be used to examine file system I/O by pro-
cess, filename, I/O size, and application stack trace, to identify what files
are being used, how, and why.

Latency A variety of latencies should be examined when analyzing file system I/O:

• Disk I/O wait, for reads and synchronous writes

• Locking in the file system

• Latency of the open() syscall

• Large file deletion time

Each of these can be examined using DTrace.

Gregg.book Page 296 Wednesday, February 2, 2011 12:35 PM

Providers 297

Providers

Table 5-2 shows providers you can use to trace file system I/O.

Queueing Use DTrace to examine the size and wait time for file system queues, such
as queueing writes for later flushing to disk. Some file systems such as ZFS
use a pipeline for all I/O, with certain stages serviced by multiple threads.
High latency can occur if a pipeline stage becomes a bottleneck, for exam-
ple, if compression is performed; this can be analyzed using DTrace.

Caches File system performance can depend on cache performance: File systems
may use multiple caches for different data types (directory names, inodes,
metadata, data) and different algorithms for cache replacement and size.
DTrace can be used to examine not just the hit and miss rate of caches, but
what types of data are experiencing misses, what contents are being
evicted, and other internals of cache behavior.

Errors The file system interface can return errors in many situations: invalid file off-
sets, permission denied, file not found, and so on. Applications are sup-
posed to catch and deal with these errors with them appropriately, but
sometimes they silently fail. Errors returned by file systems can be identi-
fied and summarized using DTrace.

Configuration File access can be tuned by flags, such as those on the open() syscall.
DTrace can be used to check that the optimum flags are being used by the
application, or if it needs to be configured differently.

Table 5-2 Providers for File System I/O

Provider Description

syscall Many syscalls operate on file systems (open(), stat(), creat(), and so on);
some operate on file descriptors to file systems (read(), write(), and so
on). By examining file system activity at the syscall interface, user-land con-
text can be examined to see why the file system is being used, such as examin-
ing user stack backtraces.

vminfo Virtual memory info provider. This includes file system page-in and page-out
probes (file system disk I/O); however, these only provide number of pages and
byte counts.

fsinfo File system info provider: This is a representation of the VFS layer for the oper-
ating system and allows tracing of file system events across different file sys-
tem types, with file information for each event. This isn’t considered a stable
provider as the VFS interface can change and is different for different OSs.
However, it is unlikely to change rapidly.

continues

Table 5-1 File System I/O Checklist (Continued)

Issue Description

Gregg.book Page 297 Wednesday, February 2, 2011 12:35 PM

298 Chapter 5 � File Systems

Check your operating system to see which providers are available; at the very
least, syscall and fbt should be available, which provide a level of coverage of
everything.

The vminfo and io providers should also be available on all versions of Solaris 10
and Mac OS X. fsinfo was added to Solaris 10 6/06 (update 2) and Solaris Nevada
build 38 and is not yet available on Mac OS X.

fsinfo Provider

The fsinfo provider traces logical file system access. It exports the VFS vnode
interface, a private interface for kernel file systems, so fsinfo is considered an
unstable provider.

Because the vnode operations it traces are descriptive and resemble many well-
known syscalls (open(), close(), read(), write(), and so on), this interface
provides a generic view of what different file systems are doing and has been
exported as the DTrace fsinfo provider.

Listing the fsinfo provider probes on a recent version of Solaris Nevada, we get
the following results:

vfs Virtual File System provider: This is on FreeBSD only and shows VFS and name-
cache operations.

io Trace disk I/O event details including disk, bytes, and latency. Examining stack
backtraces from io:::start shows why file systems are calling disk I/O.

fbt Function Boundary Tracing provider. This allows file system internals to be
examined in detail, including the operation of file system caches and read
ahead. This has an unstable interface and will change between releases of the
operating system and file systems, meaning that scripts based on fbt may need
to be slightly rewritten for each such update.

dtrace -ln fsinfo:::
 ID PROVIDER MODULE FUNCTION NAME
30648 fsinfo genunix fop_vnevent vnevent
30649 fsinfo genunix fop_shrlock shrlock
30650 fsinfo genunix fop_getsecattr getsecattr
30651 fsinfo genunix fop_setsecattr setsecattr
30652 fsinfo genunix fop_dispose dispose
30653 fsinfo genunix fop_dumpctl dumpctl
30654 fsinfo genunix fop_pageio pageio
30655 fsinfo genunix fop_pathconf pathconf
30656 fsinfo genunix fop_dump dump
30657 fsinfo genunix fop_poll poll

Table 5-2 Providers for File System I/O (Continued)

Provider Description

Gregg.book Page 298 Wednesday, February 2, 2011 12:35 PM

Providers 299

A selection of these probes is described in Table 5-3.

fileinfo_t

The fileinfo structure contains members to describe the file, file system, and
open flags of the file that the fsinfo operation is performed on. Some of these mem-
bers may not be available for particular probes and return <unknown>, <none>, or 0:

30658 fsinfo genunix fop_delmap delmap
30659 fsinfo genunix fop_addmap addmap
30660 fsinfo genunix fop_map map
30661 fsinfo genunix fop_putpage putpage
30662 fsinfo genunix fop_getpage getpage
30663 fsinfo genunix fop_realvp realvp
30664 fsinfo genunix fop_space space
30665 fsinfo genunix fop_frlock frlock
30666 fsinfo genunix fop_cmp cmp
30667 fsinfo genunix fop_seek seek
30668 fsinfo genunix fop_rwunlock rwunlock
30669 fsinfo genunix fop_rwlock rwlock
30670 fsinfo genunix fop_fid fid
30671 fsinfo genunix fop_inactive inactive
30672 fsinfo genunix fop_fsync fsync
30673 fsinfo genunix fop_readlink readlink
30674 fsinfo genunix fop_symlink symlink
30675 fsinfo genunix fop_readdir readdir
30676 fsinfo genunix fop_rmdir rmdir
30677 fsinfo genunix fop_mkdir mkdir
30678 fsinfo genunix fop_rename rename
30679 fsinfo genunix fop_link link
30680 fsinfo genunix fop_remove remove
30681 fsinfo genunix fop_create create
30682 fsinfo genunix fop_lookup lookup
30683 fsinfo genunix fop_access access
30684 fsinfo genunix fop_setattr setattr
30685 fsinfo genunix fop_getattr getattr
30686 fsinfo genunix fop_setfl setfl
30687 fsinfo genunix fop_ioctl ioctl
30688 fsinfo genunix fop_write write
30689 fsinfo genunix fop_read read
30690 fsinfo genunix fop_close close
30691 fsinfo genunix fop_open open

Table 5-3 fsinfo Probes

Probe Description

open Attempts to open the file described in the args[0] fileinfo_t

close Closes the file described in the args[0] fileinfo_t

read Attempts to read arg1 bytes from the file in args[0] fileinfo_t

write Attempts to write arg1 bytes to the file in args[0] fileinfo_t

fsync Calls fsync to synronize the file in args[0] fileinfo_t

Gregg.book Page 299 Wednesday, February 2, 2011 12:35 PM

300 Chapter 5 � File Systems

These are translated from the kernel vnode. The fileinfo_t structure is also
available as the file descriptor array, fds[], which provides convenient file infor-
mation by file descriptor number. See the one-liners for examples of its usage.

io Provider

The io provider traces physical I/O and was described in Chapter 4.

One-Liners

These one-liners are organized by provider.

syscall Provider

Some of these use the fds[] array, which was a later addition to DTrace; for an
example of similar functionality predating fds[], see the rwsnoop script.

For the one-liners tracing read(2) and write(2) system calls, be aware that
variants may exist (readv(), pread(), pread64()); use the “Count read/write
syscalls by syscall type” one-liner to identify which are being used. Also note that
these match all reads and writes, whether they are file system based or not, unless
matched in a predicate (see the “zfs” one-liner).

Trace file opens with process name:

Trace file creat() calls with file and process name:

Frequency count stat() file calls:

typedef struct fileinfo {
 string fi_name; /* name (basename of fi_pathname) */
 string fi_dirname; /* directory (dirname of fi_pathname) */
 string fi_pathname; /* full pathname */
 offset_t fi_offset; /* offset within file */
 string fi_fs; /* file system */
 string fi_mount; /* mount point of file system */
 int fi_oflags; /* open(2) flags for file descriptor */
} fileinfo_t;

dtrace -n 'syscall::open*:entry { printf("%s %s", execname, copyinstr(arg0)); }'

dtrace -n 'syscall::creat*:entry { printf("%s %s", execname, copyinstr(arg0)); }'

dtrace -n 'syscall::stat*:entry { @[copyinstr(arg0)] = count(); }'

Gregg.book Page 300 Wednesday, February 2, 2011 12:35 PM

Providers 301

Tracing the cd(1) command:

Count read/write syscalls by syscall type:

Syscall read(2) by filename:

Syscall write(2) by filename:

Syscall read(2) by file system type:

Syscall write(2) by file system type:

Syscall read(2) by process name for the zfs file system only:

Syscall write(2) by process name and file system type:

dtrace -n 'syscall::chdir:entry { printf("%s -> %s", cwd, copyinstr(arg0)); }'

dtrace -n 'syscall::*read*:entry,syscall::*write*:entry { @[probefunc] = count(); }'

dtrace -n 'syscall::read:entry { @[fds[arg0].fi_pathname] = count(); }'

dtrace -n 'syscall::write:entry { @[fds[arg0].fi_pathname] = count(); }'

dtrace -n 'syscall::read:entry { @[fds[arg0].fi_fs] = count(); }'

dtrace -n 'syscall::write:entry { @[fds[arg0].fi_fs] = count(); }'

dtrace -n 'syscall::read:entry /fds[arg0].fi_fs == "zfs"/ { @[execname] = count(); }'

dtrace -n 'syscall::write:entry { @[execname, fds[arg0].fi_fs] = count(); }
 END { printa("%18s %16s %16@d\n", @); }'

Gregg.book Page 301 Wednesday, February 2, 2011 12:35 PM

302 Chapter 5 � File Systems

vminfo Provider

This processes paging in from the file system:

fsinfo Provider

You can count file system calls by VFS operation:

You can count file system calls by mountpoint:

Bytes read by filename:

Bytes written by filename:

Read I/O size distribution by file system mountpoint:

Write I/O size distribution by file system mountpoint:

dtrace -n 'vminfo:::fspgin { @[execname] = sum(arg0); }'

dtrace -n 'fsinfo::: { @[probename] = count(); }'

dtrace -n 'fsinfo::: { @[args[0]->fi_mount] = count(); }'

dtrace -n 'fsinfo:::read { @[args[0]->fi_pathname] = sum(arg1); }'

dtrace -n 'fsinfo:::write { @[args[0]->fi_pathname] = sum(arg1); }'

dtrace -n 'fsinfo:::read { @[args[0]->fi_mount] = quantize(arg1); }'

dtrace -n 'fsinfo:::write { @[args[0]->fi_mount] = quantize(arg1); }'

Gregg.book Page 302 Wednesday, February 2, 2011 12:35 PM

Providers 303

vfs Provider

Count file system calls by VFS operation:

Namecache hit/miss statistics:

sdt Provider

You can find out who is reading from the ZFS ARC (in-DRAM cache):

fbt Provider

The fbt provider instruments a particular operating system and version; these
one-liners may therefore require modifications to match the software version you
are running.

VFS: You can count file system calls at the fop interface (Solaris):

VFS: You can count file system calls at the VNOP interface (Mac OS X):

VFS: You can count file system calls at the VOP interface (FreeBSD):

ZFS: You can show SPA sync with pool name and TXG number:

dtrace -n 'vfs:vop::entry { @[probefunc] = count(); }'

dtrace -n 'vfs:namecache:lookup: { @[probename] = count(); }'

dtrace -n 'sdt:::arc-hit,sdt:::arc-miss { @[stack()] = count(); }'

dtrace -n 'fbt::fop_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::VNOP_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::VOP_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt:zfs:spa_sync:entry
{ printf("%s %d", stringof(args[0]->spa_name), arg1); }'

Gregg.book Page 303 Wednesday, February 2, 2011 12:35 PM

304 Chapter 5 � File Systems

One-Liners: syscall Provider Examples

Trace File Opens with Process Name

Tracing opens can be a quick way of getting to know software. Software will often
call open() on config files, log files, and device files. Sometimes tracing open() is
a quicker way to find where config and log files exist than to read through the
product documentation.

The probe definition uses open* so that both open() and open64() versions
are traced. This one-liner has caught a software build in progress; the process
names dmake and sh can be seen, and the files they were opening are mostly
library files under /lib.

The dtrace error is likely due to copyinstr() operating on a text string that
hasn’t been faulted into the process’s virtual memory address space yet. The page
fault would happen during the open() syscall, but we’ve traced it before it has
happened. This can be solved by saving the address on open*:entry and using
copyinstr() on open*:return, after the string is in memory.

Trace File creat() Calls with Process Name

This also caught a software build in progress. Here the cp command is creating
files as part of the build. The Bourne shell sh also appears to be creating /dev/
null; this is happening as part of shell redirection.

dtrace -n 'syscall::open*:entry { printf("%s %s", execname, copyinstr(arg0)); }'
 29 87276 open:entry dmake /var/ld/ld.config
 29 87276 open:entry dmake /lib/libnsl.so.1
 29 87276 open:entry dmake /lib/libsocket.so.1
 29 87276 open:entry dmake /lib/librt.so.1
 29 87276 open:entry dmake /lib/libm.so.1
 29 87276 open:entry dmake /lib/libc.so.1
 29 87672 open64:entry dmake /var/run/name_service_door
 29 87276 open:entry dmake /etc/nsswitch.conf
 12 87276 open:entry sh /var/ld/ld.config
 12 87276 open:entry sh /lib/libc.so.1
dtrace: error on enabled probe ID 1 (ID 87672: syscall::open64:entry): invalid address
 (0x8225aff) in action #2 at DIF offset 28
 12 87276 open:entry sh /var/ld/ld.config
 12 87276 open:entry sh /lib/libc.so.1
[...]

dtrace -n 'syscall::creat*:entry { printf("%s %s", execname, copyinstr(arg0)); }'
dtrace: description 'syscall::creat*:entry ' matched 2 probes

Gregg.book Page 304 Wednesday, February 2, 2011 12:35 PM

Providers 305

Frequency Count stat() Files

As a demonstration of frequency counting instead of tracing and of examining the
stat() syscall, this frequency counts filenames from stat():

During tracing, stat() was called on /tmp 638 times. A wildcard is used in the
probe name so that this one-liner matches both stat() and stat64(); however,
applications could be using other variants such as xstat() that this isn’t matching.

CPU ID FUNCTION:NAME
 25 87670 creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/platform/i86xpv/kernel/misc/amd64/xpv_autoconfig
 31 87670 creat64:entry sh /dev/null
 0 87670 creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/platform/i86xpv/kernel/drv/xdf

 20 87670 creat64:entry sh /dev/null
 26 87670 creat64:entry sh /dev/null
 27 87670 creat64:entry sh /dev/null
 31 87670 creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/usr/lib/llib-l300.ln
 0 87670 creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/kernel/drv/amd64/iwscn
 12 87670 creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/platform/i86xpv/kernel/drv/xnf
 16 87670 creat64:entry sh obj32/ao_mca_disp.c
[...]

dtrace -n 'syscall::stat*:entry { @[copyinstr(arg0)] = count(); }'
dtrace: description 'syscall::stat*:entry ' matched 5 probes
^C

 /builds/brendan/ak-on-new/proto/root_i386/kernel/drv/amd64/mxfe/mxfe
1
 /builds/brendan/ak-on-new/proto/root_i386/kernel/drv/amd64/rtls/rtls
1
 /builds/brendan/ak-on-new/proto/root_i386/usr/kernel/drv/ii/ii 1
 /lib/libmakestate.so.1 1
 /tmp/dmake.stdout.10533.189.ejaOKu 1
[...output truncated...]
 /ws/onnv-tools/SUNWspro/SS12/prod/lib/libmd5.so.1 105
 /ws/onnv-tools/SUNWspro/SS12/prod/lib/sys/libc.so.1 105
 /ws/onnv-tools/SUNWspro/SS12/prod/lib/sys/libmd5.so.1 105
 /ws/onnv-tools/SUNWspro/SS12/prod/bin/../lib/libc.so.1 106
 /ws/onnv-tools/SUNWspro/SS12/prod/bin/../lib/lib_I_dbg_gen.so.1 107
 /lib/libm.so.1 112
 /lib/libelf.so.1 136
 /lib/libdl.so.1 151
 /lib/libc.so.1 427
 /tmp 638

Gregg.book Page 305 Wednesday, February 2, 2011 12:35 PM

306 Chapter 5 � File Systems

Tracing cd

You can trace the current working directory (pwd) and chdir directory (cd) using
the following one-liner:

This output shows a software build iterating over subdirectories.

Reads by File System Type

During this build, tmpfs is currently receiving the most reads: 128,645 during this
trace, followed by ZFS at 65,919.

Note that this one-liner is matching only the read variant of the read() syscall.
On Solaris, applications may be calling readv(), pread(), or pread64(); Mac OS X
has readv(), pread(), read_nocancel(), and pread_nocancel(); and Free-
BSD has more, including aio_read(). You can match all of these using wildcards:

dtrace -n 'syscall::chdir:entry { printf("%s -> %s", cwd, copyinstr(arg0)); }'
dtrace: description 'syscall::chdir:entry ' matched 1 probe
CPU ID FUNCTION:NAME
 4 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> aac
 5 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> amd64_gart
 8 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> amr
 9 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> agptarget
 12 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> aggr
 12 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> agpgart
 16 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> ahci
 16 87290 chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> arp
[...]

dtrace -n 'syscall::read:entry { @[fds[arg0].fi_fs] = count(); }'
dtrace: description 'syscall::read:entry ' matched 1 probe
^C

 specfs 22
 sockfs 28
 proc 103
 <none> 136
 nfs4 304
 fifofs 1571
 zfs 65919
 tmpfs 128645

solaris# dtrace -ln 'syscall::*read*:entry'
 ID PROVIDER MODULE FUNCTION NAME
87272 syscall read entry
87418 syscall readlink entry
87472 syscall readv entry
87574 syscall pread entry
87666 syscall pread64 entry

Gregg.book Page 306 Wednesday, February 2, 2011 12:35 PM

Providers 307

However, this also matches readlink(), and our earlier one-liner assumes that
arg0 is the file descriptor, which is not the case for readlink(). Tracing all read
types properly will require a short script rather than a one-liner.

Writes by File System Type

This one-liner matches all variants of write, assuming that arg0 is the file descrip-
tor. In this example, most of the writes were to tmpfs (/tmp).

Writes by Process Name and File System Type

This example extends the previous one-liner to include the process name:

Now we can see the processes that were writing to tmpfs: iropt, ir2hf, and so on.

dtrace -n 'syscall::*write*:entry { @[fds[arg0].fi_fs] = count(); }'
dtrace: description 'syscall::write:entry ' matched 1 probe
^C

 specfs 2
 nfs4 47
 sockfs 55
 zfs 154
 fifofs 243
 tmpfs 22245

dtrace -n 'syscall::write:entry { @[execname, fds[arg0].fi_fs] = count(); }
END { printa("%18s %16s %16@d\n", @); }'
dtrace: description 'syscall::write:entry ' matched 2 probes
^C
CPU ID FUNCTION:NAME
 25 2 :END ar zfs 1
 dtrace specfs 1
 sh fifofs 1
 sshd specfs 1
 ssh-socks5-proxy fifofs 2
 uname fifofs 3
 sed zfs 4
 ssh fifofs 10
 strip zfs 15
[...truncated...]
 gas tmpfs 830
 acomp tmpfs 2072
 ube tmpfs 2487
 ir2hf tmpfs 2608
 iropt tmpfs 3364

Gregg.book Page 307 Wednesday, February 2, 2011 12:35 PM

308 Chapter 5 � File Systems

One-Liners: vminfo Provider Examples

Processes Paging in from the File System

The vminfo provider has a probe for file system page-ins, which can give a very
rough idea of which processes are reading from disk via a file system:

This worked a little: Both dmake and scp are responsible for paging in file sys-
tem data. However, it has identified sched (the kernel) as responsible for the most
page-ins. This could be because of read-ahead occurring in kernel context; more
DTrace will be required to explain where the sched page-ins were from.

One-Liners: fsinfo Provider Examples

File System Calls by fs Operation

This uses the fsinfo provider, if available. Since it traces file system activity at the
VFS layer, it will see activity from all file system types: ZFS, UFS, HSFS, and so on.

dtrace -n 'vminfo:::fspgin { @[execname] = sum(arg0); }'
dtrace: description 'vminfo:::fspgin ' matched 1 probe
^C

 dmake 1
 scp 2
 sched 42

dtrace -n 'fsinfo::: { @[probename] = count(); }'
dtrace: description 'fsinfo::: ' matched 44 probes
^C

 rename 2
 symlink 4
 create 6
 getsecattr 6
 seek 8
 remove 10
 poll 40
 readlink 40
 write 42
 realvp 52
 map 144
 read 171
 addmap 192
 open 193
 delmap 194
 close 213
 readdir 225
 dispose 230
 access 248
 ioctl 421
 rwlock 436
 rwunlock 436

Gregg.book Page 308 Wednesday, February 2, 2011 12:35 PM

Providers 309

The most frequent vnode operation was lookup(), called 86,059 times while
this one-liner was tracing.

File System Calls by Mountpoint

The fsinfo provider has fileinfo_t as args[0]. Here the mountpoint is fre-
quency counted by fsinfo probe call, to get a rough idea of how busy (by call count)
file systems are as follows:

Even though I’m doing a source build in /builds/brendan, it’s the root file
system on / that has received the most file system calls.

Bytes Read by Filename

The fsinfo provider gives an abstracted file system view that isn’t dependent on
syscall variants such as read(), pread(), pread64(), and so on.

 getpage 1700
 getattr 3221
 cmp 48342
 putpage 77557
 inactive 80786
 lookup 86059

dtrace -n 'fsinfo::: { @[args[0]->fi_mount] = count(); }'
dtrace: description 'fsinfo::: ' matched 44 probes
^C

 /home 8
 /builds/bmc 9
 /var/run 11
 /builds/ahl 24
 /home/brendan 24
 /etc/svc/volatile 47
 /etc/svc 50
 /var 94
 /net/fw/export/install 176
 /ws 252
 /lib/libc.so.1 272
 /etc/mnttab 388
 /ws/onnv-tools 1759
 /builds/brendan 17017
 /tmp 156487
 / 580819

dtrace -n 'fsinfo:::read { @[args[0]->fi_pathname] = sum(arg1); }'
dtrace: description 'fsinfo:::read ' matched 1 probe
^C

 /usr/bin/chmod 317
 /home/brendan/.make.machines 572

continues

Gregg.book Page 309 Wednesday, February 2, 2011 12:35 PM

310 Chapter 5 � File Systems

The file being read the most is a .make.state file: During tracing, more than
5MB was read from the file. The fsinfo provider traces these reads to the file sys-
tem: The file may have been entirely cached in DRAM or read from disk. To deter-
mine how the read was satisfied by the file system, we’ll need to DTrace further
down the I/O stack (see the “Scripts” section and Chapter 4, Disk I/O).

Bytes Written by Filename

During tracing, a .make.state.tmp file was written to the most, with more than
1MB of writes. As with reads, this is writing to the file system. This may not write
to disk until sometime later, when the file system flushes dirty data.

Read I/O Size Distribution by File System Mountpoint

This output shows a distribution plot of read size by file system. The /builds/
brendan file system was usually read at between 1,024 and 131,072 bytes per
read. The largest read was in the 1MB to 2MB range.

 /usr/bin/chown 951
 <unknown> 1176
 /usr/bin/chgrp 1585
 /usr/bin/mv 1585
[...output truncated...]
 /builds/brendan/ak-on-new/usr/src/uts/intel/Makefile.rules 325056
 /builds/brendan/ak-on-new/usr/src/uts/intel/Makefile.intel.shared 415752
 /builds/brendan/ak-on-new/usr/src/uts/intel/arn/.make.state 515044
 /builds/brendan/ak-on-new/usr/src/uts/Makefile.uts 538440
 /builds/brendan/ak-on-new/usr/src/Makefile.master 759744
 /builds/brendan/ak-on-new/usr/src/uts/intel/ata/.make.state 781904
 /builds/brendan/ak-on-new/usr/src/uts/common/Makefile.files 991896
 /builds/brendan/ak-on-new/usr/src/uts/common/Makefile.rules 1668528
 /builds/brendan/ak-on-new/usr/src/uts/intel/genunix/.make.state 5899453

dtrace -n 'fsinfo:::write { @[args[0]->fi_pathname] = sum(arg1); }'
dtrace: description 'fsinfo:::write ' matched 1 probe
^C

 /tmp/DAA1RaGkd 22
 /tmp/DAA5JaO6c 22
[...truncated...]
 /tmp/iroptEAA.1524.dNaG.c 250588
 /tmp/acompBAA.1443.MGay0c 305541
 /tmp/iroptDAA.1443.OGay0c 331906
 /tmp/acompBAA.1524.aNaG.c 343015
 /tmp/iroptDAA.1524.cNaG.c 382413
 /builds/brendan/ak-on-new/usr/src/cmd/fs.d/.make.state.tmp 1318590

dtrace -n 'fsinfo:::read { @[args[0]->fi_mount] = quantize(arg1); }'
dtrace: description 'fsinfo:::read ' matched 1 probe
^C

Gregg.book Page 310 Wednesday, February 2, 2011 12:35 PM

Providers 311

Write I/O Size Distribution by File System Mountpoint

During tracing, /tmp was written to the most (listed last), mostly with I/O sizes
between 4KB and 8KB.

 /builds/bmc
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 2
 1 | 0

[...output truncated...]

 /builds/brendan
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@ 15
 1 | 0
 2 | 0
 4 | 0
 8 | 0
 16 | 0
 32 | 0
 64 |@@ 28
 128 | 0
 256 | 0
 512 |@@ 28
 1024 |@@@@@@@ 93
 2048 |@@@@ 52
 4096 |@@@@@@ 87
 8192 |@@@@@@@ 94
 16384 |@@@@@@@@ 109
 32768 |@@ 31
 65536 |@@ 30
 131072 | 0
 262144 | 2
 524288 | 1
 1048576 | 1
 2097152 | 0

dtrace -n 'fsinfo:::write { @[args[0]->fi_mount] = quantize(arg1); }'
dtrace: description 'fsinfo:::write ' matched 1 probe
^C

 /etc/svc/volatile
 value ------------- Distribution ------------- count
 128 | 0
 256 |@@ 34
 512 | 0
[...]

 /tmp
 value ------------- Distribution ------------- count
 2 | 0
 4 | 1
 8 | 4
 16 |@@@@ 121
 32 |@@@@ 133
 64 |@@ 56
 128 |@@ 51

continues

Gregg.book Page 311 Wednesday, February 2, 2011 12:35 PM

312 Chapter 5 � File Systems

One-Liners: sdt Provider Examples

Who Is Reading from the ZFS ARC?

This shows who is performing reads to the ZFS ARC (the in-DRAM file system
cache for ZFS) by counting the stack backtraces for all ARC accesses. It uses SDT
probes, which have been in the ZFS ARC code for a while:

 256 |@ 46
 512 |@ 39
 1024 |@ 32
 2048 |@@ 52
 4096 |@@@@@@@@@@@@@@@@@@@@@@@@ 820
 8192 | 0

dtrace -n 'sdt:::arc-hit,sdt:::arc-miss { @[stack()] = count(); }'
dtrace: description 'sdt:::arc-hit,sdt:::arc-miss ' matched 3 probes
^C
[...]

 zfs`arc_read+0x75
 zfs`dbuf_prefetch+0x131
 zfs`dmu_prefetch+0x8f
 zfs`zfs_readdir+0x4a2
 genunix`fop_readdir+0xab
 genunix`getdents64+0xbc
 unix`sys_syscall32+0x101
 245

 zfs`dbuf_hold_impl+0xea
 zfs`dbuf_hold+0x2e
 zfs`dmu_buf_hold_array_by_dnode+0x195
 zfs`dmu_buf_hold_array+0x73
 zfs`dmu_read_uio+0x4d
 zfs`zfs_read+0x19a
 genunix`fop_read+0x6b
 genunix`read+0x2b8
 genunix`read32+0x22
 unix`sys_syscall32+0x101
 457

 zfs`dbuf_hold_impl+0xea
 zfs`dbuf_hold+0x2e
 zfs`dmu_buf_hold+0x75
 zfs`zap_lockdir+0x67
 zfs`zap_cursor_retrieve+0x74
 zfs`zfs_readdir+0x29e
 genunix`fop_readdir+0xab
 genunix`getdents64+0xbc
 unix`sys_syscall32+0x101
 1004

 zfs`dbuf_hold_impl+0xea
 zfs`dbuf_hold+0x2e
 zfs`dmu_buf_hold+0x75
 zfs`zap_lockdir+0x67
 zfs`zap_lookup_norm+0x55
 zfs`zap_lookup+0x2d

Gregg.book Page 312 Wednesday, February 2, 2011 12:35 PM

Scripts 313

This output is interesting because it demonstrates four different types of ZFS
ARC read. Each stack is, in order, as follows.

1. prefetch read: ZFS performs prefetch before reading from the ARC. Some
of the prefetch requests will actually just be cache hits; only the prefetch
requests that miss the ARC will pull data from disk.

2. syscall read: Most likely a process reading from a file on ZFS.

3. read dir: Fetching directory contents.

4. stat: Fetching file information.

Scripts

Table 5-4 summarizes the scripts that follow and the providers they use.

 zfs`zfs_match_find+0xfd
 zfs`zfs_dirent_lock+0x3d1
 zfs`zfs_dirlook+0xd9
 zfs`zfs_lookup+0x104
 genunix`fop_lookup+0xed
 genunix`lookuppnvp+0x3a3
 genunix`lookuppnat+0x12c
 genunix`lookupnameat+0x91
 genunix`cstatat_getvp+0x164
 genunix`cstatat64_32+0x82
 genunix`lstat64_32+0x31
 unix`sys_syscall32+0x101
 2907

Table 5-4 Script Summary

Script Target Description Providers

sysfs.d Syscalls Shows reads and writes by process and
mountpoint

syscall

fsrwcount.d Syscalls Counts read/write syscalls by file system and
type

syscall

fsrwtime.d Syscalls Measures time in read/write syscalls by file
system

syscall

fsrtpk.d Syscalls Measures file system read time per kilobyte syscall

rwsnoop Syscalls Traces syscall read and writes, with FS details syscall

mmap.d Syscalls Traces mmap() of files with details syscall

fserrors.d Syscalls Shows file system syscall errors syscall

continues

Gregg.book Page 313 Wednesday, February 2, 2011 12:35 PM

314 Chapter 5 � File Systems

fswho.d1 VFS Summarizes processes and file read/writes fsinfo

readtype.d1 VFS Compares logical vs. physical file system
reads

fsinfo, io

writetype.d1 VFS Compares logical vs. physical file system
writes

fsinfo, io

fssnoop.d VFS Traces file system calls using fsinfo fsinfo

solvfssnoop.d VFS Traces file system calls using fbt on Solaris fbt

macvfssnoop.d VFS Traces file system calls using fbt on Mac OS X fbt

vfssnoop.d VFS Traces file system calls using vfs on FreeBSD vfs

sollife.d VFS Shows file creation and deletion on Solaris fbt

maclife.d VFS Shows file creation and deletion on Mac OS X fbt

vfslife.d VFS Shows file creation and deletion on FreeBSD vfs

dnlcps.d VFS Shows Directory Name Lookup Cache hits by
process2

fbt

fsflush_cpu.d VFS Shows file system flush tracer CPU time2 fbt

fsflush.d VFS Shows file system flush statistics2 profile

ufssnoop.d UFS Traces UFS calls directly using fbt2 fbt

ufsreadahead.d UFS Shows UFS read-ahead rates for sequential I/O2 fbt

ufsimiss.d UFS Traces UFS inode cache misses with details2 fbt

zfssnoop.d ZFS Traces ZFS calls directly using fbt2 fbt

zfsslower.d ZFS Traces slow HFS+ read/writes2 fbt

zioprint.d ZFS Shows ZIO event dump2 fbt

ziosnoop.d ZFS Shows ZIO event tracing, detailed2 fbt

ziotype.d ZFS Shows ZIO type summary by pool2 fbt

perturbation.d ZFS Shows ZFS read/write time during given
perturbation2

fbt

spasync.d ZFS Shows SPA sync tracing with details2 fbt

hfssnoop.d HFS+ Traces HFS+ calls directly using fbt3 fbt

hfsslower.d HFS+ Traces slow HFS+ read/writes3 fbt

hfsfileread.d HFS+ Shows logical/physical reads by file3 fbt

pcfsrw.d PCFS Traces pcfs (FAT16/32) read/writes2 fbt

cdrom.d HSFS Traces CDROM insertion and mount2 fbt

dvd.d UDFS Traces DVD insertion and mount2 fbt

nfswizard.d NFS Summarizes NFS performance client-side2 io

Table 5-4 Script Summary (Continued)

Script Target Description Providers

Gregg.book Page 314 Wednesday, February 2, 2011 12:35 PM

Scripts 315

1 This uses the fsinfo provider, currently available only on Oracle Solaris.
2 This is written for Oracle Solaris.
3 This is written for Apple Mac OS X.

There is an emphasis on the syscall and VFS layer scripts, since these can be
used on any underlying file system type.

Note that the fbt provider is considered an “unstable” interface, because it
instruments a specific operating system or application version. For this reason,
scripts that use the fbt provider may require changes to match the version of the
software you are using. These scripts have been included here as examples of D
programming and of the kind of data that DTrace can provide for each of these top-
ics. See Chapter 12, Kernel, for more discussion about using the fbt provider.

Syscall Provider

File system tracing scripts based on the syscall provider are generic and work
across all file systems. At the syscall level, you can see “logical” file system I/O, the
I/O that the application requests from the file system. Actual disk I/O occurs after
file system processing and may not match the requested logical I/O (for example,
rounding I/O size up to the file system block size).

sysfs.d

The sysfs.d script traces read and write syscalls to show which process is per-
forming reads and writes on which file system.

Script

This script is written to work on both Solaris and Mac OS X. Matching all the possi-
ble read() variants (read(), readv(), pread(), pread64(), read_nocancel(),
and so on) for Solaris and Mac OS X proved a little tricky and led to the probe defi-
nitions on lines 11 to 14. Attempting to match syscall::*read*:entry doesn’t

nfs3sizes.d NFSv3 Shows NFSv3 logical vs physical read sizes2 fbt

nfs3fileread.d NFSv3 Shows NFSv3 logical vs physical reads by file2 fbt

tmpusers.d TMPFS Shows users of /tmp and tmpfs by tracing
open()2

fbt

tmpgetpage.d TMPFS Measures whether tmpfs paging is occurring,
with I/O time2

fbt

Table 5-4 Script Summary (Continued)

Script Target Description Providers

Gregg.book Page 315 Wednesday, February 2, 2011 12:35 PM

316 Chapter 5 � File Systems

work, because it matches readlink() and pthread syscalls (on Mac OS X), nei-
ther of which we are trying to trace (we want a read() style syscall with a file
descriptor as arg0, for line 17 to use).
The -Z option prevents DTrace on Solaris complaining about line 14, which is
just there for the Mac OS X read_nocancel() variants. Without it, this script
wouldn’t execute because DTrace would fail to find probes for syscall::*read*
nocancel:entry.

Example

This was executed on a software build server. The busiest process name during
tracing was diff, performing reads on the /ws/ak-on-gate/public file system.
This was probably multiple diff(1) commands; the sysfs.d script could be mod-
ified to include a PID if it was desirable to split up the PIDs (although in this case
it helps to aggregate the build processes together).

Some of the reads and writes to the / mountpoint may have been to device
paths in /dev, including /dev/tty (terminal); to differentiate between these and
I/O to the root file system, enhance the script to include a column for
fds[arg0].fi_fs—the file system type (see fsrwcount.d).

1 #!/usr/sbin/dtrace -Zs
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 printf("Tracing... Hit Ctrl-C to end.\n");
8 }
9
10 /* trace read() variants, but not readlink() or __pthread*() (macosx) */
11 syscall::read:entry,
12 syscall::readv:entry,
13 syscall::pread*:entry,
14 syscall::*read*nocancel:entry,
15 syscall::*write*:entry
16 {
17 @[execname, probefunc, fds[arg0].fi_mount] = count();
18 }
19
20 dtrace:::END
21 {
22 printf(" %-16s %-16s %-30s %7s\n", "PROCESS", "SYSCALL",
23 "MOUNTPOINT", "COUNT");
24 printa(" %-16s %-16s %-30s %@7d\n", @);
25 }

Script sysfs.d

sysfs.d
Tracing... Hit Ctrl-C to end.
^C

Gregg.book Page 316 Wednesday, February 2, 2011 12:35 PM

Scripts 317

fsrwcount.d

You can count read/write syscall operations by file system and type.

Script

This is similar to sysfs.d, but it prints the file system type instead of the process
name:

 PROCESS SYSCALL MOUNTPOINT COUNT
 hg write /devices 1
 in.mpathd read / 1
 in.mpathd write / 1
[...truncated...]
 nawk write /tmp 36
 dmake write /builds/brendan 40
 nawk write /ws/ak-on-gate/public 50
 dmake read /var 54
 codereview write /tmp 61
 ksh93 write /ws/ak-on-gate/public 65
 expand read / 69
 nawk read / 69
 expand write / 72
 sed read /tmp 100
 nawk read /tmp 113
 dmake read / 209
 dmake read /builds/brendan 249
 hg read / 250
 hg read /builds/fishgk 260
 sed read /ws/ak-on-gate/public 430
 diff read /ws/ak-on-gate/public 2592

1 #!/usr/sbin/dtrace -Zs
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 printf("Tracing... Hit Ctrl-C to end.\n");
8 }
9
10 /* trace read() variants, but not readlink() or __pthread*() (macosx) */
11 syscall::read:entry,
12 syscall::readv:entry,
13 syscall::pread*:entry,
14 syscall::*read*nocancel:entry,
15 syscall::*write*:entry
16 {
17 @[fds[arg0].fi_fs, probefunc, fds[arg0].fi_mount] = count();
18 }
19
20 dtrace:::END
21 {
22 printf(" %-9s %-16s %-40s %7s\n", "FS", "SYSCALL", "MOUNTPOINT",
23 "COUNT");
24 printa(" %-9.9s %-16s %-40s %@7d\n", @);
25 }

Script fsrwcount.d

Gregg.book Page 317 Wednesday, February 2, 2011 12:35 PM

318 Chapter 5 � File Systems

Example

Here’s an example of running fsrwcount.d on Solaris:

During a software build, this has shown that most of the file system syscalls
were reads to the NFSv4 share /ws/ak-on-gate/public. The busiest ZFS file
systems were / followed by /builds/brendan.

Here’s an example of running fsrwcount.d on Mac OS X:

This helps explain line 24, which truncated the FS field to nine characters (%9.9s).
On Mac OS X, <unknown (not a vnode>) may be returned, and without the trun-

fsrwcount.d
Tracing... Hit Ctrl-C to end.
^C
 FS SYSCALL MOUNTPOINT COUNT
 specfs write / 1
 nfs4 read /ws/onnv-tools 3
 zfs read /builds/bmc 5
 nfs4 read /home/brendan 11
 zfs read /builds/ahl 16
 sockfs writev / 20
 zfs write /builds/brendan 30
 <none> read <none> 33
 sockfs write / 34
 zfs read /var 88
 sockfs read / 104
 zfs read /builds/fishgk 133
 nfs4 write /ws/ak-on-gate/public 171
 tmpfs write /tmp 197
 zfs read /builds/brendan 236
 tmpfs read /tmp 265
 fifofs write / 457
 fifofs read / 625
 zfs read / 809
 nfs4 read /ws/ak-on-gate/public 1673

fsrwcount.d
Tracing... Hit Ctrl-C to end.
^C
 FS SYSCALL MOUNTPOINT COUNT
 devfs write dev 2
 devfs write_nocancel dev 2
 <unknown write_nocancel <unknown (not a vnode)> 3
 hfs write_nocancel / 6
 devfs read dev 7
 devfs read_nocancel dev 7
 hfs write / 18
 <unknown write <unknown (not a vnode)> 54
 hfs read_nocancel / 55
 <unknown read <unknown (not a vnode)> 134
 hfs pwrite / 155
 hfs read / 507
 hfs pread / 1760

Gregg.book Page 318 Wednesday, February 2, 2011 12:35 PM

Scripts 319

cation the columns become crooked. These nonvnode operations may be reads and
writes to sockets.

fsrwtime.d

The fsrwtime.d script measures the time spent in read and write syscalls, with
file system information. The results are printed in distribution plots by microsecond.

Script

If averages or sums are desired instead, change the aggregating function on line 20
and the output formatting on line 26:

The syscall return probes on lines 14 and 15 use more wildcards without fear of
matching unwanted syscalls (such as readlink()), since it also checks for self->
start to be set in the predicate, which will be true only for the syscalls that
matched the precise set on lines 4 to 8.

Example

This output shows that /builds/brendan, a ZFS file system, mostly returned
reads between 8 us and 127 us. These are likely to have returned from the ZFS file
system cache, the ARC. The single read that took more than 32 ms is likely to have
been returned from disk. More DTracing can confirm.

1 #!/usr/sbin/dtrace -Zs
2
3 /* trace read() variants, but not readlink() or __pthread*() (macosx) */
4 syscall::read:entry,
5 syscall::readv:entry,
6 syscall::pread*:entry,
7 syscall::*read*nocancel:entry,
8 syscall::*write*:entry
9 {
10 self->fd = arg0;
11 self->start = timestamp;
12 }
13
14 syscall::*read*:return,
15 syscall::*write*:return
16 /self->start/
17 {
18 this->delta = (timestamp - self->start) / 1000;
19 @[fds[self->fd].fi_fs, probefunc, fds[self->fd].fi_mount] =
20 quantize(this->delta);
21 self->fd = 0; self->start = 0;
22 }
23
24 dtrace:::END
25 {
26 printa("\n %s %s (us) \t%s%@d", @);
27 }

Script fsrwtime.d

Gregg.book Page 319 Wednesday, February 2, 2011 12:35 PM

320 Chapter 5 � File Systems

fsrtpk.d

As an example of a different way to analyze time, the fsrtpk.d script shows file
system read time per kilobyte.

Script

This is similar to the fsrwtime.d script, but here we divide the time by the num-
ber of kilobytes, as read from arg0 (rval) on read return:

fsrwtime.d
dtrace: script 'fsrwtime.d' matched 18 probes
^C
CPU ID FUNCTION:NAME
 8 2 :END
 specfs read (us) /devices
 value ------------- Distribution ------------- count
 4 | 0
 8 |@@ 1
 16 | 0
[...]

 zfs write (us) /builds/brendan
 value ------------- Distribution ------------- count
 8 | 0
 16 |@@@@@ 4
 32 |@@@@@@@@@@@@@@ 11
 64 |@@@@@@@@@@@@@@@@@@@@@ 17
 128 | 0

 zfs read (us) /builds/brendan
 value ------------- Distribution ------------- count
 4 | 0
 8 |@@@@@@@@@@@@@@@@ 72
 16 |@@@@@@@@@@ 44
 32 |@@@@@@@ 32
 64 |@@@@@ 24
 128 | 0
 256 |@ 3
 512 | 1
 1024 | 0
 2048 | 0
 4096 | 0
 8192 | 0
 16384 | 0
 32768 | 1
 65536 | 0

1 #!/usr/sbin/dtrace -Zs
2
3 /* trace read() variants, but not readlink() or __pthread*() (macosx) */
4 syscall::read:entry,
5 syscall::readv:entry,
6 syscall::pread*:entry,
7 syscall::*read*nocancel:entry
8 {
9 self->fd = arg0;
10 self->start = timestamp;
11 }

Gregg.book Page 320 Wednesday, February 2, 2011 12:35 PM

Scripts 321

Example

For the same interval, compare fsrwtime.d and fsrtpk.d:

12
13 syscall::*read*:return
14 /self->start && arg0 > 0/
15 {
16 this->kb = (arg1 / 1024) ? arg1 / 1024 : 1;
17 this->ns_per_kb = (timestamp - self->start) / this->kb;
18 @[fds[self->fd].fi_fs, probefunc, fds[self->fd].fi_mount] =
19 quantize(this->ns_per_kb);
20 }
21
22 syscall::*read*:return
23 {
24 self->fd = 0; self->start = 0;
25 }
26
27 dtrace:::END
28 {
29 printa("\n %s %s (ns per kb) \t%s%@d", @);
30 }

Script fsrtpk.d

fsrwtime.d
[...]
 zfs read (us) /export/fs1
 value ------------- Distribution ------------- count
 0 | 0
 1 | 7
 2 | 63
 4 | 10
 8 | 15
 16 |@ 3141
 32 |@@@@@@ 27739
 64 |@@@@@@@@@@@ 55730
 128 |@@@@@@@@ 39625
 256 |@@@@@@@ 34358
 512 |@@@@ 18700
 1024 |@@ 8514
 2048 |@@ 8407
 4096 | 361
 8192 | 32
 16384 | 1
 32768 | 0

fsrtpk.d
[...]
 zfs read (ns per kb) /export/fs1
 value ------------- Distribution ------------- count
 128 | 0
 256 |@@@@@@@@@@@@@@@@@@@@@@ 109467
 512 |@@@@@@@@@@@@@@@@ 79390
 1024 |@@ 7643
 2048 | 106
 4096 | 2
 8192 | 0

Gregg.book Page 321 Wednesday, February 2, 2011 12:35 PM

322 Chapter 5 � File Systems

From fstime.d, the reads to zfs are quite varied, mostly falling between 32 us
and 1024 us. The reason was not varying ZFS performance but varying requested
I/O sizes to cached files: Larger I/O sizes take longer to complete because of the
movement of data bytes in memory.

The read time per kilobyte is much more consistent, regardless of the I/O size,
returning between 256 ns and 1023 ns per kilobyte read.

rwsnoop

The rwsnoop script traces read() and write() syscalls across the system, print-
ing process and size details as they occur. Since these are usually frequent sys-
calls, the output can be verbose and also prone to feedback loops (this is because
the lines of output from dtrace(1M) are performed using write(), which are
also traced by DTrace, triggering more output lines, and so on). The -n option can
be used to avoid this, allowing process names of interest to be specified.

These syscalls are generic and not exclusively for file system I/O; check the
FILE column in the output of the script for those that are reading and writing to
files.

Script

Since most of this 234-line script handles command-line options, the only interest-
ing DTrace parts are included here. The full script is in the DTraceToolkit and can
also be found in /usr/bin/rwsnoop on Mac OS X.

The script saves various details in thread-local variables. Here the direction and
size of read() calls are saved:

which it then prints later:

This is straightforward. What’s not straightforward is the way the file path
name is fetched from the file descriptor saved in self->fd (line 211):

182 syscall::*read:return
183 /self->ok/
184 {
185 self->rw = "R";
186 self->size = arg0;
187 }

202 syscall::*read:return,
203 syscall::*write:entry
[...]
225 printf("%5d %6d %-12.12s %1s %7d %s\n",
226 uid, pid, execname, self->rw, (int)self->size, self->vpath);

Gregg.book Page 322 Wednesday, February 2, 2011 12:35 PM

Scripts 323

This lump of code digs out the path name from the Solaris kernel and was written
this way because rwsnoop predates the fds array being available in Solaris. With
the availability of the fds[] array, that entire block of code can be written as follows:

unless you are using a version of DTrace that doesn’t yet have the fds array, such
as FreeBSD, in which case you can try writing the FreeBSD version of the previ-
ous code block.

Examples

The following examples demonstrate the use of the rwsnoop script.

Usage: rwsnoop.d.

Web Server. Here rwsnoop is used to trace all Web server processes named
httpd (something that PID-based tools such as truss(1M) or strace cannot do
easily):

202 syscall::*read:return,
203 syscall::*write:entry
204 /self->ok/
205 {
206 /*
207 * Fetch filename
208 */
209 this->filistp = curthread->t_procp->p_user.u_finfo.fi_list;
210 this->ufentryp = (uf_entry_t *)((uint64_t)this->filistp +
211 (uint64_t)self->fd * (uint64_t)sizeof(uf_entry_t));
212 this->filep = this->ufentryp->uf_file;
213 this->vnodep = this->filep != 0 ? this->filep->f_vnode : 0;
214 self->vpath = this->vnodep ? (this->vnodep->v_path != 0 ?
215 cleanpath(this->vnodep->v_path) : "<unknown>") : "<unknown>";

self->vpath = fds[self->fd].fi_pathname

rwsnoop -h
USAGE: rwsnoop [-hjPtvZ] [-n name] [-p pid]

 -j # print project ID
 -P # print parent process ID
 -t # print timestamp, us
 -v # print time, string
 -Z # print zone ID
 -n name # this process name only
 -p PID # this PID only
 eg,
 rwsnoop # default output
 rwsnoop -Z # print zone ID
 rwsnoop -n bash # monitor processes named "bash"

Gregg.book Page 323 Wednesday, February 2, 2011 12:35 PM

324 Chapter 5 � File Systems

The files that httpd is reading can be seen in the output, along with the log file
it is writing to. The <unknown> file I/O is likely to be the socket I/O for HTTP,
because it reads requests and responds to clients.

mmap.d

Although many of the scripts in this chapter examine file system I/O by tracing
reads and writes, there is another way to read or write file data: mmap(). This sys-
tem call maps a region of a file to the memory of the user-land process, allowing
reads and writes to be performed by reading and writing to that memory segment.
The mmap.d script traces mmap calls with details including the process name, file-
name, and flags used with mmap().

Script

This script was written for Oracle Solaris and uses the preprocessor (-C on line 1)
so that the sys/mman.h file can be included (line 3):

rwsnoop -tn httpd
TIME UID PID CMD D BYTES FILE
6854075939432 80 713149 httpd R 495 <unknown>
6854075944873 80 713149 httpd R 495 /wiki/includes/WebResponse.php
6854075944905 80 713149 httpd R 0 /wiki/includes/WebResponse.php
6854075944921 80 713149 httpd R 0 /wiki/includes/WebResponse.php
6854075946102 80 713149 httpd W 100 <unknown>
6854075946261 80 713149 httpd R 303 <unknown>
6854075946592 80 713149 httpd W 5 <unknown>
6854075959169 80 713149 httpd W 92 /var/apache2/2.2/logs/access_log
6854076038294 80 713149 httpd R 0 <unknown>
6854076038390 80 713149 httpd R -1 <unknown>
6854206429906 80 713251 httpd R 4362 /wiki/includes/LinkBatch.php
6854206429933 80 713251 httpd R 0 /wiki/includes/LinkBatch.php
6854206429952 80 713251 httpd R 0 /wiki/includes/LinkBatch.php
6854206432875 80 713251 httpd W 92 <unknown>
6854206433300 80 713251 httpd R 52 <unknown>
6854206434656 80 713251 httpd R 6267 /wiki/includes/SiteStats.php
[...]

1 #!/usr/sbin/dtrace -Cs
2
3 #include <sys/mman.h>
4
5 #pragma D option quiet
6 #pragma D option switchrate=10hz
7
8 dtrace:::BEGIN
9 {
10 printf("%6s %-12s %-4s %-8s %-8s %-8s %s\n", "PID",
11 "PROCESS", "PROT", "FLAGS", "OFFS(KB)", "SIZE(KB)", "PATH");
12 }
13
14 syscall::mmap*:entry
15 /fds[arg4].fi_pathname != "<none>"/

Gregg.book Page 324 Wednesday, February 2, 2011 12:35 PM

Scripts 325

Example

While tracing, the cp(1) was executed to copy a 100MB file called 100m:

The file was read by cp(1) by mapping it to memory, 8MB at a time:

The output also shows the initialization of the cp(1) command because it maps
libraries as executable segments.

16 {
17 /* see mmap(2) and /usr/include/sys/mman.h */
18 printf("%6d %-12.12s %s%s%s %s%s%s%s%s%s%s%s %-8d %-8d %s\n",
19 pid, execname,
20 arg2 & PROT_EXEC ? "E" : "-", /* pages can be executed */
21 arg2 & PROT_WRITE ? "W" : "-", /* pages can be written */
22 arg2 & PROT_READ ? "R" : "-", /* pages can be read */
23 arg3 & MAP_INITDATA ? "I" : "-", /* map data segment */
24 arg3 & MAP_TEXT ? "T" : "-", /* map code segment */
25 arg3 & MAP_ALIGN ? "L" : "-", /* addr specifies alignment */
26 arg3 & MAP_ANON ? "A" : "-", /* map anon pages directly */
27 arg3 & MAP_NORESERVE ? "N" : "-", /* don't reserve swap area */
28 arg3 & MAP_FIXED ? "F" : "-", /* user assigns address */
29 arg3 & MAP_PRIVATE ? "P" : "-", /* changes are private */
30 arg3 & MAP_SHARED ? "S" : "-", /* share changes */
31 arg5 / 1024, arg1 / 1024, fds[arg4].fi_pathname);
32 }

Script mmap.d

solaris# cp /export/fs1/100m /export/fs2

solaris# mmap.d
 PID PROCESS PROT FLAGS OFFS(KB) SIZE(KB) PATH
 2652 cp E-R --L---P- 0 32 /lib/libc.so.1
 2652 cp E-R -T---FP- 0 1274 /lib/libc.so.1
 2652 cp EWR I----FP- 1276 27 /lib/libc.so.1
 2652 cp E-R --L---P- 0 32 /lib/libsec.so.1
 2652 cp E-R -T---FP- 0 62 /lib/libsec.so.1
 2652 cp -WR I----FP- 64 15 /lib/libsec.so.1
 2652 cp E-R --L---P- 0 32 /lib/libcmdutils.so.1
 2652 cp E-R -T---FP- 0 11 /lib/libcmdutils.so.1
 2652 cp -WR I----FP- 12 0 /lib/libcmdutils.so.1
 2652 cp --R -------S 0 8192 /export/fs1/100m
 2652 cp --R -----F-S 8192 8192 /export/fs1/100m
 2652 cp --R -----F-S 16384 8192 /export/fs1/100m
 2652 cp --R -----F-S 24576 8192 /export/fs1/100m
 2652 cp --R -----F-S 32768 8192 /export/fs1/100m
 2652 cp --R -----F-S 40960 8192 /export/fs1/100m
 2652 cp --R -----F-S 49152 8192 /export/fs1/100m
 2652 cp --R -----F-S 57344 8192 /export/fs1/100m
 2652 cp --R -----F-S 65536 8192 /export/fs1/100m
 2652 cp --R -----F-S 73728 8192 /export/fs1/100m
 2652 cp --R -----F-S 81920 8192 /export/fs1/100m
 2652 cp --R -----F-S 90112 8192 /export/fs1/100m
 2652 cp --R -----F-S 98304 4096 /export/fs1/100m
^C

Gregg.book Page 325 Wednesday, February 2, 2011 12:35 PM

326 Chapter 5 � File Systems

fserrors.d

Errors can be particularly interesting when troubleshooting system issues, includ-
ing errors returned by the file system in response to application requests. This
script traces all errors at the syscall layer, providing process, path name, and error
number information. Many of these errors may be “normal” for the application and
handled correctly by the application code. This script merely reports that they hap-
pened, not how they were then handled (if they were handled).

Script

This script traces variants of read(), write(), open(), and stat(), which are
handled a little differently depending on how to retrieve the path information. It
can be enhanced to include other file system system calls as desired:

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 trace("Tracing syscall errors... Hit Ctrl-C to end.\n");
8 }
9
10 syscall::read*:entry, syscall::write*:entry { self->fd = arg0; }
11 syscall::open*:entry, syscall::stat*:entry { self->ptr = arg0; }
12
13 syscall::read*:return, syscall::write*:return
14 /(int)arg0 < 0 && self->fd > 2/
15 {
16 self->path = fds[self->fd].fi_pathname;
17 }
18
19 syscall::open*:return, syscall::stat*:return
20 /(int)arg0 < 0 && self->ptr/
21 {
22 self->path = copyinstr(self->ptr);
23 }
24
25 syscall::read*:return, syscall::write*:return,
26 syscall::open*:return, syscall::stat*:return
27 /(int)arg0 < 0 && self->path != NULL/
28 {
29 @[execname, probefunc, errno, self->path] = count();
30 self->path = 0;
31 }
32
33 syscall::read*:return, syscall::write*:return { self->fd = 0; }
34 syscall::open*:return, syscall::stat*:return { self->ptr = 0; }
35
36 dtrace:::END
37 {
38 printf("%16s %16s %3s %8s %s\n", "PROCESSES", "SYSCALL", "ERR",
39 "COUNT", "PATH");
40 printa("%16s %16s %3d %@8d %s\n", @);
41 }

Script fserrors.d

Gregg.book Page 326 Wednesday, February 2, 2011 12:35 PM

Scripts 327

Example

fserrors.d was run for one minute on a wiki server (running both TWiki and
MediaWiki):

While tracing, processes with the name view attempted to stat64() an
IOPS.txt file 319 times, each time encountering error number 2 (file not found).
The view program was short-lived and not still running on the system and so was
located by using a DTrace one-liner to catch its execution:

It took a little more investigation to find the reason behind the stat64() calls:
TWiki automatically detects terms in documentation by searching for words in all
capital letters and then checks whether there are pages for those terms. Since
TWiki saves everything as text files, it checks by running stat64() on the file
system for those pages (indirectly, since it is a Perl program). If this sounds subop-
timal, use DTrace to measure the CPU time spent calling stat64() to quantify
this behavior—stat() is typically a fast call.

fsinfo Scripts

The fsinfo provider traces file system activity at the VFS layer, allowing all file
system activity to be traced within the kernel from one provider. The probes it

fserrors.d
 PROCESSES SYSCALL ERR COUNT PATH
 sshd open 2 1 /etc/hosts.allow
 sshd open 2 1 /etc/hosts.deny
[...output truncated...]
 sshd stat64 2 2 /root/.ssh/authorized_keys
 sshd stat64 2 2 /root/.ssh/authorized_keys2
 locale open 2 4 /var/ld/ld.config
 sshd open 2 5 /var/run/tzsync
 view stat64 2 7 /usr/local/twiki/data/Main/NFS.txt
 view stat64 2 8 /usr/local/twiki/data/Main/ARC.txt
 view stat64 2 11 /usr/local/twiki/data/Main/TCP.txt
 Xorg read 11 27 <unknown>
 view stat64 2 32 /usr/local/twiki/data/Main/NOTES.txt
 httpd read 11 35 <unknown>
 view stat64 2 85 /usr/local/twiki/data/Main/DRAM.txt
 view stat64 2 174 /usr/local/twiki/data/Main/ZFS.txt
 view stat64 2 319 /usr/local/twiki/data/Main/IOPS.txt

dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
dtrace: description 'proc:::exec-success ' matched 1 probe
CPU ID FUNCTION:NAME
 2 23001 exec_common:exec-success /usr/bin/perl -wT /usr/local/twiki/bin/view

Gregg.book Page 327 Wednesday, February 2, 2011 12:35 PM

328 Chapter 5 � File Systems

exports contain mapped file info and byte counts where appropriate. It is cur-
rently available only on Solaris; FreeBSD has a similar provider called vfs.

fswho.d

This script uses the fsinfo provider to show which processes are reading and writ-
ing to which file systems, in terms of kilobytes.

Script

This is similar to the earlier sysfs.d script, but it can match all file system reads
and writes without tracing all the syscalls that may be occurring. It can also eas-
ily access the size of the reads and writes, provided as arg1 by the fsinfo provider
(which isn’t always easy at the syscall provider: Consider readv()).

Example

The source code was building on a ZFS share while fswho.d was run:

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 printf("Tracing... Hit Ctrl-C to end.\n");
8 }
9
10 fsinfo:::read,
11 fsinfo:::write
12 {
13 @[execname, probename == "read" ? "R" : "W", args[0]->fi_fs,
14 args[0]->fi_mount] = sum(arg1);
15 }
16
17 dtrace:::END
18 {
19 normalize(@, 1024);
20 printf(" %-16s %1s %12s %-10s %s\n", "PROCESSES", "D", "KBYTES",
21 "FS", "MOUNTPOINT");
22 printa(" %-16s %1.1s %@12d %-10s %s\n", @);
23 }

Script fswho.d

fswho.d
Tracing... Hit Ctrl-C to end.
^C
 PROCESSES D KBYTES FS MOUNTPOINT
 tail R 0 zfs /builds/ahl
 tail R 0 zfs /builds/bmc
 sshd R 0 sockfs /
 sshd W 0 sockfs /
 ssh-socks5-proxy R 0 sockfs /

Gregg.book Page 328 Wednesday, February 2, 2011 12:35 PM

Scripts 329

fswho.d has identified that processes named dmake read 21MB from the /builds/
brendan share and wrote back 13MB. Various other process file system activity
has also been identified, which includes socket I/O because the kernel implementa-
tion serves these via a sockfs file system.

readtype.d

This script shows the type of reads by file system and the amount for comparison,
differentiating between logical reads (syscall layer) and physical reads (disk layer).
There are a number of reasons why the rate of logical reads will not equal physi-
cal reads.

� Caching: Logical reads may return from a DRAM cache without needing to
be satisfied as physical reads from the storage devices.

� Read-ahead/prefetch: The file system may detect a sequential access pat-
tern and request data to prewarm the cache before it has been requested logi-
cally. If it is then never requested logically, more physical reads may occur
than logical.

� File system record size: The file system on-disk structure may store data
as addressable blocks of a certain size (record size), and physical reads to
storage devices will be in units of this size. This may inflate reads between
logical and physical, because they are rounded up to record-sized reads for
the physical storage devices.

� Device sector size: Despite the file system record size, there may still be a
minimum physical read size required by the storage device, such as 512 bytes
for common disk drives (sector size).

As an example of file system record size inflation, consider a file system that
employs a fixed 4KB record size, while an application is performing random 512-
byte reads. Each logical read will be 512 bytes in size, but each physical read will
be 4KB—reading an extra 3.5KB that will not be used (or is unlikely to be used,

 sh W 1 tmpfs /tmp
 dmake R 1 nfs4 /home/brendan
[...output truncated...]
 id R 68 zfs /var
 cp R 133 zfs /builds/brendan
 scp R 224 nfs4 /net/fw/export/install
 install R 289 zfs /
 dmake R 986 zfs /
 cp W 1722 zfs /builds/brendan
 dmake W 13357 zfs /builds/brendan
 dmake R 21820 zfs /builds/brendan

Gregg.book Page 329 Wednesday, February 2, 2011 12:35 PM

330 Chapter 5 � File Systems

because the workload is random). This makes for an 8x inflation between logical
and physical reads.

Script

This script uses the fsinfo provider to trace logical reads and uses the io provider
to trace physical reads. It is based on rfsio.d from the DTraceToolkit.

Examples

Examples include uncached file system read and cache file system read.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 inline int TOP = 20;
6 self int trace;
7 uint64_t lbytes;
8 uint64_t pbytes;
9
10 dtrace:::BEGIN
11 {
12 trace("Tracing... Output every 5 secs, or Ctrl-C.\n");
13 }
14
15 fsinfo:::read
16 {
17 @io[args[0]->fi_mount, "logical"] = count();
18 @bytes[args[0]->fi_mount, "logical"] = sum(arg1);
19 lbytes += arg1;
20 }
21
22 io:::start
23 /args[0]->b_flags & B_READ/
24 {
25 @io[args[2]->fi_mount, "physical"] = count();
26 @bytes[args[2]->fi_mount, "physical"] = sum(args[0]->b_bcount);
27 pbytes += args[0]->b_bcount;
28 }
29
30 profile:::tick-5s,
31 dtrace:::END
32 {
33 trunc(@io, TOP);
34 trunc(@bytes, TOP);
35 printf("\n%Y:\n", walltimestamp);
36 printf("\n Read I/O (top %d)\n", TOP);
37 printa(" %-32s %10s %10@d\n", @io);
38 printf("\n Read Bytes (top %d)\n", TOP);
39 printa(" %-32s %10s %10@d\n", @bytes);
40 printf("\nphysical/logical bytes rate: %d%%\n",
41 lbytes ? 100 * pbytes / lbytes : 0);
42 trunc(@bytes);
43 trunc(@io);
44 lbytes = pbytes = 0;
45 }

Script readtype.d

Gregg.book Page 330 Wednesday, February 2, 2011 12:35 PM

Scripts 331

Uncached File System Read. Here the /usr file system is archived, reading
through the files sequentially:

The physical/logical throughput rate was 102 percent during this interval. The rea-
sons for the inflation may be because of both sector size (especially when reading
any file smaller than 512 bytes) and read-ahead (where tracing has caught the
physical but not yet the logical reads).

Cache File System Read. Following on from the previous example, the /usr file
system was reread:

readtype.d
Tracing... Output every 5 secs, or Ctrl-C.

2010 Jun 19 07:42:50:

 Read I/O (top 20)
 / logical 13
 /export/home logical 23
 /tmp logical 428
 /usr physical 1463
 /usr logical 2993

 Read Bytes (top 20)
 /tmp logical 0
 / logical 1032
 /export/home logical 70590
 /usr logical 11569675
 /usr physical 11668480

physical/logical bytes rate: 102%

readtype.d
Tracing... Output every 5 secs, or Ctrl-C.

2010 Jun 19 07:44:05:

 Read I/O (top 20)
 / physical 5
 / logical 21
 /export/home logical 54
 /tmp logical 865
 /usr physical 3005
 /usr logical 14029

 Read Bytes (top 20)
 /tmp logical 0
 / logical 1372
 / physical 24576
 /export/home logical 166561
 /usr physical 16015360
 /usr logical 56982746

physical/logical bytes rate: 27%

Gregg.book Page 331 Wednesday, February 2, 2011 12:35 PM

332 Chapter 5 � File Systems

Now much of data is returning from the cache, with only 27 percent being read
from disk. We can see the difference this makes to the application: The first exam-
ple showed a logical read throughput of 11MB during the five-second interval as
the data was read from disk; the logical rate in this example is now 56MB during
five seconds.

writetype.d

As a companion to readtype.d, this script traces file system writes, allowing
types to be compared. Logical writes may differ from physical writes for the follow-
ing reasons (among others):

� Asynchronous writes: The default behavior1 for many file systems is that
logical writes dirty data in DRAM, which is later flushed to disk by an asyn-
chronous thread. This allows the application to continue without waiting for
the disk writes to complete. The effect seen in writetype.d will be logical
writes followed some time later by physical writes.

� Write canceling: Data logically written but not yet physically written to
disk is logically overwritten, canceling the previous physical write.

� File system record size: As described earlier for readtype.d.

� Device sector size: As described earlier for readtype.d.

� Volume manager: If software volume management is used, such as apply-
ing levels of RAID, writes may be inflated depending on the RAID configura-
tion. For example, software mirroring will cause logical writes to be doubled
when they become physical.

Script

This script is identical to readtype.d except for the following lines:

Now fsinfo is tracing writes, and the io:::start predicate also matches writes.

1. For times when the application requires the data to be written on stable storage before con-
tinuing, open() flags such as O_SYNC and O_DSYNC can be used to inform the file system to
write immediately to stable storage.

15 fsinfo:::write

22 io:::start
23 /!(args[0]->b_flags & B_READ)/

36 printf("\n Write I/O (top %d)\n", TOP);

38 printf("\n Write Bytes (top %d)\n", TOP);

Gregg.book Page 332 Wednesday, February 2, 2011 12:35 PM

Scripts 333

Example

The writetype.d script was run for ten seconds. During the first five seconds, an
application wrote data to the file system:

In the first five-second summary, more logical bytes were written than physical,
because writes were buffered in the file system cache but not yet flushed to disk.
The second output shows those writes finishing being flushed to disk.

fssnoop.d

This script traces all file system activity by printing every event from the fsinfo
provider with user, process, and size information, as well as path information if
available. It also prints all the event data line by line, without trying to summa-
rize it into reports, making the output suitable for other postprocessing if desired.
The section that follows demonstrates rewriting this script for other providers and
operating systems.

Script

Since this traces all file system activity, it may catch sockfs activity and create a
feedback loop where the DTrace output to the file system or your remote network

writetype.d
Tracing... Output every 5 secs, or Ctrl-C.

2010 Jun 19 07:59:10:

 Write I/O (top 20)
 /var logical 1
 / logical 3
 /export/ufs1 logical 9
 /export/ufs1 physical 696

 Write bytes (top 20)
 / logical 208
 /var logical 704
 /export/ufs1 physical 2587648
 /export/ufs1 logical 9437184

physical/logical throughput rate: 24%

2010 Jun 19 07:59:15:

 Write I/O (top 20)
 / logical 2
 /export/ufs1 physical 238

 Write bytes (top 20)
 / logical 752
 /export/ufs1 physical 7720960

physical/logical throughput rate: 805%

Gregg.book Page 333 Wednesday, February 2, 2011 12:35 PM

334 Chapter 5 � File Systems

session is traced. To work around this, it accepts an optional argument of the pro-
cess name to trace and excludes dtrace processes by default (line 14). For more
sophisticated arguments, the script could be wrapped in the shell like rwsnoop so
that getopts can be used.

So that the string argument $$1 could be optional, line 4 sets the default-
args option, which sets $$1 to NULL if it wasn’t provided at the command line.
Without defaultargs, DTrace would error unless an argument is provided.

Examples

The default output prints all activity:

Since it was run over an SSH session, it sees its own socket writes to sockfs by
the sshd process. An output file can be specified to prevent this:

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5 #pragma D option switchrate=10hz
6
7 dtrace:::BEGIN
8 {
9 printf("%-12s %6s %6s %-12.12s %-12s %-6s %s\n", "TIME(ms)", "UID",
10 "PID", "PROCESS", "CALL", "BYTES", "PATH");
11 }
12
13 fsinfo:::
14 /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
15 {
16 printf("%-12d %6d %6d %-12.12s %-12s %-6d %s\n", timestamp / 1000000,
17 uid, pid, execname, probename, arg1, args[0]->fi_pathname);
18 }

Script fssnoop.d

fssnoop.d
TIME(ms) UID PID PROCESS CALL BYTES PATH
924434524 0 2687 sshd poll 0 <unknown>
924434524 0 2687 sshd rwlock 0 <unknown>
924434524 0 2687 sshd write 112 <unknown>
924434524 0 2687 sshd rwunlock 0 <unknown>
[...]

fssnoop.d -o out.log
cat out.log
TIME(ms) UID PID PROCESS CALL BYTES PATH
924667432 0 7108 svcs lookup 0 /usr/share/lib/zoneinfo
924667432 0 7108 svcs lookup 0 /usr/share/lib/zoneinfo/UTC

Gregg.book Page 334 Wednesday, February 2, 2011 12:35 PM

Scripts 335

This has caught the execution of the Oracle Solaris svcs(1) command, which
was listing system services. The UTC file was read in this way 204 times (the out-
put was many pages long), which is twice for every line of output that svcs(1)
printed, which included a date.

To filter on a particular process name, you can provided as an argument. Here,
the file system calls from the ls(1) command were traced:

VFS Scripts

VFS is the Virtual File System, a kernel interface that allows different file sys-
tems to integrate into the same kernel code. It provides an abstraction of a file sys-
tem with the common calls: read, write, open, close, and so on. Interfaces and
abstractions can make good targets for DTracing, since they are often documented
and relatively stable (compared to the implementation code).

The fsinfo provider for Solaris traces at the VFS level, as shown by the scripts in
the previous “fsinfo” section. FreeBSD has the vfs provider for this purpose, dem-
onstrated in this section. When neither vfs or fsinfo is available, VFS can be traced
using the fbt2 provider. fbt is an unstable interface: It exports kernel functions and
data structures that may change from release to release. The following scripts
were based on OpenSolaris circa December 2009 and on Mac OS X version 10.6,
and they may not work on other releases without changes. Even if these scripts no
longer execute, they can still be treated as examples of D programming and for the
sort of data that DTrace can make available for VFS analysis.

924667432 0 7108 svcs getattr 0 /usr/share/lib/zoneinfo/UTC
924667432 0 7108 svcs access 0 /usr/share/lib/zoneinfo/UTC
924667432 0 7108 svcs open 0 /usr/share/lib/zoneinfo/UTC
924667432 0 7108 svcs getattr 0 /usr/share/lib/zoneinfo/UTC
924667432 0 7108 svcs rwlock 0 /usr/share/lib/zoneinfo/UTC
924667432 0 7108 svcs read 56 /usr/share/lib/zoneinfo/UTC
924667432 0 7108 svcs rwunlock 0 /usr/share/lib/zoneinfo/UTC
924667432 0 7108 svcs close 0 /usr/share/lib/zoneinfo/UTC
[...]

fssnoop.d ls
TIME(ms) UID PID PROCESS CALL BYTES PATH
924727221 0 7111 ls rwlock 0 /tmp
924727221 0 7111 ls readdir 1416 /tmp
924727221 0 7111 ls rwunlock 0 /tmp
924727221 0 7111 ls rwlock 0 /tmp
[...]

2. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

Gregg.book Page 335 Wednesday, February 2, 2011 12:35 PM

336 Chapter 5 � File Systems

To demonstrate the different ways VFS can be traced and to allow these to be
compared, the fssnoop.d script has been written in four ways:

� fssnoop.d: fsinfo provider based (OpenSolaris), shown previously

� solvfssnoop.d: fbt provider based (Solaris)

� macvfssnoop.d: fbt provider based (Mac OS X)

� vfssnoop.d: vfs provider based (FreeBSD)

Because these scripts trace common VFS events, they can be used as starting
points for developing other scripts. This section also includes three examples that
trace file creation and deletion on the different operating systems (sollife.d,
maclife.d, and vfslife.d).

Note that VFS can cover more than just on-disk file systems; whichever kernel
modules use the VFS abstraction may also be traced by these scripts, including
terminal output (writes to /dev/pts or dev/tty device files).

solvfssnoop.d

To trace VFS calls in the Oracle Solaris kernel, the fop interface can be traced
using the fbt provider. (This is also the location that the fsinfo provider instru-
ments.) Here’s an example of listing fop probes:

The function names include the names of the VFS calls. Although the fbt pro-
vider is considered an unstable interface, tracing kernel interfaces such as fop is
expected to be the safest use of fbt possible—fop doesn’t change much (but be
aware that it can and has).

Script

This script traces many of the common VFS calls at the Oracle Solaris fop inter-
face, including read(), write() and open(). See /usr/include/sys/vnode.h
for the full list. Additional calls can be added to solvfssnoop.d as desired.

solaris# dtrace -ln 'fbt::fop_*:entry'
 ID PROVIDER MODULE FUNCTION NAME
36831 fbt genunix fop_inactive entry
38019 fbt genunix fop_addmap entry
38023 fbt genunix fop_access entry
38150 fbt genunix fop_create entry
38162 fbt genunix fop_delmap entry
38318 fbt genunix fop_frlock entry
38538 fbt genunix fop_lookup entry
38646 fbt genunix fop_close entry
[...output truncated...]

Gregg.book Page 336 Wednesday, February 2, 2011 12:35 PM

Scripts 337

Lines 15 to 32 probe different functions and populate the self->path and
self->kb variables so that they are printed out in a common block of code on
lines 39 to 41.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5 #pragma D option switchrate=10hz
6
7 dtrace:::BEGIN
8 {
9 printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
10 "PID", "PROCESS", "CALL", "KB", "PATH");
11 }
12
13 /* see /usr/include/sys/vnode.h */
14
15 fbt::fop_read:entry, fbt::fop_write:entry
16 {
17 self->path = args[0]->v_path;
18 self->kb = args[1]->uio_resid / 1024;
19 }
20
21 fbt::fop_open:entry
22 {
23 self->path = (*args[0])->v_path;
24 self->kb = 0;
25 }
26
27 fbt::fop_close:entry, fbt::fop_ioctl:entry, fbt::fop_getattr:entry,
28 fbt::fop_readdir:entry
29 {
30 self->path = args[0]->v_path;
31 self->kb = 0;
32 }
33
34 fbt::fop_read:entry, fbt::fop_write:entry, fbt::fop_open:entry,
35 fbt::fop_close:entry, fbt::fop_ioctl:entry, fbt::fop_getattr:entry,
36 fbt::fop_readdir:entry
37 /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
38 {
39 printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
40 uid, pid, execname, probefunc, self->kb,
41 self->path != NULL ? stringof(self->path) : "<null>");
42 }
43
44 fbt::fop_read:entry, fbt::fop_write:entry, fbt::fop_open:entry,
45 fbt::fop_close:entry, fbt::fop_ioctl:entry, fbt::fop_getattr:entry,
46 fbt::fop_readdir:entry
47 {
48 self->path = 0; self->kb = 0;
49 }

Script solvfssnoop.d

Gregg.book Page 337 Wednesday, February 2, 2011 12:35 PM

338 Chapter 5 � File Systems

Example

As with fssnoop.d, this script accepts an optional argument for the process name
to trace. Here’s an example of tracing ls -l:

The output has been truncated to highlight three stages of ls that can be seen
in the VFS calls: command initialization, reading the directory, and reading sys-
tem databases.

macvfssnoop.d

To trace VFS calls in the Mac OS X kernel, the VNOP interface can be traced using
the fbt provider. Here’s an example of listing VNOP probes:

solaris# solvfssnoop.d ls
TIME(ms) UID PID PROCESS CALL KB PATH
2499844 0 1152 ls fop_close 0 /var/run/name_service_door
2499844 0 1152 ls fop_close 0 <null>
2499844 0 1152 ls fop_close 0 /dev/pts/2
2499844 0 1152 ls fop_getattr 0 /usr/bin/ls
2499844 0 1152 ls fop_getattr 0 /lib/libc.so.1
2499844 0 1152 ls fop_getattr 0 /usr/lib/libc/libc_hwcap1.so.1
2499844 0 1152 ls fop_getattr 0 /lib/libc.so.1
2499844 0 1152 ls fop_getattr 0 /usr/lib/libc/libc_hwcap1.so.1
[...]
2499851 0 1152 ls fop_getattr 0 /var/tmp
2499851 0 1152 ls fop_open 0 /var/tmp
2499851 0 1152 ls fop_getattr 0 /var/tmp
2499852 0 1152 ls fop_readdir 0 /var/tmp
2499852 0 1152 ls fop_getattr 0 /var/tmp/ExrUaWjc
[...]
2500015 0 1152 ls fop_open 0 /etc/passwd
2500015 0 1152 ls fop_getattr 0 /etc/passwd
2500015 0 1152 ls fop_getattr 0 /etc/passwd
2500015 0 1152 ls fop_getattr 0 /etc/passwd
2500015 0 1152 ls fop_ioctl 0 /etc/passwd
2500015 0 1152 ls fop_read 1 /etc/passwd
2500016 0 1152 ls fop_getattr 0 /etc/passwd
2500016 0 1152 ls fop_close 0 /etc/passwd
[...]

macosx# dtrace -ln 'fbt::VNOP_*:entry'
ID PROVIDER MODULE FUNCTION NAME
 705 fbt mach_kernel VNOP_ACCESS entry
 707 fbt mach_kernel VNOP_ADVLOCK entry
 709 fbt mach_kernel VNOP_ALLOCATE entry
 711 fbt mach_kernel VNOP_BLKTOOFF entry
 713 fbt mach_kernel VNOP_BLOCKMAP entry
 715 fbt mach_kernel VNOP_BWRITE entry
 717 fbt mach_kernel VNOP_CLOSE entry
 719 fbt mach_kernel VNOP_COPYFILE entry
 721 fbt mach_kernel VNOP_CREATE entry
 723 fbt mach_kernel VNOP_EXCHANGE entry
 725 fbt mach_kernel VNOP_FSYNC entry
 727 fbt mach_kernel VNOP_GETATTR entry
[...output truncated...]

Gregg.book Page 338 Wednesday, February 2, 2011 12:35 PM

Scripts 339

The kernel source can be inspected to determine the arguments to these calls.

Script

This script traces many of the common VFS calls at the Darwin VNOP interface,
including read(), write(), and open(). See sys/bsd/sys/vnode_if.h from
the source for the full list. Additional calls can be added as desired.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5 #pragma D option switchrate=10hz
6
7 dtrace:::BEGIN
8 {
9 printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
10 "PID", "PROCESS", "CALL", "KB", "PATH");
11 }
12
13 /* see sys/bsd/sys/vnode_if.h */
14
15 fbt::VNOP_READ:entry, fbt::VNOP_WRITE:entry
16 {
17 self->path = ((struct vnode *)arg0)->v_name;
18 self->kb = ((struct uio *)arg1)->uio_resid_64 / 1024;
19 }
20
21 fbt::VNOP_OPEN:entry
22 {
23 self->path = ((struct vnode *)arg0)->v_name;
24 self->kb = 0;
25 }
26
27 fbt::VNOP_CLOSE:entry, fbt::VNOP_IOCTL:entry, fbt::VNOP_GETATTR:entry,
28 fbt::VNOP_READDIR:entry
29 {
30 self->path = ((struct vnode *)arg0)->v_name;
31 self->kb = 0;
32 }
33
34 fbt::VNOP_READ:entry, fbt::VNOP_WRITE:entry, fbt::VNOP_OPEN:entry,
35 fbt::VNOP_CLOSE:entry, fbt::VNOP_IOCTL:entry, fbt::VNOP_GETATTR:entry,
36 fbt::VNOP_READDIR:entry
37 /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
38 {
39 printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
40 uid, pid, execname, probefunc, self->kb,
41 self->path != NULL ? stringof(self->path) : "<null>");
42 }
43
44 fbt::VNOP_READ:entry, fbt::VNOP_WRITE:entry, fbt::VNOP_OPEN:entry,
45 fbt::VNOP_CLOSE:entry, fbt::VNOP_IOCTL:entry, fbt::VNOP_GETATTR:entry,
46 fbt::VNOP_READDIR:entry
47 {
48 self->path = 0; self->kb = 0;
49 }

Script macvfssnoop.d

Gregg.book Page 339 Wednesday, February 2, 2011 12:35 PM

340 Chapter 5 � File Systems

Example

An ls -l command was traced to compare with the other VFS script examples:

The VFS calls show three stages to ls on Mac OS X: command initialization, an
initial check of the files, and then a second pass as output is written to the screen
(ttys003).

vfssnoop.d

FreeBSD has the VOP interface for VFS, which is similar to the VNOP interface
on Mac OS X (as traced by macvfssnoop.d). Instead of tracing VOP via the fbt
provider, this script demonstrates the FreeBSD vfs provider.3 Here’s an example
listing vfs probes:

macosx# macvfssnoop.d ls
TIME(ms) UID PID PROCESS CALL KB PATH
1183135202 501 57611 ls VNOP_GETATTR 0 urandom
1183135202 501 57611 ls VNOP_OPEN 0 urandom
1183135202 501 57611 ls VNOP_READ 0 urandom
1183135202 501 57611 ls VNOP_CLOSE 0 urandom
1183135202 501 57611 ls VNOP_GETATTR 0 libncurses.5.4.dylib
1183135202 501 57611 ls VNOP_GETATTR 0 libSystem.B.dylib
1183135202 501 57611 ls VNOP_GETATTR 0 libSystem.B.dylib
1183135202 501 57611 ls VNOP_GETATTR 0 libmathCommon.A.dylib
1183135203 501 57611 ls VNOP_GETATTR 0 libmathCommon.A.dylib
[…]
1183135221 501 57611 ls VNOP_GETATTR 0 fswho
1183135221 501 57611 ls VNOP_GETATTR 0 macvfssnoop.d
1183135221 501 57611 ls VNOP_GETATTR 0 macvfssnoop.d
1183135221 501 57611 ls VNOP_GETATTR 0 new
1183135221 501 57611 ls VNOP_GETATTR 0 oneliners
[…]
1183135225 501 57611 ls VNOP_GETATTR 0 fswho
1183135225 501 57611 ls VNOP_WRITE 0 ttys003
1183135225 501 57611 ls VNOP_GETATTR 0 macvfssnoop.d
1183135225 501 57611 ls VNOP_GETATTR 0 macvfssnoop.d
1183135225 501 57611 ls VNOP_WRITE 0 ttys003
[…]

3. This was written by Robert Watson.

freebsd# dtrace -ln vfs:::
 ID PROVIDER MODULE FUNCTION NAME
38030 vfs namecache zap_negative done
38031 vfs namecache zap done
38032 vfs namecache purgevfs done
38033 vfs namecache purge_negative done
38034 vfs namecache purge done
38035 vfs namecache lookup miss
38036 vfs namecache lookup hit_negative
38037 vfs namecache lookup hit
38038 vfs namecache fullpath return

Gregg.book Page 340 Wednesday, February 2, 2011 12:35 PM

Scripts 341

Four different types of probes are shown in this output:

� vfs:namecache::: Name cache operations, including lookups (hit/miss)

� vfs:namei::: Filename to vnode lookups

� vfs::stat:: Stat calls

� vfs:vop::: VFS operations

The vfssnoop.d script demonstrates three of these (namecache, namei, and vop).

Script

The vfs:vop:: probes traces VFS calls on vnodes, which this script converts into
path names or filenames for printing. On FreeBSD, vnodes don’t contain a cached path
name and may not contain a filename either unless it’s in the (struct namecache *)
v_cache_dd member. There are a few ways to tackle this; here, vnode to path or
filename mappings are cached during namei() calls and namecache hits, both of
which can also be traced from the vfs provider:

38039 vfs namecache fullpath miss
38040 vfs namecache fullpath hit
38041 vfs namecache fullpath entry
38042 vfs namecache enter_negative done
38043 vfs namecache enter done
38044 vfs namei lookup return
38045 vfs namei lookup entry
38046 vfs stat reg
38047 vfs stat mode
38048 vfs vop vop_vptocnp return
38049 vfs vop vop_vptocnp entry
38050 vfs vop vop_vptofh return
38051 vfs vop vop_vptofh entry
[...]

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5 #pragma D option switchrate=10hz
6 #pragma D option dynvarsize=4m
7
8 dtrace:::BEGIN
9 {
10 printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
11 "PID", "PROCESS", "CALL", "KB", "PATH/FILE");
12 }
13
14 /*
15 * Populate Vnode2Path from namecache hits
16 */
17 vfs:namecache:lookup:hit
18 /V2P[arg2] == NULL/

continues

Gregg.book Page 341 Wednesday, February 2, 2011 12:35 PM

342 Chapter 5 � File Systems

19 {
20 V2P[arg2] = stringof(arg1);
21 }
22
23 /*
24 * (Re)populate Vnode2Path from successful namei() lookups
25 */
26 vfs:namei:lookup:entry
27 {
28 self->buf = arg1;
29 }
30 vfs:namei:lookup:return
31 /self->buf != NULL && arg0 == 0/
32 {
33 V2P[arg1] = stringof(self->buf);
34 }
35 vfs:namei:lookup:return
36 {
37 self->buf = 0;
38 }
39
40 /*
41 * Trace and print VFS calls
42 */
43 vfs::vop_read:entry, vfs::vop_write:entry
44 {
45 self->path = V2P[arg0];
46 self->kb = args[1]->a_uio->uio_resid / 1024;
47 }

48
49 vfs::vop_open:entry, vfs::vop_close:entry, vfs::vop_ioctl:entry,
50 vfs::vop_getattr:entry, vfs::vop_readdir:entry
51 {
52 self->path = V2P[arg0];
53 self->kb = 0;
54 }
55
56 vfs::vop_read:entry, vfs::vop_write:entry, vfs::vop_open:entry,
57 vfs::vop_close:entry, vfs::vop_ioctl:entry, vfs::vop_getattr:entry,
58 vfs::vop_readdir:entry
59 /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
60 {
61 printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
62 uid, pid, execname, probefunc, self->kb,
63 self->path != NULL ? self->path : "<unknown>");
64 }
65
66 vfs::vop_read:entry, vfs::vop_write:entry, vfs::vop_open:entry,
67 vfs::vop_close:entry, vfs::vop_ioctl:entry, vfs::vop_getattr:entry,
68 vfs::vop_readdir:entry
69 {
70 self->path = 0; self->kb = 0;
71 }
72
73 /*
74 * Tidy V2P, otherwise it gets too big (dynvardrops)
75 */
76 vfs:namecache:purge:done,
77 vfs::vop_close:entry
78 {
79 V2P[arg0] = 0;
80 }

Script vfssnoop.d

Gregg.book Page 342 Wednesday, February 2, 2011 12:35 PM

Scripts 343

The V2P array can get large, and frequent probes events may cause dynamic
variable drops. To reduce these drops, the V2P array is trimmed in lines 76 to 80,
and the dynvarsize tunable is increased on line 6 (but may need to be set higher,
depending on your workload).

Example

An ls -l command was traced to compare with the other VFS script examples:

The three stages of ls shown here are similar to those seen on Oracle Solaris:
command initialization, reading the directory, and reading system databases. In
some cases, vfssnoop.d is able to print full path names; in others, it prints only
the filename.

sollife.d

This script shows file creation and deletion events only. It’s able to identify file system
churn—the rapid creation and deletion of temporary files. Like solfssnoop.d, it
traces VFS calls using the fbt provider.

Script

This is a reduced version of solfssnoop.d, which traces only the create() and
remove() events:

freebsd# vfssnoop.d ls
TIME(ms) UID PID PROCESS CALL KB PATH/FILE
167135998 0 29717 ls vop_close 0 /bin/ls
167135999 0 29717 ls vop_open 0 /var/run/ld-elf.so.hints
167135999 0 29717 ls vop_read 0 /var/run/ld-elf.so.hints
167136000 0 29717 ls vop_read 0 /var/run/ld-elf.so.hints
167136000 0 29717 ls vop_close 0 /var/run/ld-elf.so.hints
167136000 0 29717 ls vop_open 0 /lib/libutil.so.8
[...]
167136007 0 29717 ls vop_getattr 0 .history
167136007 0 29717 ls vop_getattr 1 .bash_history
167136008 0 29717 ls vop_getattr 0 .ssh
167136008 0 29717 ls vop_getattr 0 namecache.d
167136008 0 29717 ls vop_getattr 0 vfssnoop.d
[...]
167136011 0 29717 ls vop_read 0 /etc/spwd.db
167136011 0 29717 ls vop_getattr 0 /etc/nsswitch.conf
167136011 0 29717 ls vop_getattr 0 /etc/nsswitch.conf
167136011 0 29717 ls vop_read 4 /etc/spwd.db
167136011 0 29717 ls vop_getattr 0 /etc/nsswitch.conf
167136011 0 29717 ls vop_open 0 /etc/group
[...]

Gregg.book Page 343 Wednesday, February 2, 2011 12:35 PM

344 Chapter 5 � File Systems

Example

Here the script has caught the events from the vim(1) text editor, which opened
the script in a different terminal window, made a change, and then saved and quit:

The output shows the temporary swap files created and then removed by vim.
This script could be enhanced to trace rename() events as well, which may better
explain how vim is managing these files.

maclife.d

This is the sollife.d script, written for Mac OS X. As with macvfssnoop.d, it
uses the fbt provider to trace VNOP interface calls:

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-12s %6s %6s %-12.12s %-12s %s\n", "TIME(ms)", "UID",
9 "PID", "PROCESS", "CALL", "PATH");
10 }
11
12 /* see /usr/include/sys/vnode.h */
13
14 fbt::fop_create:entry,
15 fbt::fop_remove:entry
16 {
17 printf("%-12d %6d %6d %-12.12s %-12s %s/%s\n",
18 timestamp / 1000000, uid, pid, execname, probefunc,
19 args[0]->v_path != NULL ? stringof(args[0]->v_path) : "<null>",
20 stringof(arg1));
21 }

Script sollife.d

sollife.d
TIME(ms) UID PID PROCESS CALL PATH
1426193948 130948 112454 vim fop_create /home/brendan/.sollife.d.swp
1426193953 130948 112454 vim fop_create /home/brendan/.sollife.d.swx
1426193956 130948 112454 vim fop_remove /home/brendan/.sollife.d.swx
1426193958 130948 112454 vim fop_remove /home/brendan/.sollife.d.swp
1426193961 130948 112454 vim fop_create /home/brendan/.sollife.d.swp
1426205215 130948 112454 vim fop_create /home/brendan/4913
1426205230 130948 112454 vim fop_remove /home/brendan/4913
1426205235 130948 112454 vim fop_create /home/brendan/sollife.d
1426205244 130948 112454 vim fop_remove /home/brendan/sollife.d~
1426205246 130948 112454 vim fop_create /home/brendan/.viminfz.tmp
1426205256 130948 112454 vim fop_remove /home/brendan/.viminfo
1426205262 130948 112454 vim fop_remove /home/brendan/.sollife.d.swp

Gregg.book Page 344 Wednesday, February 2, 2011 12:35 PM

Scripts 345

vfslife.d

This is the sollife.d script, written for FreeBSD. As with vfssnoop.d, it uses
the vfs provider. This time it attempts to retrieve a directory name from the direc-
tory vnode namecache entry (v_cache_dd), instead of using DTrace to cache
vnode to path translations.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-12s %6s %6s %-12.12s %-12s %s\n", "TIME(ms)", "UID",
9 "PID", "PROCESS", "CALL", "DIR/FILE");
10 }
11
12 /* see sys/bsd/sys/vnode_if.h */
13
14 fbt::VNOP_CREATE:entry,
15 fbt::VNOP_REMOVE:entry
16 {
17 this->path = ((struct vnode *)arg0)->v_name;
18 this->name = ((struct componentname *)arg2)->cn_nameptr;
19 printf("%-12d %6d %6d %-12.12s %-12s %s/%s\n",
20 timestamp / 1000000, uid, pid, execname, probefunc,
21 this->path != NULL ? stringof(this->path) : "<null>",
22 stringof(this->name));
23 }

Script maclife.d

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-12s %6s %6s %-12.12s %-12s %s\n", "TIME(ms)", "UID",
9 "PID", "PROCESS", "CALL", "DIR/FILE");
10 }
11
12 /* see sys/bsd/sys/vnode_if.h */
13
14 vfs::vop_create:entry,
15 vfs::vop_remove:entry
16 {
17 this->dir = args[0]->v_cache_dd != NULL ?
18 stringof(args[0]->v_cache_dd->nc_name) : "<null>";
19 this->name = args[1]->a_cnp->cn_nameptr != NULL ?
20 stringof(args[1]->a_cnp->cn_nameptr) : "<null>";
21
22 printf("%-12d %6d %6d %-12.12s %-12s %s/%s\n",
23 timestamp / 1000000, uid, pid, execname, probefunc,
24 this->dir, this->name);
25 }

Script vfslife.d

Gregg.book Page 345 Wednesday, February 2, 2011 12:35 PM

346 Chapter 5 � File Systems

dnlcps.d

The Directory Name Lookup Cache is a Solaris kernel facility used to cache path
names to vnodes. This script shows its hit rate by process, which can be poor when
path names are used that are too long for the DNLC. A similar script can be writ-
ten for the other operating systems; FreeBSD has the vfs:namecache:lookup:
probes for this purpose.

Script

Example

The DNLC lookup result is shown in a distribution plot for visual comparison.
Here, a tar(1) command had a high hit rate (hit == 1) compared to misses.

See Also

For more examples of DNLC tracing using DTrace, the DTraceToolkit has dnlcstat
and dnlcsnoop, the latter printing DNLC lookup events as they occur; for example:

1 #!/usr/sbin/dtrace -s
[...]
43 #pragma D option quiet
44
45 dtrace:::BEGIN
46 {
47 printf("Tracing... Hit Ctrl-C to end.\n");
48 }
49
50 fbt::dnlc_lookup:return
51 {
52 this->code = arg1 == 0 ? 0 : 1;
53 @Result[execname, pid] = lquantize(this->code, 0, 1, 1);
54 }
55
56 dtrace:::END
57 {
58 printa(" CMD: %-16s PID: %d\n%@d\n", @Result);
59 }

Script dnlcps.d

dnlcps.d
Tracing... Hit Ctrl-C to end.
^C
[...]

 CMD: tar PID: 7491

 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@ 273
 >= 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 6777

Gregg.book Page 346 Wednesday, February 2, 2011 12:35 PM

Scripts 347

fsflush_cpu.d

fsflush is the kernel file system flush thread on Oracle Solaris, which scans
memory periodically for dirty data (data written to DRAM but not yet written to
stable storage devices) and issues device writes to send it to disk. This thread
applies to different file systems including UFS but does not apply to ZFS, which
has its own way of flushing written data (transaction group sync).

Since system memory had become large (from megabytes to gigabytes since
fsflush was written), the CPU time for fsflush to scan memory had become a per-
formance issue that needed observability; at the time, DTrace didn’t exist, and this
was solved by adding a virtual process to /proc with the name fsflush that
could be examined using standard process-monitoring tools (ps(1), prstat(1M)):

Note the SYS scheduling class, identifying that this is a kernel thread.
The fsflush_cpu.d script prints fsflush information including the CPU

time using DTrace.

Script

This script uses the fbt provider to trace the fsflush_do_pages() function and
its logical calls to write data using fop_putpage(). The io provider is also used to
measure physical device I/O triggered by fsflush.

dnlcsnoop.d
 PID CMD TIME HIT PATH
 9185 bash 9 Y /etc
 9185 bash 3 Y /etc
 12293 bash 9 Y /usr
 12293 bash 3 Y /usr/bin
 12293 bash 4 Y /usr/bin/find
 12293 bash 7 Y /lib
 12293 bash 3 Y /lib/ld.so.1
 12293 find 6 Y /usr
 12293 find 3 Y /usr/bin
 12293 find 3 Y /usr/bin/find
[...]

solaris# ps -ecf | grep fsflush
 root 3 0 SYS 60 Nov 14 ? 1103:59 fsflush

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 trace("Tracing fsflush...\n");

continues

Gregg.book Page 347 Wednesday, February 2, 2011 12:35 PM

348 Chapter 5 � File Systems

Script subtleties include the following.

� Lines 19, 25, and 26 use aggregations instead of global variables, for reliabil-
ity on multi-CPU environments.

� Lines 36 to 38 print aggregations in separate printa() statements instead
of a single statement, so this worked on the earliest versions of DTrace on
Oracle Solaris, when support for multiple aggregations in a single printa()
did not yet exist.

� Line 8 and using clear() instead of trunc() on line 41 are intended to
ensure that the aggregations will be printed. Without them, if an aggrega-
tion contains no data, the printa() statement will be skipped, and the out-
put line will miss elements.

� Since only fsflush_do_pages() is traced, only the flushing of pages is con-
sidered in the CPU time reported, not the flushing of inodes (the script could
be enhanced to trace that as well).

8 @fopbytes = sum(0); @iobytes = sum(0);
9 }
10
11 fbt::fsflush_do_pages:entry
12 {
13 self->vstart = vtimestamp;
14 }
15
16 fbt::fop_putpage:entry
17 /self->vstart/
18 {
19 @fopbytes = sum(arg2);
20 }
21
22 io:::start
23 /self->vstart/
24 {
25 @iobytes = sum(args[0]->b_bcount);
26 @ionum = count();
27 }
28
29 fbt::fsflush_do_pages:return
30 /self->vstart/
31 {
32 normalize(@fopbytes, 1024);
33 normalize(@iobytes, 1024);
34 this->delta = (vtimestamp - self->vstart) / 1000000;
35 printf("%Y %4d ms, ", walltimestamp, this->delta);
36 printa("fop: %7@d KB, ", @fopbytes);
37 printa("device: %7@d KB ", @iobytes);
38 printa("%5@d I/O", @ionum);
39 printf("\n");
40 self->vstart = 0;
41 clear(@fopbytes); clear(@iobytes); clear(@ionum);
42 }

Script fsflush_cpu.d

Gregg.book Page 348 Wednesday, February 2, 2011 12:35 PM

Scripts 349

Example

A line is printed for each fsflush run, showing the CPU time spent in fsflush,
the amount of logical data written via the fop interface, and the number of physi-
cal data writes issued to the storage devices including the physical I/O count:

To demonstrate this, we needed dirty data for fsflush to write out. We did this
by writing data to a UFS file system, performing a random 4KB write workload to
a large file.

We found that applying a sequential write workload did not leave dirty data for
fsflush to pick up, meaning that the writes to disk were occurring via a different
code path. That different code path can be identified using DTrace, by looking at
the stack backtraces when disk writes are being issued:

So, fop_putpage() is happening directly from the ufs_write(), rather than
fsflush.

fsflush.d

The previous script (fsflush_cpu.d) was an example of using DTrace to create
statistics of interest. This is an example of retrieving existing kernel statistics—if

fsflush_cpu.d
Tracing fsflush...
2010 Jun 20 04:15:52 24 ms, fop: 228 KB, device: 216 KB 54 I/O
2010 Jun 20 04:15:53 26 ms, fop: 260 KB, device: 244 KB 61 I/O
2010 Jun 20 04:15:54 35 ms, fop: 1052 KB, device: 1044 KB 261 I/O
2010 Jun 20 04:15:56 52 ms, fop: 1548 KB, device: 1532 KB 383 I/O
2010 Jun 20 04:15:57 60 ms, fop: 2756 KB, device: 2740 KB 685 I/O
2010 Jun 20 04:15:58 41 ms, fop: 1484 KB, device: 1480 KB 370 I/O
2010 Jun 20 04:15:59 37 ms, fop: 1284 KB, device: 1272 KB 318 I/O
2010 Jun 20 04:16:00 38 ms, fop: 644 KB, device: 632 KB 157 I/O
[...]

dtrace -n 'io:::start /!(args[0]->b_flags & B_READ)/ { @[stack()] = count(); }'
dtrace: description 'io:::start ' matched 6 probes
^C
[...]
 ufs`lufs_write_strategy+0x100
 ufs`ufs_putapage+0x439
 ufs`ufs_putpages+0x308
 ufs`ufs_putpage+0x82
 genunix`fop_putpage+0x28
 genunix`segmap_release+0x24f
 ufs`wrip+0x4b5
 ufs`ufs_write+0x211
 genunix`fop_write+0x31
 genunix`write+0x287
 genunix`write32+0xe
 unix`sys_syscall32+0x101
 3201

Gregg.book Page 349 Wednesday, February 2, 2011 12:35 PM

350 Chapter 5 � File Systems

they are available—and printing them out. It was written by Jon Haslam4 and
published in Solaris Internals (McDougall and Mauro, 2006).

Statistics are maintained in the kernel to count fsflush pages scanned, modi-
fied pages found, run time (CPU time), and more.

They are kept in a global variable called fsf_total of fsf_stat_t, which the
fsflush.d script reads using the ` kernel variable prefix.

Script

Since the counters are incremental, it prints out the delta every second:

4. This was originally posted at http://blogs.sun.com/jonh/entry/fsflush_revisited_in_d.

usr/src/uts/common/fs/fsflush.c:
 82 /*
 83 * some statistics for fsflush_do_pages
 84 */
 85 typedef struct {
 86 ulong_t fsf_scan; /* number of pages scanned */
 87 ulong_t fsf_examined; /* number of page_t's actually examined, can */
 88 /* be less than fsf_scan due to large pages */
 89 ulong_t fsf_locked; /* pages we actually page_lock()ed */
 90 ulong_t fsf_modified; /* number of modified pages found */
 91 ulong_t fsf_coalesce; /* number of page coalesces done */
 92 ulong_t fsf_time; /* nanoseconds of run time */
 93 ulong_t fsf_releases; /* number of page_release() done */
 94 } fsf_stat_t;
 95
 96 fsf_stat_t fsf_recent; /* counts for most recent duty cycle */
 97 fsf_stat_t fsf_total; /* total of counts */

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 BEGIN
6 {
7 lexam = 0; lscan = 0; llock = 0; lmod = 0; lcoal = 0; lrel = 0; lti = 0;
8 printf("%10s %10s %10s %10s %10s %10s %10s\n", "SCANNED", "EXAMINED",
9 "LOCKED", "MODIFIED", "COALESCE", "RELEASES", "TIME(ns)");
10 }
11
12 tick-1s
13 /lexam/
14 {
15 printf("%10d %10d %10d %10d %10d %10d %10d\n", `fsf_total.fsf_scan,
16 `fsf_total.fsf_examined - lexam, `fsf_total.fsf_locked - llock,
17 `fsf_total.fsf_modified - lmod, `fsf_total.fsf_coalesce - lcoal,
18 `fsf_total.fsf_releases - lrel, `fsf_total.fsf_time - ltime);
19 lexam = `fsf_total.fsf_examined;
20 lscan = `fsf_total.fsf_scan;
21 llock = `fsf_total.fsf_locked;
22 lmod = `fsf_total.fsf_modified;
23 lcoal = `fsf_total.fsf_coalesce;

Gregg.book Page 350 Wednesday, February 2, 2011 12:35 PM

Scripts 351

This script uses the profile provider for the tick-1s probes, which is a stable
provider. The script itself isn’t considered stable, because it retrieves kernel inter-
nal statistics that may be subject to change (fsf_stat_t).

Example

UFS Scripts

UFS is the Unix File System, based on Fast File System (FFS), and was the main
file system used by Solaris until ZFS. UFS exists on other operating systems,
including FreeBSD, where it can also be examined using DTrace. Although the on-
disk structures and basic operation of UFS are similar, the implementation of UFS
differs between operating systems. This is noticeable when listing the UFS probes
via the fbt provider:

24 lrel = `fsf_total.fsf_releases;
25 ltime = `fsf_total.fsf_time;
26 }
27
28 /*
29 * First time through
30 */
31
32 tick-1s
33 /!lexam/
34 {
35 lexam = `fsf_total.fsf_examined;
36 lscan = `fsf_total.fsf_scan;
37 llock = `fsf_total.fsf_locked;
38 lmod = `fsf_total.fsf_modified;
39 lcoal = `fsf_total.fsf_coalesce;
40 ltime = `fsf_total.fsf_time;
41 lrel = `fsf_total.fsf_releases;
42 }

Script fsflush.d

solaris# fsflush.d
 SCANNED EXAMINED LOCKED MODIFIED COALESCE RELEASES TIME(ns)
 34871 34872 2243 365 0 0 3246343
 34871 34872 1576 204 0 0 2727493
 34871 34872 1689 221 0 0 2904566
 34871 34872 114 19 0 0 2221724
 34871 34872 1849 892 0 0 3297796
 34871 34872 1304 517 0 0 3408503
[...]

solaris# dtrace -ln 'fbt::ufs_*:' | wc -l
 403

freebsd# dtrace -ln 'fbt::ufs_*:' | wc -l
 107

Gregg.book Page 351 Wednesday, February 2, 2011 12:35 PM

352 Chapter 5 � File Systems

For comparison, only those beginning with ufs_ are listed. The fbt provider on
Oracle Solaris can match the module name as ufs, so the complete list of UFS
probes can be listed using fbt:ufs:: (which shows 832 probes).

This section demonstrates UFS tracing on Oracle Solaris and is intended for
those wanting to dig deeper into file system internals, beyond what is possible at
the syscall and VFS layers. A basic understanding of UFS internals is assumed,
which you can study in Chapter 15, The UFS File System, of Solaris Internals
(McDougall and Mauro, 2006).

Since there is currently no stable UFS provider, the fbt5 provider is used. fbt is
an unstable interface: It exports kernel functions and data structures that may
change from release to release. The following scripts were based on OpenSolaris
circa December 2009 and may not work on other OSs and releases without
changes. Even if these scripts no longer execute, they can still be treated as exam-
ples of D programming and for the sort of data that DTrace can make available for
UFS analysis.

ufssnoop.d

This script uses the fbt provider to trace and print UFS calls from within the ufs
kernel module. It provides a raw dump of what UFS is being requested to do,
which can be useful for identifying load issues. Since the output is verbose and
inclusive, it is suitable for post-processing, such as filtering for events of interest.

The script is included here to show that this is possible and how it might look.
This is written for a particular version of Oracle Solaris ZFS and will need tweaks to
work on other versions. The functionality and output is similar to solvfssnoop.d
shown earlier.

Script

Common UFS requests are traced: See the probe names on lines 33 to 35. This
script can be enhanced to include more request types as desired: See the source file
on line 12 for the list.

5. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

1 #!/usr/sbin/dtrace -Zs
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
9 "PID", "PROCESS", "CALL", "KB", "PATH");
10 }

Gregg.book Page 352 Wednesday, February 2, 2011 12:35 PM

Scripts 353

As another lesson in the instability of the fbt provider, the ufs_open() call
doesn’t exist on earlier versions of UFS. For this script to provide some functional-
ity without it, the -Z option is used on line 1 so that the script will execute despite
missing a probe, and line 22 casts arg0 instead of using args[0] so that the
script compiles.

Example

To test this script, the dd(1) command was used to perform three 8KB reads from
a file:

11
12 /* see uts/common/fs/ufs/ufs_vnops.c */
13
14 fbt::ufs_read:entry, fbt::ufs_write:entry
15 {
16 self->path = args[0]->v_path;
17 self->kb = args[1]->uio_resid / 1024;
18 }
19
20 fbt::ufs_open:entry
21 {
22 self->path = (*(struct vnode **)arg0)->v_path;
23 self->kb = 0;
24 }
25
26 fbt::ufs_close:entry, fbt::ufs_ioctl:entry, fbt::ufs_getattr:entry,
27 fbt::ufs_readdir:entry
28 {
29 self->path = args[0]->v_path;
30 self->kb = 0;
31 }
32
33 fbt::ufs_read:entry, fbt::ufs_write:entry, fbt::ufs_open:entry,
34 fbt::ufs_close:entry, fbt::ufs_ioctl:entry, fbt::ufs_getattr:entry,
35 fbt::ufs_readdir:entry
36 {
37 printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
38 uid, pid, execname, probefunc, self->kb,
39 self->path != NULL ? stringof(self->path) : "<null>");
40 self->path = 0; self->kb = 0;
41 }

Script ufssnoop.d

solaris# ufssnoop.d
TIME(ms) UID PID PROCESS CALL KB PATH
1155732900 0 8312 dd ufs_open 0 /mnt/1m
1155732901 0 8312 dd ufs_read 8 /mnt/1m
1155732901 0 8312 dd ufs_read 8 /mnt/1m
1155732901 0 8312 dd ufs_read 8 /mnt/1m
1155732901 0 8312 dd ufs_close 0 /mnt/1m
1155739611 0 8313 ls ufs_getattr 0 /mnt
1155739611 0 8313 ls ufs_getattr 0 /mnt
[...]

Gregg.book Page 353 Wednesday, February 2, 2011 12:35 PM

354 Chapter 5 � File Systems

The events have been traced correctly. The TIME(ms) column showed no delay
between these reads, suggesting that the data returned from DRAM cache. This
column can also be used for postsorting, because the output may become shuffled
slightly on multi-CPU systems.

ufsreadahead.d

Oracle Solaris UFS uses read-ahead to improve the performance of sequential
workloads. This is where a sequential read pattern is detected, allowing UFS to
predict the next requested reads and issue them before they are actually
requested, to prewarm the cache.

The ufsreadahead.d script shows bytes read by UFS and those requested by
read-ahead. This can be used on a known sequential workload to check that read-
ahead is working correctly and also on an unknown workload to determine
whether it is sequential or random.

Script

Since this script is tracing UFS internals using the fbt provider and will require
maintenance, it has been kept as simple as possible:

Example

The following example shows the use of ufsreadahead.d examining a sequential/
streaming read workload:

1 #!/usr/sbin/dtrace -s
2
3 fbt::ufs_getpage:entry
4 {
5 @["UFS read (bytes)"] = sum(arg2);
6 }
7
8 fbt::ufs_getpage_ra:return
9 {
10 @["UFS read ahead (bytes)"] = sum(arg1);
11 }

Script ufsreadahead.d

solaris# ufsreadahead.d
dtrace: script './ufsreadahead.d' matched 2 probes
^C

 UFS read ahead (bytes) 70512640
 UFS read (bytes) 71675904

Gregg.book Page 354 Wednesday, February 2, 2011 12:35 PM

Scripts 355

This was a known sequential read workload. The output shows that about
71MB were reads from UFS and 70MB were from read-ahead, suggesting that
UFS has correctly detected this as sequential. (It isn’t certain, since the script isn’t
checking that the read-ahead data was then actually read by anyone.)

Here we see the same script applied to a random read workload:

This was a known random read workload that performed 2MB of reads from
UFS. No read-ahead was triggered, which is what we would expect (hope).

See Also

For more examples of UFS read-ahead analysis using DTrace, see the fspaging.d
and fsrw.d scripts from the DTraceToolkit, which trace I/O from the syscall layer
to the storage device layer. Here’s an example:

This output shows five syscall reads (sc-read) of 8KB in size, starting from file
offset 0 and reaching file offset 32 (kilobytes). The first of these syscall reads trig-
gers an 8KB VFS read (fop_read), which triggers a disk read to satisfy it (disk_
io); also at this point, UFS read-ahead triggers the next 8KB to be read from disk
(disk_ra). The next syscall read triggers three more read-aheads. The last read-
ahead seen in this output shows a 1MB read from offset 232, and yet the syscall

solaris# ufsreadahead.d
dtrace: script './ufsreadahead.d' matched 2 probes
^C

 UFS read (bytes) 2099136

solaris# fsrw.d
Event Device RW Size Offset Path
sc-read . R 8192 0 /mnt/bigfile
 fop_read . R 8192 0 /mnt/bigfile
 disk_io sd15 R 8192 0 /mnt/bigfile
 disk_ra sd15 R 8192 8 /mnt/bigfile
sc-read . R 8192 8 /mnt/bigfile
 fop_read . R 8192 8 /mnt/bigfile
 disk_ra sd15 R 81920 16 /mnt/bigfile
 disk_ra sd15 R 8192 96 <none>
 disk_ra sd15 R 8192 96 /mnt/bigfile
sc-read . R 8192 16 /mnt/bigfile
 fop_read . R 8192 16 /mnt/bigfile
 disk_ra sd15 R 131072 104 /mnt/bigfile
 disk_ra sd15 R 1048576 232 /mnt/bigfile
sc-read . R 8192 24 /mnt/bigfile
 fop_read . R 8192 24 /mnt/bigfile
sc-read . R 8192 32 /mnt/bigfile
 fop_read . R 8192 32 /mnt/bigfile
[...]

Gregg.book Page 355 Wednesday, February 2, 2011 12:35 PM

356 Chapter 5 � File Systems

interface—what’s actually being requested of UFS—has only had three 8KB reads
at this point. That’s optimistic!

ufsimiss.d

The Oracle Solaris UFS implementation uses an inode cache to improve the perfor-
mance of inode queries. There are various kernel statistics we can use to observe
the performance of this cache, for example:

These counters show a high rate of inode cache misses. DTrace can investigate
these further: The ufsimiss.d script shows the process and filename for each
inode cache miss.

Script

The parent directory vnode and filename pointers are cached on ufs_lookup()
for later printing if an inode cache miss occurred, and ufs_alloc_inode() was
entered:

solaris# kstat -p ufs::inode_cache:hits ufs::inode_cache:misses 1
ufs:0:inode_cache:hits 580003
ufs:0:inode_cache:misses 1294907

ufs:0:inode_cache:hits 581810
ufs:0:inode_cache:misses 1299367

ufs:0:inode_cache:hits 582973
ufs:0:inode_cache:misses 1304608
[...]

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%6s %-16s %s\n", "PID", "PROCESS", "INODE MISS PATH");
9 }
10
11 fbt::ufs_lookup:entry
12 {
13 self->dvp = args[0];
14 self->name = arg1;
15 }
16
17 fbt::ufs_lookup:return
18 {
19 self->dvp = 0;
20 self->name = 0;
21 }
22
23 fbt::ufs_alloc_inode:entry

Gregg.book Page 356 Wednesday, February 2, 2011 12:35 PM

Scripts 357

Example

Here the UFS inode cache misses were caused by find(1) searching /usr/
share/man:

ZFS Scripts

ZFS is an advanced file system and volume manager available on Oracle Solaris.
Its features include 128-bit capacity, different RAID types, copy-on-write transac-
tions, snapshots, clones, dynamic striping, variable block size, end-to-end check-
summing, built-in compression, data-deduplication, support for hybrid storage
pools, quotas, and more. The interaction of these features is interesting for those
examining file system performance, and they have become a common target for
DTrace.

ZFS employs an I/O pipeline (ZIO) that ends with aggregation of I/O at the
device level. By the time an I/O is sent to disk, the content may refer to multiple
files (specifically, there is no longer a single vnode_t for that I/O). Because of this,
the io provider on ZFS can’t show the path name for I/O; this has been filed as a
bug (CR 6266202 “DTrace io provider doesn’t work with ZFS”). At the time of writ-
ing, this bug has not been fixed. The ZFS path name of disk I/O can still be fetched
with a little more effort using DTrace; the ziosnoop.d script described next
shows one way to do this. For reads, it may be possible to simply identify slow
reads at the ZFS interface, as demonstrated by the zfsslower.d script.

This section demonstrates ZFS tracing on Oracle Solaris and is intended for
those wanting to dig deeper into file system internals, beyond what is possible at
the syscall and VFS layers. An understanding of ZFS internals is assumed.

24 /self->dvp && self->name/
25 {
26 printf("%6d %-16s %s/%s\n", pid, execname,
27 stringof(self->dvp->v_path), stringof(self->name));
28 }

Script ufsimiss.d

solaris# ufsimiss.d
 PID PROCESS INODE MISS PATH
 22966 find /usr/share/man/sman3tiff/TIFFCheckTile.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFClientOpen.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFCurrentRow.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFDefaultStripSize.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFFileno.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFGetVersion.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFIsMSB2LSB.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFIsTiled.3tiff
 22966 find /usr/share/man/sman3tiff/TIFFIsUpSampled.3tiff
[...]

Gregg.book Page 357 Wednesday, February 2, 2011 12:35 PM

358 Chapter 5 � File Systems

Since there is currently no stable ZFS provider, the fbt6 provider is used. fbt is
an unstable interface: It exports kernel functions and data structures that may
change from release to release. The following scripts were based on OpenSolaris
circa December 2009 and may not work on other OSs and releases without
changes. Even if these scripts no longer execute, they can still be treated as exam-
ples of D programming and for the sort of data that DTrace can make available for
ZFS analysis.

zfssnoop.d

This script uses the fbt provider to trace and print ZFS calls from within the zfs
kernel module. It provides a raw dump of what ZFS is being requested to do, which
can be useful for identifying load issues. Since the output is verbose and inclusive,
it is suitable for postprocessing, such as filtering for events of interest. The func-
tionality and output is similar to solvfssnoop.d shown earlier.

Script

Common ZFS requests are traced; see the probe names on lines 33 to 35. This
script can be enhanced to include more request types as desired; see the source file
on line 12 for the list.

6. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
9 "PID", "PROCESS", "CALL", "KB", "PATH");
10 }
11
12 /* see uts/common/fs/zfs/zfs_vnops.c */
13
14 fbt::zfs_read:entry, fbt::zfs_write:entry
15 {
16 self->path = args[0]->v_path;
17 self->kb = args[1]->uio_resid / 1024;
18 }
19
20 fbt::zfs_open:entry
21 {
22 self->path = (*args[0])->v_path;
23 self->kb = 0;
24 }
25
26 fbt::zfs_close:entry, fbt::zfs_ioctl:entry, fbt::zfs_getattr:entry,
27 fbt::zfs_readdir:entry

Gregg.book Page 358 Wednesday, February 2, 2011 12:35 PM

Scripts 359

The TIME(ms) column can be used for postsorting, because the output may
become shuffled slightly on multi-CPU systems.

Example

The following script was run on a desktop to identify ZFS activity:

Various ZFS calls have been traced, including gnome-panel checking file attri-
butes and firefox-bin reading cache files.

28 {
29 self->path = args[0]->v_path;
30 self->kb = 0;
31 }
32
33 fbt::zfs_read:entry, fbt::zfs_write:entry, fbt::zfs_open:entry,
34 fbt::zfs_close:entry, fbt::zfs_ioctl:entry, fbt::zfs_getattr:entry,
35 fbt::zfs_readdir:entry
36 {
37 printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
38 uid, pid, execname, probefunc, self->kb,
39 self->path != NULL ? stringof(self->path) : "<null>");
40 self->path = 0; self->kb = 0;
41 }

Script zfssnoop.d

solaris# zfssnoop.d
TIME(ms) UID PID PROCESS CALL KB PATH
19202174470 102 19981 gnome-panel zfs_getattr 0 /export/home/claire/.gnome2/
vfolders
19202174470 102 19981 gnome-panel zfs_getattr 0 /export/home/claire/.gnome2/
vfolders
19202174470 102 19981 gnome-panel zfs_getattr 0 /export/home/claire/.gnome2/
vfolders
19202174470 102 19981 gnome-panel zfs_getattr 0 /export/home/claire/.gnome2/
vfolders
19202174470 102 19981 gnome-panel zfs_getattr 0 /export/home/claire/.recentl
y-used
19202175400 101 2903 squid zfs_open 0 /squidcache/05/03
19202175400 101 2903 squid zfs_getattr 0 /squidcache/05/03
19202175400 101 2903 squid zfs_readdir 0 /squidcache/05/03
19202175400 101 2903 squid zfs_readdir 0 /squidcache/05/03
19202175400 101 2903 squid zfs_close 0 /squidcache/05/03
19202175427 102 23885 firefox-bin zfs_getattr 0 /export/home/claire/.recentl
yused.xbe
l
19202176030 102 13622 nautilus zfs_getattr 0 /export/home/claire/Desktop
19202176215 102 23885 firefox-bin zfs_read 3 /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_002_
19202176216 102 23885 firefox-bin zfs_read 3 /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_002_
19202176215 102 23885 firefox-bin zfs_read 0 /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_001_
19202176216 102 23885 firefox-bin zfs_read 0 /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_001_
[...]

Gregg.book Page 359 Wednesday, February 2, 2011 12:35 PM

360 Chapter 5 � File Systems

zfsslower.d

This is a variation of the zfssnoop.d script intended for the analysis of perfor-
mance issues. zfsslower.d shows the time for read and write I/O in millisec-
onds. A minimum number of milliseconds can be provided as an argument when
running the script, which causes it to print only I/O equal to or slower than the
provided milliseconds.

Because of CR 6266202 (mentioned earlier), we currently cannot trace disk I/O
with ZFS filename information using the io provider arguments. zfsslower.d
may be used as a workaround: By executing it with a minimum time that is likely
to ensure that it is disk I/O (for example, at least 2 ms), we can trace likely disk I/O
events with ZFS filename information.

Script

The defaultargs pragma is used on line 4 so that an optional argument can be
provided of the minimum I/O time to print. If no argument is provided, the mini-
mum time is zero, since $1 will be 0 on line 11.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5 #pragma D option switchrate=10hz
6
7 dtrace:::BEGIN
8 {
9 printf("%-20s %-16s %1s %4s %6s %s\n", "TIME", "PROCESS",
10 "D", "KB", "ms", "FILE");
11 min_ns = $1 * 1000000;
12 }
13
14 /* see uts/common/fs/zfs/zfs_vnops.c */
15
16 fbt::zfs_read:entry, fbt::zfs_write:entry
17 {
18 self->path = args[0]->v_path;
19 self->kb = args[1]->uio_resid / 1024;
20 self->start = timestamp;
21 }
22
23 fbt::zfs_read:return, fbt::zfs_write:return
24 /self->start && (timestamp - self->start) >= min_ns/
25 {
26 this->iotime = (timestamp - self->start) / 1000000;
27 this->dir = probefunc == "zfs_read" ? "R" : "W";
28 printf("%-20Y %-16s %1s %4d %6d %s\n", walltimestamp,
29 execname, this->dir, self->kb, this->iotime,
30 self->path != NULL ? stringof(self->path) : "<null>");
31 }
32
33 fbt::zfs_read:return, fbt::zfs_write:return
34 {
35 self->path = 0; self->kb = 0; self->start = 0;
36 }

Script zfsslower.d

Gregg.book Page 360 Wednesday, February 2, 2011 12:35 PM

Scripts 361

Example

Here the zfsslower.d script was run with an argument of 1 to show only ZFS
reads and writes that took 1 millisecond or longer:

The files accessed here were not cached and had to be read from disk.

zioprint.d

The ZFS I/O pipeline (ZIO) is of particular interest for performance analysis or
troubleshooting, because it processes, schedules, and issues device I/O. It does this
through various stages whose function names (and hence fbt provider probe
names) have changed over time. Because of this, a script that traces specific ZIO
functions would execute only on a particular kernel version and would require reg-
ular maintenance to match kernel updates.

The zioprint.d script addresses this by matching all zio functions using a
wildcard, dumping data generically, and leaving the rest to postprocessing of the
output (for example, using Perl).

Script

This script prints the first five arguments on function entry as hexadecimal inte-
gers, whether or not that’s meaningful (which can be determined later during post-
processing). For many of these functions, the first argument on entry is the
address of a zio_t, so a postprocessor can use that address as a key to follow that
zio through the stages. The return offset and value are also printed.

solaris# zfsslower.d 1
TIME PROCESS D KB ms FILE
2010 Jun 26 03:28:49 cat R 8 14 /export/home/brendan/randread.pl
2010 Jun 26 03:29:04 cksum R 4 5 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum R 4 20 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum R 4 34 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum R 4 7 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum R 4 12 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum R 4 1 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum R 4 81 /export/home/brendan/perf.tar
[...]

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-16s %-3s %-22s %-6s %s\n", "TIME(us)", "CPU", "FUNC",
9 "NAME", "ARGS");
10 }

continues

Gregg.book Page 361 Wednesday, February 2, 2011 12:35 PM

362 Chapter 5 � File Systems

This script can be reused to dump events from any kernel area by changing the
probe names on lines 12 and 18.

Example

The script is intended to be used to write a dump file (either by using shell redirec-
tion > or via the dtrace(1M) -o option) for postprocessing. Since the script is
generic, it is likely to execute on any kernel version and produce a dump file,
which can be especially handy in situations with limited access to the target sys-
tem but unlimited access to any other system (desktop/laptop) for postprocessing.

The meaning of each hexadecimal argument can be determined by reading the
ZFS source for that kernel version. For example, the zio_wait_for_chil-
dren() calls shown earlier have the function prototype:

11
12 fbt::zio_*:entry
13 {
14 printf("%-16d %-3d %-22s %-6s %x %x %x %x %x\n", timestamp / 1000,
15 cpu, probefunc, probename, arg0, arg1, arg2, arg3, arg4);
16 }
17
18 fbt::zio_*:return
19 {
20 printf("%-16d %-3d %-22s %-6s %x %x\n", timestamp / 1000, cpu,
21 probefunc, probename, arg0, arg1);
22 }

Script zioprint.d

solaris# zioprint.d
TIME(us) CPU FUNC NAME ARGS
1484927856573 0 zio_taskq_dispatch entry ffffff4136711c98 2 0 4a 49
1484927856594 0 zio_taskq_dispatch return ac ffffff4456fc8090
1484927856616 0 zio_interrupt return 1d ffffff4456fc8090
1484927856630 0 zio_execute entry ffffff4136711c98 ffffff4456fc8090
a477aa00 a477aa00 c2244e36f410a
1484927856643 0 zio_vdev_io_done entry ffffff4136711c98 ffffff4456fc8090
a477aa00 a477aa00 12
1484927856653 0 zio_wait_for_children entry ffffff4136711c98 0 1 a477aa00 12
1484927856658 0 zio_wait_for_children return 7b 0
1484927856667 0 zio_vdev_io_done return 117 100
[...]

usr/src/uts/common/fs/zfs/zio.c:

static boolean_t
zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)

Gregg.book Page 362 Wednesday, February 2, 2011 12:35 PM

Scripts 363

which means that the entry traced earlier has a zio_t with address
ffffff4136711c98 and a zio_wait_type of 1 (ZIO_WAIT_DONE). The addi-
tional arguments printed (a477aa00 and 12) are leftover register values that are
not part of the function entry arguments.

ziosnoop.d

The ziosnoop.d script is an enhancement of zioprint.d, by taking a couple of
the functions and printing useful information from the kernel—including the pool
name and file path name. The trade-off is that these additions make the script
more fragile and may require maintenance to match kernel changes.

Script

The zio_create() and zio_done() functions were chosen as start and end
points for ZIO (zio_destroy() may be a better endpoint, but it didn’t exist on
earlier kernel versions). For zio_create(), information about the requested I/O
including pool name and file path name (if known) are printed. On zio_done(),
the results of the I/O, including device path (if present) and error values, are
printed.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5 #pragma D option switchrate=10hz
6
7 dtrace:::BEGIN
8 {
9 start = timestamp;
10 printf("%-10s %-3s %-12s %-16s %s\n", "TIME(us)", "CPU",
11 "ZIO_EVENT", "ARG0", "INFO (see script)");
12 }
13
14 fbt::zfs_read:entry, fbt::zfs_write:entry { self->vp = args[0]; }
15 fbt::zfs_read:return, fbt::zfs_write:return { self->vp = 0; }
16
17 fbt::zio_create:return
18 /$1 || args[1]->io_type/
19 {
20 /* INFO: pool zio_type zio_flag bytes path */
21 printf("%-10d %-3d %-12s %-16x %s %d %x %d %s\n",
22 (timestamp - start) / 1000, cpu, "CREATED", arg1,
23 stringof(args[1]->io_spa->spa_name), args[1]->io_type,
24 args[1]->io_flags, args[1]->io_size, self->vp &&
25 self->vp->v_path ? stringof(self->vp->v_path) : "<null>");
26 }
27
28 fbt::zio_*:entry
29 /$1/
30 {
31 printf("%-10d %-3d %-12s %-16x\n", (timestamp - start) / 1000, cpu,
32 probefunc, arg0);
33 }

continues

Gregg.book Page 363 Wednesday, February 2, 2011 12:35 PM

364 Chapter 5 � File Systems

By default, only zio_create() and zio_done() are traced; if an optional
argument of 1 (nonzero) is provided, the script traces all other zio functions as
well.

Examples

This is the default output:

Note the TIME(us) column—the output is shuffled. To see it in the correct
order, write to a file and postsort on that column.

Running ziosnoop.d with an argument of 1 will execute verbose mode, print-
ing all zio calls. Here it is written to a file, from which a particular zio_t address
is searched using grep(1):

34
35 fbt::zio_done:entry
36 /$1 || args[0]->io_type/
37 {
38 /* INFO: io_error vdev_state vdev_path */
39 printf("%-10d %-3d %-12s %-16x %d %d %s\n", (timestamp - start) / 1000,
40 cpu, "DONE", arg0, args[0]->io_error,
41 args[0]->io_vd ? args[0]->io_vd->vdev_state : 0,
42 args[0]->io_vd && args[0]->io_vd->vdev_path ?
43 stringof(args[0]->io_vd->vdev_path) : "<null>");
44 }

Script ziosnoop.d

solaris# ziosnoop.d
TIME(us) CPU ZIO_EVENT ARG0 INFO (see script)
75467 2 CREATED ffffff4468f79330 pool0 1 40440 131072 /pool0/fs1/1t
96330 2 CREATED ffffff44571b1360 pool0 1 40 131072 /pool0/fs1/1t
96352 2 CREATED ffffff46510a7cc0 pool0 1 40440 131072 /pool0/fs1/1t
96363 2 CREATED ffffff4660b4a048 pool0 1 40440 131072 /pool0/fs1/1t
24516 5 DONE ffffff59a619ecb0 0 7 /dev/dsk/c0t5000CCA20ED60516d0s0
24562 5 DONE ffffff4141ecd340 0 7 <null>
24578 5 DONE ffffff4465456320 0 0 <null>
34836 5 DONE ffffff4141f8dca8 0 7 /dev/dsk/c0t5000CCA20ED60516d0s0
34854 5 DONE ffffff414d8e8368 0 7 <null>
34867 5 DONE ffffff446c3de9b8 0 0 <null>
44818 5 DONE ffffff5b3defd968 0 7 /dev/dsk/c0t5000CCA20ED60164d0s0
[...]

solaris# ziosnoop.d 1 -o ziodump
solaris# more ziodump
TIME(us) CPU ZIO_EVENT ARG0 INFO (see script)
[...]
171324 6 CREATED ffffff6440130368 pool0 1 40440 131072 /pool0/fs1/1t
171330 6 zio_nowait ffffff6440130368
171332 6 zio_execute ffffff6440130368
[...]
solaris# grep ffffff6440130368 ziodump | sort -n +0

Gregg.book Page 364 Wednesday, February 2, 2011 12:35 PM

Scripts 365

The output of grep(1) is passed to sort(1) to print the events in the correct
timestamp order. Here, all events from zio_create() to zio_done() can be
seen, along with the time stamp. Note the jump in time between zio_vdev_io_
start() and zio_interrupt() (171334 us to 179672 us = 8 ms)—this is the
device I/O time. Latency in other zio stages can be identified in the same way
(which can be expedited by writing a postprocessor).

ziotype.d

The ziotype.d script shows what types of ZIO are being created, printing a count
every five seconds.

Script

A translation table for zio_type is included in the BEGIN action, based on zfs.h.
If zfs.h changes with kernel updates, this table will need to be modified to match.

171324 6 CREATED ffffff6440130368 pool0 1 40440 131072 /pool0/fs1/1t
171330 6 zio_nowait ffffff6440130368
171332 6 zio_execute ffffff6440130368
171334 6 zio_vdev_io_start ffffff6440130368
179672 0 zio_interrupt ffffff6440130368
179676 0 zio_taskq_dispatch ffffff6440130368
179689 0 zio_execute ffffff6440130368
179693 0 zio_vdev_io_done ffffff6440130368
179695 0 zio_wait_for_children ffffff6440130368
179698 0 zio_vdev_io_assess ffffff6440130368
179700 0 zio_wait_for_children ffffff6440130368
179702 0 zio_checksum_verify ffffff6440130368
179705 0 zio_checksum_error ffffff6440130368
179772 0 zio_done ffffff6440130368
179775 0 DONE ffffff6440130368 0 7 /dev/dsk/c0t5000CCA20ED60516d0s0
[...]

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 /* see /usr/include/sys/fs/zfs.h */
8 ziotype[0] = "null";
9 ziotype[1] = "read";
10 ziotype[2] = "write";
11 ziotype[3] = "free";
12 ziotype[4] = "claim";
13 ziotype[5] = "ioctl";
14 trace("Tracing ZIO... Output interval 5 seconds, or Ctrl-C.\n");
15 }
16
17 fbt::zio_create:return
18 /args[1]->io_type/ /* skip null */
19 {
20 @[stringof(args[1]->io_spa->spa_name),
21 ziotype[args[1]->io_type] != NULL ?

continues

Gregg.book Page 365 Wednesday, February 2, 2011 12:35 PM

366 Chapter 5 � File Systems

Example

The example has identified a mostly write workload of about 12,000 write ZIO
every five seconds:

perturbation.d

The perturbation.d script measures ZFS read/write performance during a given
perturbation. This can be used to quantify the performance impact during events
such as snapshot creation.

Script

The perturbation function name is provided as an argument, which DTrace makes
available in the script as $$1.

22 ziotype[args[1]->io_type] : "?"] = count();
23 }
24
25 profile:::tick-5sec,
26 dtrace:::END
27 {
28 printf("\n %-32s %-10s %10s\n", "POOL", "ZIO_TYPE", "CREATED");
29 printa(" %-32s %-10s %@10d\n", @);
30 trunc(@);
31 }

Script zioype.d

solaris# ziotype.d
Tracing ZIO... Output interval 5 seconds, or Ctrl-C.

 POOL ZIO_TYPE CREATED
 pool0 ioctl 28
 pool0 free 48
 pool0 read 1546
 pool0 write 12375

 POOL ZIO_TYPE CREATED
 pool0 ioctl 14
 pool0 free 24
 pool0 read 1260
 pool0 write 11929
[...]

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5
6 dtrace:::BEGIN
7 {
8 printf("Tracing ZFS perturbation by %s()... Ctrl-C to end.\n", $$1);
9 }

Gregg.book Page 366 Wednesday, February 2, 2011 12:35 PM

Scripts 367

Example

Here we measure ZFS performance during snapshot creation. The perturbation.d
script is run with the argument zfs_ioc_snapshot, a function call that encom-
passes snapshot creation (for this kernel version). While tracing, a read and write
workload was executing on ZFS, and three snapshots were created:

10
11 fbt::$$1:entry
12 {
13 self->pstart = timestamp;
14 perturbation = 1;
15 }
16
17 fbt::$$1:return
18 /self->pstart/
19 {
20 this->ptime = (timestamp - self->pstart) / 1000000;
21 @[probefunc, "perturbation duration (ms)"] = quantize(this->ptime);
22 perturbation = 0;
23 }
24
25 fbt::zfs_read:entry, fbt::zfs_write:entry
26 {
27 self->start = timestamp;
28 }
29
30 fbt::zfs_read:return, fbt::zfs_write:return
31 /self->start/
32 {
33 this->iotime = (timestamp - self->start) / 1000000;
34 @[probefunc, perturbation ? "during perturbation (ms)" :
35 "normal (ms)"] = quantize(this->iotime);
36 self->start = 0;
37 }

Script perturbation.d

solaris# perturbation.d zfs_ioc_snapshot
Tracing ZFS perturbation by zfs_ioc_snapshot()... Ctrl-C to end.
^C

 zfs_write normal (ms)
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 348381
 1 | 7
 2 | 0

 zfs_write during perturbation (ms)
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 276029
 1 | 11
 2 | 5
 4 | 0

 zfs_ioc_snapshot perturbation duration (ms)
 value ------------- Distribution ------------- count

continues

Gregg.book Page 367 Wednesday, February 2, 2011 12:35 PM

368 Chapter 5 � File Systems

The impact on performance can be seen clearly in the last distribution plots for
ZFS reads. In normal operation, the time for ZFS reads was mostly between 8 ms
and 31 ms. During snapshot create, some ZFS reads were taking 32 ms and lon-
ger, with the slowest five I/O in the 512-ms to 1023-ms range. Fortunately, these
are outliers: Most of the I/O was still in the 8-ms to 31-ms range, despite a snap-
shot being created.

Another target for perturbation.d can be the spa_sync() function.
Note that perturbation.d cannot be run without any arguments; if that is

tried, DTrace will error because the $$1 macro variable is undefined:

A function name must be provided for DTrace to trace.

 512 | 0
 1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2
 2048 |@@@@@@@@@@@@@ 1
 4096 | 0

 zfs_read during perturbation (ms)
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@ 5
 1 | 0
 2 | 0
 4 | 3
 8 |@@@@@@@@@@@@ 77
 16 |@@@@@@@@@@@@@@@@@@ 117
 32 |@@@@ 26
 64 |@@ 16
 128 |@ 8
 256 | 2
 512 |@ 5
 1024 | 0

 zfs_read normal (ms)
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@ 97
 1 | 0
 2 | 0
 4 |@ 29
 8 |@@@@@@@@@@@@@@@@@@@@@@@@ 563
 16 |@@@@@@@@@@ 241
 32 | 10
 64 | 1
 128 | 0

solaris# perturbation.d
dtrace: failed to compile script perturbation.d: line 11: invalid probe description "f
bt::$$1:entry": Undefined macro variable in probe description

Gregg.book Page 368 Wednesday, February 2, 2011 12:35 PM

Scripts 369

spasync.d

The spa_sync() function flushes a ZFS transaction group (TXG) to disk, which
consists of dirty data written since the last spa_sync().

Script

This script has a long history: Earlier versions were created by the ZFS engineer-
ing team and can be found in blog entries.7 Here it has been rewritten to keep it
short and to print only spa_sync() events that were longer than one millisec-
ond—tunable on line 5:

7. See http://blogs.sun.com/roch/entry/128k_suffice by Roch Bourbonnais, and see
www.cuddletech.com/blog/pivot/entry.php?id=1015 by Ben Rockwood.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 inline int MIN_MS = 1;
6
7 dtrace:::BEGIN
8 {
9 printf("Tracing ZFS spa_sync() slower than %d ms...\n", MIN_MS);
10 @bytes = sum(0);
11 }
12
13 fbt::spa_sync:entry
14 /!self->start/
15 {
16 in_spa_sync = 1;
17 self->start = timestamp;
18 self->spa = args[0];
19 }
20
21 io:::start
22 /in_spa_sync/
23 {
24 @io = count();
25 @bytes = sum(args[0]->b_bcount);
26 }
27
28 fbt::spa_sync:return
29 /self->start && (this->ms = (timestamp - self->start) / 1000000) > MIN_MS/
30 {
31 normalize(@bytes, 1048576);
32 printf("%-20Y %-10s %6d ms, ", walltimestamp,
33 stringof(self->spa->spa_name), this->ms);
34 printa("%@d MB %@d I/O\n", @bytes, @io);
35 }
36
37 fbt::spa_sync:return
38 {
39 self->start = 0; self->spa = 0; in_spa_sync = 0;
40 clear(@bytes); clear(@io);
41 }

Script spasync.d

Gregg.book Page 369 Wednesday, February 2, 2011 12:35 PM

370 Chapter 5 � File Systems

Example

HFS+ Scripts

HFS+ is the Hierarchal File System plus from Apple, described in Technical Note
TN11508 and Mac OS X Internals.

Some of the functions in the HFS code are declared static, so their symbol infor-
mation is not available for DTrace to probe. This includes hfs_vnop_open() and
hfs_vnop_close(), which are missing from the previous list. Despite this, there
are still enough visible functions from HFS+ for DTrace scripting: the functions
that call HFS and the functions that HFS calls.

This section is intended for those wanting to dig deeper into file system inter-
nals, beyond what is possible at the syscall and VFS layers. A basic understanding
of HFS+ internals is assumed, which can be studied in Chapter 12 of Mac OS X
Internals.

solaris# spa_sync.d
Tracing ZFS spa_sync() slower than 1 ms...
2010 Jun 17 01:46:18 pool-0 2679 ms, 31 MB 2702 I/O
2010 Jun 17 01:46:18 pool-0 269 ms, 0 MB 0 I/O
2010 Jun 17 01:46:18 pool-0 108 ms, 0 MB 0 I/O
2010 Jun 17 01:46:18 system 597 ms, 0 MB 0 I/O
2010 Jun 17 01:46:18 pool-0 184 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 pool-0 154 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 system 277 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 system 34 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 pool-0 226 ms, 27 MB 1668 I/O
2010 Jun 17 01:46:19 system 262 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 system 174 ms, 0 MB 0 I/O
[...]

macosx# dtrace -ln 'fbt::hfs_*:entry'
 ID PROVIDER MODULE FUNCTION NAME
 9396 fbt mach_kernel hfs_addconverter entry
 9398 fbt mach_kernel hfs_bmap entry
[...]
 9470 fbt mach_kernel hfs_vnop_ioctl entry
 9472 fbt mach_kernel hfs_vnop_makenamedstream entry
 9474 fbt mach_kernel hfs_vnop_offtoblk entry
 9476 fbt mach_kernel hfs_vnop_pagein entry
 9478 fbt mach_kernel hfs_vnop_pageout entry
 9480 fbt mach_kernel hfs_vnop_read entry
 9482 fbt mach_kernel hfs_vnop_removenamedstream entry
 9484 fbt mach_kernel hfs_vnop_select entry
 9486 fbt mach_kernel hfs_vnop_strategy entry
 9488 fbt mach_kernel hfs_vnop_write entry

8. See http://developer.apple.com/mac/library/technotes/tn/tn1150.html.

Gregg.book Page 370 Wednesday, February 2, 2011 12:35 PM

Scripts 371

Since there is currently no stable HFS+ provider, the fbt9 provider is used. fbt is
an unstable interface: It exports kernel functions and data structures that may
change from release to release. The following scripts were based on Mac OS X ver-
sion 10.6 and may not work on other releases without changes. Even if these
scripts no longer execute, they can still be treated as examples of D programming
and for the sort of data that DTrace can make available for HFS+ analysis.

hfssnoop.d

This script uses the fbt provider to trace HFS+ calls from within the kernel (this
will need tweaks to work on future Mac OS X kernels). It provides a raw dump of
what HFS+ is being requested to do, which can be useful for identifying load
issues. Since the output is verbose and inclusive, it is suitable for postprocessing,
such as filtering for events of interest. The functionality and output is similar to
macvfssnoop.d shown earlier.

Script

This script currently only traces reads and writes. Other available hfs_vnop_*
functions can be added, and those not visible (such as open) can be traced from an
upper layer, such as VFS (via VNOP_*, and filtering on HFS calls only).

9. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-12s %6s %6s %-12.12s %-14s %-4s %s\n", "TIME(ms)", "UID",
9 "PID", "PROCESS", "CALL", "KB", "FILE");
10 }
11
12 /* see bsd/hfs/hfs_vnops.c */
13
14 fbt::hfs_vnop_read:entry
15 {
16 this->read = (struct vnop_read_args *)arg0;
17 self->path = this->read->a_vp->v_name;
18 self->kb = this->read->a_uio->uio_resid_64 / 1024;
19 }
20
21 fbt::hfs_vnop_write:entry
22 {
23 this->write = (struct vnop_write_args *)arg0;
24 self->path = this->write->a_vp->v_name;
25 self->kb = this->write->a_uio->uio_resid_64 / 1024;
26 }

continues

Gregg.book Page 371 Wednesday, February 2, 2011 12:35 PM

372 Chapter 5 � File Systems

Example

Here the hfssnoop.d script has traced vim(1) opening itself in another window
to edit it:

All the files read and written while vim was loading have been traced. The final
lines show a swap file being written and vim reloading the hfssnoop.d file. The
kilobyte sizes shown are those requested; many of these reads will have returned a
smaller size in bytes (which can be shown, if desired, with more DTrace).

hfsslower.d

This is a variation of the hfssnoop.d script, intended for the analysis of perfor-
mance issues. hfsslower.d shows the time for read and write I/O in millisec-
onds. A minimum number of milliseconds can be provided as an argument when
running the script, which causes it to print only that I/O equal to or slower than
the provided milliseconds.

27
28 fbt::hfs_vnop_read:entry, fbt::hfs_vnop_write:entry
29 {
30 printf("%-12d %6d %6d %-12.12s %-14s %-4d %s\n", timestamp / 1000000,
31 uid, pid, execname, probefunc, self->kb,
32 self->path != NULL ? stringof(self->path) : "<null>");
33 self->path = 0; self->kb = 0;
34 }

Script hfssnoop.d

macosx# hfssnoop.d
TIME(ms) UID PID PROCESS CALL KB FILE
1311625280 501 67349 vim hfs_vnop_read 4 LC_COLLATE
1311625280 501 67349 vim hfs_vnop_read 0 LC_CTYPE/..namedfork/rsrc
1311625280 501 67349 vim hfs_vnop_read 4 LC_CTYPE
[...]
1311625288 501 67349 vim hfs_vnop_read 8 hfssnoop.d
1311625280 501 67349 vim hfs_vnop_read 4 LC_CTYPE
1311625280 501 67349 vim hfs_vnop_read 4 LC_CTYPE
1311625280 501 67349 vim hfs_vnop_read 4 LC_CTYPE
1311625280 501 67349 vim hfs_vnop_read 54 LC_CTYPE
1311625280 501 67349 vim hfs_vnop_read 0 LC_MONETARY
1311625280 501 67349 vim hfs_vnop_read 0 LC_NUMERIC
1311625280 501 67349 vim hfs_vnop_read 0 LC_TIME
1311625280 501 67349 vim hfs_vnop_read 0 LC_MESSAGES
1311625281 501 67349 vim hfs_vnop_read 4 xterm-color
1311625282 501 67349 vim hfs_vnop_read 4 vimrc
1311625282 501 67349 vim hfs_vnop_read 4 vimrc
1311625284 501 67349 vim hfs_vnop_read 4 netrwPlugin.vim
1311625284 501 67349 vim hfs_vnop_read 4 netrwPlugin.vim
[...]
1311625285 501 67349 vim hfs_vnop_read 4 zipPlugin.vim
1311625286 501 67349 vim hfs_vnop_read 4 zipPlugin.vim
1311625288 501 67349 vim hfs_vnop_write 4 .hfssnoop.d.swp
1311625288 501 67349 vim hfs_vnop_read 64 hfssnoop.d

Gregg.book Page 372 Wednesday, February 2, 2011 12:35 PM

Scripts 373

Script

The defaultargs pragma is used on line 4 so that an optional argument can be
provided of the minimum I/O time to print. If no argument is provided, the mini-
mum time is zero, since $1 will be 0 on line 11.

Example

Here hfsslower.d is run with the argument 1 so that it prints out only the I/O
that took one millisecond and longer:

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option defaultargs
5 #pragma D option switchrate=10hz
6
7 dtrace:::BEGIN
8 {
9 printf("%-20s %-16s %1s %4s %6s %s\n", "TIME", "PROCESS",
10 "D", "KB", "ms", "FILE");
11 min_ns = $1 * 1000000;
12 }
13
14 /* see bsd/hfs/hfs_vnops.c */
15
16 fbt::hfs_vnop_read:entry
17 {
18 this->read = (struct vnop_read_args *)arg0;
19 self->path = this->read->a_vp->v_name;
20 self->kb = this->read->a_uio->uio_resid_64 / 1024;
21 self->start = timestamp;
22 }
23
24 fbt::hfs_vnop_write:entry
25 {
26 this->write = (struct vnop_write_args *)arg0;
27 self->path = this->write->a_vp->v_name;
28 self->kb = this->write->a_uio->uio_resid_64 / 1024;
29 self->start = timestamp;
30 }
31
32 fbt::hfs_vnop_read:return, fbt::hfs_vnop_write:return
33 /self->start && (timestamp - self->start) >= min_ns/
34 {
35 this->iotime = (timestamp - self->start) / 1000000;
36 this->dir = probefunc == "hfs_vnop_read" ? "R" : "W";
37 printf("%-20Y %-16s %1s %4d %6d %s\n", walltimestamp,
38 execname, this->dir, self->kb, this->iotime,
39 self->path != NULL ? stringof(self->path) : "<null>");
40 }
41
42 fbt::hfs_vnop_read:return, fbt::hfs_vnop_write:return
43 {
44 self->path = 0; self->kb = 0; self->start = 0;
45 }

Script hfslower.d

Gregg.book Page 373 Wednesday, February 2, 2011 12:35 PM

374 Chapter 5 � File Systems

While tracing, there was many fast (less than 1 ms) I/Os to HFS that were fil-
tered from the output.

hfsfileread.d

This script shows both logical (VFS) and physical (disk) reads to HFS+ files, show-
ing data requests from the in-memory cache vs. disk.

Script

This script traces the size of read requests. The size of the returned data may be
smaller than was requested or zero if the read failed; the returned size could also
be traced if desired.

macosx# hfsslower.d 1
TIME PROCESS D KB ms FILE
2010 Jun 23 00:44:05 mdworker32 R 0 21 sandbox-cache.db
2010 Jun 23 00:44:05 mdworker32 R 0 19 AdiumSpotlightImporter
2010 Jun 23 00:44:05 mdworker32 R 16 18 schema.xml
2010 Jun 23 00:44:05 soffice W 1 2 sve4a.tmp
2010 Jun 23 00:44:05 soffice W 1 3 sve4a.tmp
2010 Jun 23 00:44:05 soffice R 31 2 sve4a.tmp
2010 Jun 23 00:44:05 fontd R 0 22 Silom.ttf/..namedfork/rsrc
^C

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 trace("Tracing HFS+ file reads... Hit Ctrl-C to end.\n");
8 }
9
10 fbt::hfs_vnop_read:entry
11 {
12 this->read = (struct vnop_read_args *)arg0;
13 this->path = this->read->a_vp->v_name;
14 this->bytes = this->read->a_uio->uio_resid_64;
15 @r[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
16 }
17
18 fbt::hfs_vnop_strategy:entry
19 /((struct vnop_strategy_args *)arg0)->a_bp->b_flags & B_READ/
20 {
21 this->strategy = (struct vnop_strategy_args *)arg0;
22 this->path = this->strategy->a_bp->b_vp->v_name;
23 this->bytes = this->strategy->a_bp->b_bcount;
24 @s[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
25 }
26
27 dtrace:::END
28 {
29 printf(" %-56s %10s %10s\n", "FILE", "READ(B)", "DISK(B)");
30 printa(" %-56s %@10d %@10d\n", @r, @s);
31 }

Script hfsfileread.d

Gregg.book Page 374 Wednesday, February 2, 2011 12:35 PM

Scripts 375

Example

While tracing, there were about 240MB of requested reads to the ss7000_
b00.vmdk file, about 230MB of which were from disk, meaning that this file is
mostly uncached. The 10m_file was completely read; however, 0 bytes were read
from disk, meaning that it was entirely cached.

PCFS Scripts

pcfs is an Oracle Solaris driver for the Microsoft FAT16 and FAT32 file systems.
Though it was once popular for diskettes, today FAT file systems are more likely to
be found on USB storage devices.

Since there is currently no stable PCFS provider, the fbt provider is used here.
fbt instruments a particular operating system and version, so this script may
therefore require modifications to match the software version you are using.

pcfsrw.d

This script shows read(), write(), and readdir() calls to pcfs, with details
including file path name and latency for the I/O in milliseconds.

Script

This script traces pcfs kernel functions; if the pcfs module is not loaded (no pcfs
in use), the script will not execute because the functions will not yet be present in
the kernel for DTrace to find and probe. If desired, the -Z option can be added to
line 1, which would allow the script to be executed before pcfs was loaded (as is
done in cdrom.d).

macosx# hfsfileread.d
Tracing HFS+ file reads... Hit Ctrl-C to end.
^C
 FILE READ(B) DISK(B)
 swapfile1 0 4096
 dyld/..namedfork/rsrc 50 0
 dyld 4636 0
 cksum 12288 0
 template.odt 141312 143360
 10m_file 10502144 0
 ss7000_b00.vmdk 246251520 230264832

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5

continues

Gregg.book Page 375 Wednesday, February 2, 2011 12:35 PM

376 Chapter 5 � File Systems

This script prints basic information. To retrieve pcfs-specific information such
as the FAT type, the struct pcfs can be retrieved from the vnode in the same way
as at the start of the pcfs_read() function (see the source, including VFSTOPCFS).
We’ve resisted including an example of this, since struct pcfs has changed
between Solaris versions, and it would make this script much more fragile; add the
appropriate code for your Solaris version.

HSFS Scripts

HSFS is the High Sierra File System (ISO 9660) driver on Oracle Solaris, used by
CD-ROMs. In cases of unusual performance or errors such as failing to mount,
DTrace can be used to examine the internal operation of the device driver using
the fbt provider. On recent versions of Oracle Solaris, the kernel engineers have
also placed sdt provider probes in hsfs for convenience:

6 dtrace:::BEGIN
7 {
8 printf("%-20s %1s %4s %6s %3s %s\n", "TIME", "D", "KB",
9 "ms", "ERR", "PATH");
10 }
11
12 fbt::pcfs_read:entry, fbt::pcfs_write:entry, fbt::pcfs_readdir:entry
13 {
14 self->path = args[0]->v_path;
15 self->kb = args[1]->uio_resid / 1024;
16 self->start = timestamp;
17 }
18
19 fbt::pcfs_read:return, fbt::pcfs_write:return, fbt::pcfs_readdir:return
20 /self->start/
21 {
22 this->iotime = (timestamp - self->start) / 1000000;
23 this->dir = probefunc == "pcfs_read" ? "R" : "W";
24 printf("%-20Y %1s %4d %6d %3d %s\n", walltimestamp,
25 this->dir, self->kb, this->iotime, arg1,
26 self->path != NULL ? stringof(self->path) : "<null>");
27 self->start = 0; self->path = 0; self->kb = 0;
28 }

Script pcfsrw.d

solaris# dtrace -ln 'sdt:hsfs::'
 ID PROVIDER MODULE FUNCTION NAME
83019 sdt hsfs hsched_enqueue_io hsfs_io_enqueued
83020 sdt hsfs hsched_invoke_strategy hsfs_coalesced_io_
done
83021 sdt hsfs hsched_invoke_strategy hsfs_coalesced_io_
start
83022 sdt hsfs hsched_invoke_strategy hsfs_io_dequeued
83023 sdt hsfs hsched_invoke_strategy hsfs_deadline_expiry
83024 sdt hsfs hsfs_getpage hsfs_compute_ra
83025 sdt hsfs hsfs_getapage hsfs_io_done
83026 sdt hsfs hsfs_getapage hsfs_io_wait

Gregg.book Page 376 Wednesday, February 2, 2011 12:35 PM

Scripts 377

The *_ra probes shown previously refer to read-ahead, a feature of the hsfs
driver to request data ahead of time to prewarm the cache and improve perfor-
mance (similar to UFS read-ahead).

Since there is currently no HSFS provider, the options are to use the fbt pro-
vider to examine driver internals; use the sdt provider (if present), because it has
probe locations that were deliberately chosen for tracing with DTrace; or use the
stable io provider by filtering on the CD-ROM device. For robust scripts, the best
option is the io provider; the others instrument a particular operating system and
version and may require modifications to match the software version you are
using.

cdrom.d

The cdrom.d script traces the hs_mountfs() call via the fbt provider, showing
hsfs mounts along with the mount path, error status, and mount time.

Script

The -Z option is used on line 1 because the hsfs driver may not yet be loaded, and
the functions to probe may not yet be in memory. Once a CD-ROM is inserted, the
hsfs driver is automounted.

83027 sdt hsfs hsfs_getpage_ra hsfs_readahead
83028 sdt hsfs hsfs_ra_task hsfs_io_done_ra
83029 sdt hsfs hsfs_ra_task hsfs_io_wait_ra
83030 sdt hsfs hs_mountfs rootvp-failed
83031 sdt hsfs hs_mountfs mount-done
[...]

1 #!/usr/sbin/dtrace -Zs
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 trace("Tracing hsfs (cdrom) mountfs...\n");
9 }
10
11 fbt::hs_mountfs:entry
12 {
13 printf("%Y: Mounting %s... ", walltimestamp, stringof(arg2));
14 self->start = timestamp;
15 }
16
17 fbt::hs_mountfs:return
18 /self->start/
19 {
20 this->time = (timestamp - self->start) / 1000000;
21 printf("result: %d%s, time: %d ms\n", arg1,
22 arg1 ? "" : " (SUCCESS)", this->time);

continues

Gregg.book Page 377 Wednesday, February 2, 2011 12:35 PM

378 Chapter 5 � File Systems

Example

Here’s a CD-ROM with the label “Photos001” inserted:

Several seconds passed between CD-ROM insertion and the mount initiating, as
shown by cdrom.d. This time can be understood with more DTrace.

For example, the operation of volume management and hardware daemons can
be traced (vold(1M), rmvolmgr(1M), hald(1M), …). Try starting this investiga-
tion with process execution:

The same CD-ROM was reinserted, and the HAL processes that executed to
mount the CD-ROM can now be seen. DTrace can be used to further examine
whether these events were triggered by a hardware interrupt (media insertion) or
by polling.

UDFS Scripts

UDFS is the Universal Disk Format file system driver on Oracle Solaris, used by
DVDs. This driver can be examined using DTrace in a similar way to HSFS.

dvd.d

Since the source code functions between hsfs and udfs are similar, only three lines
need to be changed to cdrom.d for it to trace DVDs instead:

23 self->start = 0;
24 }

Script cdrom.d

solaris# cdrom.d
Tracing hsfs (cdrom) mountfs...
2010 Jun 20 23:40:59: Mounting /media/Photos001... result: 0 (SUCCESS), time: 157 ms

solaris# dtrace -qn 'proc:::exec-success { printf("%Y %s\n", walltimestamp,
curpsinfo->pr_psargs); }'
2010 Jun 21 23:51:48 /usr/lib/hal/hald-probe-storage --only-check-for-media
2010 Jun 21 23:51:48 /usr/lib/hal/hald-probe-volume
2010 Jun 21 23:51:50 /usr/lib/hal/hal-storage-mount
2010 Jun 21 23:51:50 /sbin/mount -F hsfs -o nosuid,ro /dev/dsk/c0t0d0s2 /media/Photos0
01
2010 Jun 21 23:51:50 mount -o nosuid,ro /dev/dsk/c0t0d0s2 /media/Photos001
^C

Gregg.book Page 378 Wednesday, February 2, 2011 12:35 PM

Scripts 379

The output printed for mounts is the same as cdrom.d.

NFS Client Scripts

Chapter 7, Network Protocols, covers tracing from the NFS server. The NFS client
can also be traced, which we will cover here in this chapter because the NFS
mount from a client perspective behaves like any other file system. Because of this,
physical (network device) I/O to serve that file system can be traced by the io pro-
vider (currently Oracle Solaris only), just like tracing physical (storage device) I/O
for a local file system.

Physical I/O is not the only I/O we can use to analyze NFS client performance.
Logical I/O to the NFS client driver is also interesting and may be served without
performing network I/O to the NFS server—for example, when returning data
from a local NFS client cache.

For kernel-based NFS drivers, all internals can be examined using the fbt pro-
vider. fbt instruments a particular operating system and version, so these scripts
may therefore require modifications to match the software version you are using.

nfswizard.d

This script from the DTraceToolkit demonstrates using the io provider on Oracle
Solaris to trace and summarize NFS client I/O. It traces back-end I/O only: those
that trigger NFS network I/O. More I/O may be performed to the NFS share from
the client, which is returned from the client cache only.

Script

This is a neat example of how you can produce a sophisticated report from basic D
syntax:

 8 trace("Tracing udfs (dvd) mountfs...\n");
 11 fbt::ud_mountfs:entry
 17 fbt::ud_mountfs:return

1 #!/usr/sbin/dtrace -s
[...]
35 #pragma D option quiet
36
37 dtrace:::BEGIN
38 {
39 printf("Tracing... Hit Ctrl-C to end.\n");
40 scriptstart = walltimestamp;
41 timestart = timestamp;
42 }

continues

Gregg.book Page 379 Wednesday, February 2, 2011 12:35 PM

380 Chapter 5 � File Systems

43
44 io:nfs::start
45 {
46 /* tally file sizes */
47 @file[args[2]->fi_pathname] = sum(args[0]->b_bcount);
48
49 /* time response */
50 start[args[0]->b_addr] = timestamp;
51
52 /* overall stats */
53 @rbytes = sum(args[0]->b_flags & B_READ ? args[0]->b_bcount : 0);
54 @wbytes = sum(args[0]->b_flags & B_READ ? 0 : args[0]->b_bcount);
55 @events = count();
56 }
57
58 io:nfs::done
59 /start[args[0]->b_addr]/
60 {
61 /* calculate and save response time stats */
62 this->elapsed = timestamp - start[args[0]->b_addr];
63 @maxtime = max(this->elapsed);
64 @avgtime = avg(this->elapsed);
65 @qnztime = quantize(this->elapsed / 1000);
66 }
67
68 dtrace:::END
69 {
70 /* print header */
71 printf("NFS Client Wizard. %Y -> %Y\n\n", scriptstart, walltimestamp);
72
73 /* print read/write stats */
74 printa("Read: %@d bytes ", @rbytes);
75 normalize(@rbytes, 1000000);
76 printa("(%@d Mb)\n", @rbytes);
77 printa("Write: %@d bytes ", @wbytes);
78 normalize(@wbytes, 1000000);
79 printa("(%@d Mb)\n\n", @wbytes);
80
81 /* print throughput stats */
82 denormalize(@rbytes);
83 normalize(@rbytes, (timestamp - timestart) / 1000000);
84 printa("Read: %@d Kb/sec\n", @rbytes);
85 denormalize(@wbytes);
86 normalize(@wbytes, (timestamp - timestart) / 1000000);
87 printa("Write: %@d Kb/sec\n\n", @wbytes);
88
89 /* print time stats */
90 printa("NFS I/O events: %@d\n", @events);
91 normalize(@avgtime, 1000000);
92 printa("Avg response time: %@d ms\n", @avgtime);
93 normalize(@maxtime, 1000000);
94 printa("Max response time: %@d ms\n\n", @maxtime);
95 printa("Response times (us):%@d\n", @qnztime);
96
97 /* print file stats */
98 printf("Top 25 files accessed (bytes):\n");
99 printf(" %-64s %s\n", "PATHNAME", "BYTES");
100 trunc(@file, 25);
101 printa(" %-64s %@d\n", @file);
102 }

Script nfswizard.d

Gregg.book Page 380 Wednesday, February 2, 2011 12:35 PM

Scripts 381

The io provider is used to trace client NFS I/O only, by including nfs in the
probe module field. This is technically an unstable field of the probe name,
although it’s also unlikely to be renamed any time soon. An alternate approach
would be to trace all io probes and use a predicate to match when args[1]->dev_
name was equal to nfs. See the io provider description in Chapter 4 for more dis-
cussion about matching this field for io probes.

Example

Here nfswizard.d was run for a few seconds while a tar(1) command archived
files from an NFSv4 share:

The output includes a distribution plot of response times, which includes net-
work latency and NFS server latency—which may return from cache (fast) or disk
(slow), depending on the I/O.

client# nfswizard.d
Tracing... Hit Ctrl-C to end.
^C
NFS Client Wizard. 2010 Jun 22 05:32:23 -> 2010 Jun 22 05:32:26

Read: 56991744 bytes (56 Mb)
Write: 0 bytes (0 Mb)

Read: 18630 Kb/sec
Write: 0 Kb/sec

NFS I/O events: 1747
Avg response time: 2 ms
Max response time: 59 ms

Response times (us):
 value ------------- Distribution ------------- count
 128 | 0
 256 | 1
 512 |@@@@@ 221
 1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1405
 2048 |@ 37
 4096 | 21
 8192 |@ 31
 16384 | 19
 32768 | 12
 65536 | 0

Top 25 files accessed (bytes):
 PATHNAME BYTES
 /net/mars/export/home/brendan/Downloads/ping.tar 40960
 /net/mars/export/home/brendan/Downloads/pkg_get.pkg 69632
 /net/mars/export/home/brendan/Downloads/procps-3.2.8.tar.gz 286720
 /net/mars/export/home/brendan/Downloads/psh-i386-40 2260992
 /net/mars/export/home/brendan/Downloads/proftpd-1.3.2c.tar.gz 3174400
 /net/mars/export/home/brendan/Downloads/perlsrc-5.8.8stable.tar 51159040

Gregg.book Page 381 Wednesday, February 2, 2011 12:35 PM

382 Chapter 5 � File Systems

nfs3sizes.d

This script shows both logical (local) and physical (network) reads by an Oracle
Solaris NFSv3 client, showing requested read size distributions and total bytes. It
can be used as a starting point to investigate.

� Client caching: The nfs client driver performs caching (unless it is directed
not to, such as with the forcedirectio mount option), meaning that many
of the logical reads may return from the client’s DRAM without performing a
(slower) NFS read to the server.

� Read size: The nfs client driver read size may differ from the application
read size on NFS files (this can be tuned to a degree using the rsize mount
option).

Script

The nfs3_read() function is the VFS interface into the NFSv3 client driver,
which is traced to show requested NFS reads. The nfs3_getpage() and nfs3_
directio_read() functions perform NFSv3 network I/O.

This script traces the size of read requests. The size of the returned data may be
smaller than was requested, or zero if the read failed; the script could be enhanced
to trace the returned data size instead if desired.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 trace("Tracing NFSv3 client file reads... Hit Ctrl-C to end.\n");
8 }
9
10 fbt::nfs3_read:entry
11 {
12 @q["NFS read size (bytes)"] = quantize(args[1]->uio_resid);
13 @s["NFS read (bytes)"] = sum(args[1]->uio_resid);
14 }
15
16 fbt::nfs3_directio_read:entry
17 {
18 @q["NFS network read size (bytes)"] = quantize(args[1]->uio_resid);
19 @s["NFS network read (bytes)"] = sum(args[1]->uio_resid);
20 }
21
22 fbt::nfs3_getpage:entry
23 {
24 @q["NFS network read size (bytes)"] = quantize(arg2);
25 @s["NFS network read (bytes)"] = sum(arg2);
26 }

Script nfs3sizes.d

Gregg.book Page 382 Wednesday, February 2, 2011 12:35 PM

Scripts 383

Example

An application performed random 1KB reads on a file shared over NFSv3:

In this example, there were many more logical NFS reads (147,084) than physi-
cal network reads (2,566) to the NFS server, suggesting that the NFS client cache
is serving most of these logical reads (high client cache hit rate). The difference
between logical and physical read size distribution can also be compared, which
shows that the nfs client driver is requesting 4+KB reads to satisfy 1+KB requests.
Both of these behaviors can be investigated further by DTracing more internals
from the nfs client driver.

nfs3fileread.d

This script shows both logical and physical (network) reads by an Oracle Solaris
NFSv3 client, showing the requested and network read bytes by filename. This is a
variation of the nfs3sizes.d script explained previously.

Script

client# nfssizes.d
Tracing NFSv3 client file reads... Hit Ctrl-C to end.
^C

 NFS network read size (bytes)
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@ 2564
 8192 | 2
 16384 | 0

 NFS read size (bytes)
 value ------------- Distribution ------------- count
 128 | 0
 256 | 1
 512 | 0
 1024 |@@ 147083
 2048 | 0

 NFS network read (bytes) 10518528
 NFS read (bytes) 150613423

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 trace("Tracing NFSv3 client file reads... Hit Ctrl-C to end.\n");
8 }
9

continues

Gregg.book Page 383 Wednesday, February 2, 2011 12:35 PM

384 Chapter 5 � File Systems

Example

All of the files read were 10MB in size and were read sequentially.

The difference between the READ (requested read bytes) and NET (network read
bytes) columns are because of the following.

� 10m_d: About 4MB was read from this file, which was partially cached.

� 10m_a: This file was entirely cached in the client’s DRAM and was read
through once.

� 10m_c: This file was entirely uncached and was read through once from the
NFS server.

� 10m_b: This file was entirely uncached and was read through multiple
times—the first reading it from the NFS server.

10 fbt::nfs3_read:entry
11 {
12 this->path = args[0]->v_path;
13 this->bytes = args[1]->uio_resid;
14 @r[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
15 }
16
17 fbt::nfs3_directio_read:entry
18 {
19 this->path = args[0]->v_path;
20 this->bytes = args[1]->uio_resid;
21 @n[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
22 }
23
24 fbt::nfs3_getpage:entry
25 {
26 this->path = args[0]->v_path;
27 this->bytes = arg2;
28 @n[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
29 }
30
31 dtrace:::END
32 {
33 printf(" %-56s %10s %10s\n", "FILE", "READ(B)", "NET(B)");
34 printa(" %-56s %@10d %@10d\n", @r, @n);
35 }

Script nfs3fileread.d

client# nfs3fileread.d
Tracing NFSv3 client file reads... Hit Ctrl-C to end.
^C
 FILE READ(B) NET(B)
 /saury-data-0/10m_d 4182016 1265216
 /saury-data-0/10m_a 10493952 0
 /saury-data-0/10m_c 10493952 10485760
 /saury-data-0/10m_b 43753984 10485760

Gregg.book Page 384 Wednesday, February 2, 2011 12:35 PM

Scripts 385

TMPFS Scripts

tmpfs is a file system type for temporary files that attempts to reside in memory
for fast access. It’s used by Oracle Solaris for /tmp and other directories. The per-
formance of /tmp can become a factor when tmpfs contains more data than can fit
in memory, and it begins paging to the swap devices.

tmpfs activity can be traced at other levels such as the syscall interface and
VFS. The scripts in this section demonstrate examining activity from the kernel
tmpfs driver, using the fbt provider. fbt instruments a particular operating system
and version, so these scripts may therefore require modifications to match the soft-
ware version you are using. You shouldn’t have too much difficulty rewriting them
to trace at syscall or VFS instead if desired and to match only activity to /tmp or
tmpfs.

tmpusers.d

This script shows who is using tmpfs on Oracle Solaris by tracing the user, pro-
cess, and filename for tmpfs open calls.

Script

Example

Here’s an example:

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 printf("%6s %6s %-16s %s\n", "UID", "PID", "PROCESS", "FILE");
8 }
9
10 fbt::tmp_open:entry
11 {
12 printf("%6d %6d %-16s %s\n", uid, pid, execname,
13 stringof((*args[0])->v_path));
14 }

Script tmpusers.d

solaris# tmpusers.d
 UID PID PROCESS FILE
 0 47 svc.configd /etc/svc/volatile/svc_nonpersist.db-journal
 0 47 svc.configd /etc/svc/volatile
 0 47 svc.configd /etc/svc/volatile/sqlite_UokyAO1gmAy2L8H
 0 47 svc.configd /etc/svc/volatile/svc_nonpersist.db-journal

continues

Gregg.book Page 385 Wednesday, February 2, 2011 12:35 PM

386 Chapter 5 � File Systems

tmpgetpage.d

This script shows which processes are actively reading from tmpfs files by tracing
the tmpfs getpage routine, which is the interface to read pages of data. The time
spent in getpage is shown as a distribution plot.

Script

Example

Here the cksum(1) command was reading a file that was partially in memory. The
time for getpage shows two features: fast I/O between 0 us and 4 us and slower I/O
mostly between 128 us and 1024 us. These are likely to correspond to reads from
DRAM or from disk (swap device). If desired, the script could be enhanced to trace
disk I/O calls so that a separate distribution plot could be printed for DRAM reads
and disk reads.

 0 47 svc.configd /etc/svc/volatile
 0 47 svc.configd /etc/svc/volatile/sqlite_Ws9dGwSvZRtutXk
 0 47 svc.configd /etc/svc/volatile/svc_nonpersist.db-journal
 0 47 svc.configd /etc/svc/volatile/sqlite_zGn0Ab6VUI6IFpr
[...]
 0 1367 sshd /etc/svc/volatile/etc/ssh/sshd_config
 0 1368 sshd /var/run/sshd.pid

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 trace("Tracing tmpfs disk read time (us):\n");
8 }
9
10 fbt::tmp_getpage:entry
11 {
12 self->vp = args[0];
13 self->start = timestamp;
14 }
15
16 fbt::tmp_getpage:return
17 /self->start/
18 {
19 @[execname, stringof(self->vp->v_path)] =
20 quantize((timestamp - self->start) / 1000);
21 self->vp = 0;
22 self->start = 0;
23 }

Script tmpgetpage.d

Gregg.book Page 386 Wednesday, February 2, 2011 12:35 PM

Case Study 387

Case Study

Here we present the application of the DTrace commands, scripts, and methods
discussed in this chapter.

ZFS 8KB Mirror Reads

This case study looks at a ZFS workload doing 8KB reads from a mirrored zpool.

� System:

– 7410: 4 AMD Barcelona CPUs, 128GB DRAM, one 10Gb Ethernet port

– 1 JBOD: 22 1TB disks, 2 Logzillas, mirroring

– ZFS: 10 shares, 8KB record size

� Workload:

– NFSv3 streaming reads, 1MB I/O size

– 100 threads total, across 10 clients (10 threads per client)

– 200+GB working set, mostly uncached

� Clients:

– 10 blades

solaris# tmpgetpage.d
Tracing tmpfs disk read time (us):
^C

 cksum /tmp/big0

 value ------------- Distribution ------------- count
 0 | 0
 1 |@@@@@@@@@@@@@@@@@@@@ 9876
 2 |@@@@@@@@@@ 5114
 4 | 29
 8 | 48
 16 |@ 354
 32 | 120
 64 | 19
 128 |@ 317
 256 |@@@@@@@ 3223
 512 |@ 444
 1024 | 71
 2048 | 31
 4096 | 37
 8192 | 33
 16384 | 23
 32768 | 4
 65536 | 2
 131072 | 0

Gregg.book Page 387 Wednesday, February 2, 2011 12:35 PM

388 Chapter 5 � File Systems

Total throughput for this workload is 338MB/sec. The 10Gb Ethernet port has a
theoretical maximum throughput of 1.16GB/sec, so what is holding us back? Disk
I/O latency? CPU?

Basic Observability

Operating system tools commonly used to check system performance include
vmstat(1M), mpstat(1M), and iostat(1M). Running these

vmstat(1M) shows high sys time (62 percent).

mpstat(1M) shows CPU 2 is hot at 97 percent sys, and we have frequent cross
calls (xcals), especially on CPU 2.

vmstat 5
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr s6 s7 s1 s1 in sy cs us sy id
 0 0 0 129657948 126091808 13 13 0 0 0 0 2 4 4 19 3 3088 2223 990 0 1 99
 8 0 0 7527032 3974064 0 42 0 0 0 0 0 2 1 0 303 570205 2763 100141 0 62 37
 7 0 0 7527380 3974576 0 7 0 0 0 0 0 0 0 0 309 561541 2613 99200 0 62 38
 6 0 0 7526472 3973564 0 4 0 0 0 0 0 0 0 0 321 565225 2599 101515 0 62 37
 7 0 0 7522756 3970040 11 85 0 0 0 0 0 7 7 0 324 573568 2656 99129 0 63 37
[...]

mpstat 5
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
[...summary since boot truncated...]
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 21242 34223 205 5482 2 1669 7249 0 28 0 58 0 42
 1 0 0 27446 30002 113 4574 2 1374 7029 0 1133 1 53 0 46
 2 0 0 198422 31967 2951 20938 3 213 2655 0 27 0 97 0 3
 4 0 0 16970 39203 3082 3866 9 829 6695 0 55 0 59 0 40
 5 4 0 24698 33998 10 5492 3 1066 7492 0 43 0 57 0 43
 6 0 0 26184 41790 11 7412 1 1568 6586 0 15 0 67 0 33
 7 14 0 17345 41765 9 4797 1 943 5764 1 98 0 65 0 35
 8 5 0 17756 36776 37 6110 4 1183 7698 0 62 0 58 0 41
 9 0 0 17265 31631 9 4608 2 877 7784 0 37 0 53 0 47
 10 2 0 24961 34622 7 5553 1 1022 7057 0 109 1 57 0 42
 11 3 0 33744 40631 11 8501 4 1742 6755 0 72 1 65 0 35
 12 2 0 27320 42180 468 7710 18 1620 7222 0 381 0 65 0 35
 13 1 0 20360 63074 15853 5154 28 1095 6099 0 36 1 72 0 27
 14 1 0 13996 31832 9 4277 8 878 7586 0 36 0 52 0 48
 15 8 0 19966 36656 5 5646 7 1054 6703 0 633 2 56 0 42
[...]

iostat -xnz 5
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
[...summary since boot truncated...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.2 23.4 12.8 1392.7 0.5 0.1 20.3 2.3 6 5 c3t0d0

Gregg.book Page 388 Wednesday, February 2, 2011 12:35 PM

Case Study 389

iostat(1M) shows the disks are fairly busy (77 percent).
Just based on this information, there is little we can do to improve performance

except upgrade to faster CPUs and faster disks. We could also check kernel tuning
parameters to prevent CPU 2 from running hot, but at this point we don’t even
know why it is hot. It could be the cross cals, but we can’t tell for certain that they
are responsible for the high sys time. Without DTrace, we’ve hit a brick wall.

Enter DTrace

First we’ll use DTrace to check high system time by profiling kernel stacks on-CPU
and for the hot CPU 2:

 0.0 22.4 0.0 1392.7 0.5 0.0 22.3 1.7 6 4 c3t1d0
 324.8 0.0 21946.8 0.0 0.0 4.7 0.0 14.4 1 79 c4t5000C5001073ECF5d0
 303.8 0.0 19980.0 0.0 0.0 4.0 0.0 13.1 1 75 c4t5000C50010741BF9d0
 309.8 0.0 22036.5 0.0 0.0 5.3 0.0 17.0 1 82 c4t5000C5001073ED34d0
 299.6 0.0 19944.1 0.0 0.0 4.4 0.0 14.7 1 76 c4t5000C5000D416FFEd0
 302.6 0.0 20229.0 0.0 0.0 4.4 0.0 14.4 1 77 c4t5000C50010741A8Ad0
 292.2 0.0 19198.3 0.0 0.0 4.0 0.0 13.8 1 74 c4t5000C5000D416E2Ed0
 305.6 0.0 21203.4 0.0 0.0 4.5 0.0 14.8 1 80 c4t5000C5001073DEB9d0
 280.8 0.0 18160.5 0.0 0.0 4.0 0.0 14.3 1 75 c4t5000C5001073E602d0
 304.2 0.0 19574.9 0.0 0.0 4.3 0.0 14.2 1 77 c4t5000C50010743CFAd0
 322.0 0.0 21906.5 0.0 0.0 5.1 0.0 15.8 1 80 c4t5000C5001073F2F8d0
 295.8 0.0 20115.4 0.0 0.0 4.6 0.0 15.7 1 77 c4t5000C5001073F440d0
 289.2 0.0 20836.0 0.0 0.0 4.6 0.0 16.0 1 75 c4t5000C5001073E2F4d0
 278.6 0.0 18159.2 0.0 0.0 3.8 0.0 13.6 1 73 c4t5000C5001073D840d0
 286.4 0.0 21366.9 0.0 0.0 5.0 0.0 17.5 1 79 c4t5000C5001073ED40d0
 307.6 0.0 19198.1 0.0 0.0 4.2 0.0 13.5 1 74 c4t5000C5000D416F21d0
 292.4 0.0 19045.3 0.0 0.0 4.2 0.0 14.2 1 76 c4t5000C5001073E593d0
 293.2 0.0 20590.0 0.0 0.0 5.2 0.0 17.7 1 81 c4t5000C50010743BD1d0
 317.2 0.0 21036.5 0.0 0.0 3.9 0.0 12.4 1 74 c4t5000C5000D416E76d0
 295.6 0.0 19540.1 0.0 0.0 4.0 0.0 13.5 1 72 c4t5000C5001073DDB4d0
 332.6 0.0 21610.2 0.0 0.0 4.2 0.0 12.5 1 75 c4t5000C500106CF55Cd0
[...]

dtrace -n 'profile-1234 { @[stack()] = count(); } tick-5sec { exit(0); }'
dtrace: description 'profile-1234 ' matched 2 probes
CPU ID FUNCTION:NAME
 11 85688 :tick-5sec
[...output truncated...]

 unix`0xfffffffffb84fd8a
 zfs`zio_done+0x383
 zfs`zio_execute+0x89
 genunix`taskq_thread+0x1b7
 unix`thread_start+0x8
 2870

 unix`do_splx+0x80
 unix`xc_common+0x231
 unix`xc_call+0x46
 unix`hat_tlb_inval+0x283
 unix`x86pte_inval+0xaa
 unix`hat_pte_unmap+0xfd
 unix`hat_unload_callback+0x193

continues

Gregg.book Page 389 Wednesday, February 2, 2011 12:35 PM

390 Chapter 5 � File Systems

This shows that we are hottest in do_splx(), a function used to process cross
calls (see xc_call() further down the stack).

Now we check the hot stacks for CPU 2, by matching it in a predicate:

This shows that CPU 2 is indeed hot in cross calls. To quantify the problem, we
could postprocess this output to add up which stacks are cross calls and which
aren’t, to calculate the percentage of time spent in cross calls.

 unix`hat_unload+0x41
 unix`segkmem_free_vn+0x6f
 unix`segkmem_free+0x27
 genunix`vmem_xfree+0x104
 genunix`vmem_free+0x29
 genunix`kmem_free+0x20b
 genunix`dblk_lastfree_oversize+0x69
 genunix`dblk_decref+0x64
 genunix`freeb+0x80
 ip`tcp_rput_data+0x25a6
 ip`squeue_enter+0x330
 ip`ip_input+0xe31
 mac`mac_rx_soft_ring_drain+0xdf
 3636

 unix`mach_cpu_idle+0x6
 unix`cpu_idle+0xaf
 unix`cpu_idle_adaptive+0x19
 unix`idle+0x114
 unix`thread_start+0x8
 30741

dtrace -n 'profile-1234 /cpu == 2/ { @[stack()] = count(); }
tick-5sec { exit(0); }'
dtrace: description 'profile-1234 ' matched 2 probes
CPU ID FUNCTION:NAME
 8 85688 :tick-5sec
[...output truncated...]

 unix`do_splx+0x80
 unix`xc_common+0x231
 unix`xc_call+0x46
 unix`hat_tlb_inval+0x283
 unix`x86pte_inval+0xaa
 unix`hat_pte_unmap+0xfd
 unix`hat_unload_callback+0x193
 unix`hat_unload+0x41
 unix`segkmem_free_vn+0x6f
 unix`segkmem_free+0x27
 genunix`vmem_xfree+0x104
 genunix`vmem_free+0x29
 genunix`kmem_free+0x20b
 genunix`dblk_lastfree_oversize+0x69
 genunix`dblk_decref+0x64
 genunix`freeb+0x80
 ip`tcp_rput_data+0x25a6
 ip`squeue_enter+0x330
 ip`ip_input+0xe31
 mac`mac_rx_soft_ring_drain+0xdf
 1370

Gregg.book Page 390 Wednesday, February 2, 2011 12:35 PM

Case Study 391

Sometimes frequency counting the kernel function name that is on-CPU is suffi-
cient to identify the activity, instead of counting the entire stack:

This output is easier to examine and still identifies the cross call samples as the
hottest CPU activity (do_splx() function). By postprocessing the sample counts
(summing the count column using awk(1)), we found that CPU 2 spent 46 per-
cent of its time in do_splx(), which is a significant percentage of time.

Investigating Cross Calls

CPU cross calls can be probed using DTrace directly:

dtrace -n 'profile-1234 /cpu == 2/ { @[func(arg0)] = count(); }
tick-5sec { exit(0); }'
dtrace: description 'profile-1234 ' matched 2 probes
CPU ID FUNCTION:NAME
 1 85688 :tick-5sec

 mac`mac_hwring_tx 1
 mac`mac_soft_ring_worker_wakeup 1
 mac`mac_soft_ring_intr_disable 1
 rootnex`rootnex_init_win 1
 scsi_vhci`vhci_scsi_init_pkt 1
[...output truncated...]
 unix`setbackdq 31
 ip`ip_input 33
 unix`atomic_add_64 33
 unix`membar_enter 38
 unix`page_numtopp_nolock 47
 unix`0xfffffffffb84fd8a 50
 unix`splr 56
 genunix`ddi_dma_addr_bind_handle 56
 unix`i_ddi_vaddr_get64 62
 unix`ddi_get32 81
 rootnex`rootnex_coredma_bindhdl 83
 nxge`nxge_start 92
 unix`mutex_delay_default 93
 unix`mach_cpu_idle 106
 unix`hat_tlb_inval 126
 genunix`biodone 157
 unix`mutex_enter 410
 unix`do_splx 2597

dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); } tick-5sec { exit(0); }'
dtrace: description 'sysinfo:::xcalls ' matched 2 probes
CPU ID FUNCTION:NAME
 10 85688 :tick-5sec
[...output truncated...]

 unix`xc_call+0x46
 unix`hat_tlb_inval+0x283
 unix`x86pte_inval+0xaa
 unix`hat_pte_unmap+0xfd
 unix`hat_unload_callback+0x193
 unix`hat_unload+0x41

continues

Gregg.book Page 391 Wednesday, February 2, 2011 12:35 PM

392 Chapter 5 � File Systems

The most frequent stacks originate in either ip (the IP and TCP module) or nxge
(which is the 10GbE network interface driver). Filtering on CPU 2 (/cpu == 2/)
showed the same hottest stacks for these cross calls. Reading up the stack to
understand the nature of these cross calls shows that they enter the kernel mem-
ory subsystem (Solaris Internals [McDougall and Mauro, 2006] is a good reference
for understanding these).

Perhaps the most interesting stack line is dblk_lastfree_oversize()—over-
size is the kernel memory allocator slab for large buffers. Although it is perform-
ing well enough, the other fixed-size slabs (8KB, 64KB, 128KB, and so on) perform
better, so usage of oversize is undesirable if it can be avoided.

The cross call itself originates from a code path that is freeing memory, includ-
ing functions such as kmem_free(). To better understand this cross call, the
kmem_free() function is traced so that the size freed can be examined if this
becomes a cross call on CPU 2:

 unix`segkmem_free_vn+0x6f
 unix`segkmem_free+0x27
 genunix`vmem_xfree+0x104
 genunix`vmem_free+0x29
 genunix`kmem_free+0x20b
 genunix`dblk_lastfree_oversize+0x69
 genunix`dblk_decref+0x64
 genunix`freemsg+0x84
 nxge`nxge_txdma_reclaim+0x396
 nxge`nxge_start+0x327
 nxge`nxge_tx_ring_send+0x69
 mac`mac_hwring_tx+0x20
 mac`mac_tx_send+0x262
 mac`mac_tx_soft_ring_drain+0xac
 264667

 unix`xc_call+0x46
 unix`hat_tlb_inval+0x283
 unix`x86pte_inval+0xaa
 unix`hat_pte_unmap+0xfd
 unix`hat_unload_callback+0x193
 unix`hat_unload+0x41
 unix`segkmem_free_vn+0x6f
 unix`segkmem_free+0x27
 genunix`vmem_xfree+0x104
 genunix`vmem_free+0x29
 genunix`kmem_free+0x20b
 genunix`dblk_lastfree_oversize+0x69
 genunix`dblk_decref+0x64
 genunix`freeb+0x80
 ip`tcp_rput_data+0x25a6
 ip`squeue_enter+0x330
 ip`ip_input+0xe31
 mac`mac_rx_soft_ring_drain+0xdf
 mac`mac_soft_ring_worker+0x111
 unix`thread_start+0x8
 579607

Gregg.book Page 392 Wednesday, February 2, 2011 12:35 PM

Case Study 393

The output shows that the frees that become cross calls are in the 1MB to 2MB
range.

This rings a bell. The clients are using a 1MB I/O size for their sequential reads,
on the assumption that 1MB would be optimal. Perhaps it is these 1MB I/Os that
are causing the use of the oversize kmem cache and the cross calls.

Trying the Solution

As an experiment, we changed I/O size on the clients to 128KB. Let’s return to sys-
tem tools for comparison:

The cross calls have mostly vanished, and throughput is 503MB/sec—a 49 per-
cent improvement!

dtrace -n 'fbt::kmem_free:entry /cpu == 2/ { self->size = arg1; }
sysinfo:::xcalls /cpu == 2/ { @ = quantize(self->size); }'
dtrace: description 'fbt::kmem_free:entry ' matched 2 probes
^C

 value ------------- Distribution ------------- count
 524288 | 0
 1048576 |@@ 37391
 2097152 | 0

mpstat 5
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
[...summary since boot truncated...]
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 2478 7196 205 10189 2 2998 3934 0 41 0 47 0 53
 1 0 0 139 6175 111 9367 2 2713 3714 0 84 0 44 0 56
 2 0 0 10107 11434 3610 54281 11 1476 2329 0 465 1 79 0 20
 4 7 0 36 7924 3703 6027 11 1412 5085 0 146 1 54 0 46
 5 0 0 4 5647 10 8028 3 1793 4347 0 28 0 53 0 47
 6 1 0 49 6984 12 12248 2 2863 4374 0 38 0 56 0 44
 7 0 0 11 4472 10 7687 3 1730 3730 0 33 0 49 0 51
 8 0 0 82 5686 42 9783 2 2132 5116 0 735 1 49 0 49
 9 0 0 39 4339 7 7308 1 1511 4898 0 396 1 43 0 57
 10 0 0 3 5256 4 8997 1 1831 4399 0 22 0 43 0 57
 11 0 0 5 7865 12 13900 1 3080 4365 1 43 0 55 0 45
 12 0 0 58 6990 143 12108 12 2889 5199 0 408 1 56 0 43
 13 1 0 0 35884 32388 6724 48 1536 4032 0 77 0 73 0 27
 14 1 0 14 3936 9 6473 6 1472 4822 0 102 1 42 0 58
 15 3 0 8 5025 8 8460 8 1784 4360 0 105 2 42 0 56
[...]

iostat -xnz 5
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
[...summary since boot truncated...
 extended device statistics

continues

Gregg.book Page 393 Wednesday, February 2, 2011 12:35 PM

394 Chapter 5 � File Systems

The disks are now reaching 100 percent busy and have become the new bottle-
neck (one disk in particular). This often happens with performance investigations:
As soon as one problem has been fixed, another one becomes apparent.

Analysis Continued

From the previous iostat(1M) output, it can be calculated that the average I/O
size is fairly large (~60KB), yet this results in low throughput per disk (20MB/sec)
for disks that can pull more than 80MB/sec. This could indicate a random compo-
nent to the I/O. However, with DTrace, we can measure it directly.

Running bitesize.d from Chapter 4 (and the DTraceToolkit) yields the following:

 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.2 45.6 12.8 3982.2 1.7 0.2 37.6 4.3 19 20 c3t0d0
 0.4 45.2 25.6 3982.2 1.3 0.1 28.7 2.9 15 13 c3t1d0
 381.8 0.0 21210.8 0.0 0.0 5.2 0.0 13.7 1 92 c4t5000C5001073ECF5d0
 377.2 0.0 21914.8 0.0 0.0 5.5 0.0 14.6 1 87 c4t5000C50010741BF9d0
 330.2 0.0 21334.7 0.0 0.0 6.4 0.0 19.3 1 89 c4t5000C5001073ED34d0
 379.8 0.0 21294.8 0.0 0.0 5.4 0.0 14.3 1 92 c4t5000C5000D416FFEd0
 345.8 0.0 21823.1 0.0 0.0 6.1 0.0 17.6 1 90 c4t5000C50010741A8Ad0
 360.6 0.0 20126.3 0.0 0.0 5.2 0.0 14.5 1 85 c4t5000C5000D416E2Ed0
 352.2 0.0 23318.3 0.0 0.0 6.9 0.0 19.7 1 93 c4t5000C5001073DEB9d0
 253.8 0.0 21745.3 0.0 0.0 10.0 0.0 39.3 0 100 c4t5000C5001073E602d0
 337.4 0.0 22797.5 0.0 0.0 7.1 0.0 20.9 1 96 c4t5000C50010743CFAd0
 346.0 0.0 22145.4 0.0 0.0 6.7 0.0 19.3 1 87 c4t5000C5001073F2F8d0
 350.0 0.0 20946.2 0.0 0.0 5.3 0.0 15.2 1 89 c4t5000C5001073F440d0
 383.6 0.0 22688.1 0.0 0.0 6.5 0.0 17.0 1 94 c4t5000C5001073E2F4d0
 333.4 0.0 24451.0 0.0 0.0 8.2 0.0 24.6 1 98 c4t5000C5001073D840d0
 337.6 0.0 21057.5 0.0 0.0 5.9 0.0 17.4 1 90 c4t5000C5001073ED40d0
 370.8 0.0 21949.1 0.0 0.0 5.3 0.0 14.2 1 88 c4t5000C5000D416F21d0
 393.2 0.0 22121.6 0.0 0.0 5.6 0.0 14.3 1 90 c4t5000C5001073E593d0
 354.4 0.0 22323.5 0.0 0.0 6.4 0.0 18.1 1 93 c4t5000C50010743BD1d0
 382.2 0.0 23451.7 0.0 0.0 5.9 0.0 15.3 1 95 c4t5000C5000D416E76d0
 357.4 0.0 22791.5 0.0 0.0 6.8 0.0 19.0 1 93 c4t5000C5001073DDB4d0
 338.8 0.0 22762.6 0.0 0.0 7.3 0.0 21.6 1 92 c4t5000C500106CF55Cd0
[...]

bitesize.d
Tracing... Hit Ctrl-C to end.

 PID CMD
 1040 /usr/lib/nfs/nfsd -s /var/ak/rm/pool-0/ak/nas/nfs4\0

 value ------------- Distribution ------------- count
 4096 | 0
 8192 |@@ 8296
 16384 | 0

 0 sched\0

 value ------------- Distribution ------------- count
 256 | 0
 512 | 8
 1024 | 51
 2048 | 65
 4096 | 25
 8192 |@@@@@@@@ 5060

Gregg.book Page 394 Wednesday, February 2, 2011 12:35 PM

Case Study 395

This shows I/O from 8KB through to 128KB. 8KB I/O is expected because of the
ZFS record size and when nfsd responds to a request by reading 8KB I/O. Doing
this sequentially will trigger ZFS prefetch, which will read ahead in the file asyn-
chronously to the nfsd thread (sched). The vdev layer can aggregate these reads
up to 128KB before they are sent to disk. All of these internals can be examined
using DTrace.

Running seeksize.d from Chapter 4 (and the DTraceToolkit) yields the following:

 16384 |@@@@ 2610
 32768 |@@@@ 2881
 65536 |@@@@@@@@@@@@@ 8576
 131072 |@@@@@@@@@@@ 7389
 262144 | 0

seeksize.d
Tracing... Hit Ctrl-C to end.

 PID CMD
 1040 /usr/lib/nfs/nfsd -s /var/ak/rm/pool-0/ak/nas/nfs4\0

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@ 5387
 1 | 1
 2 | 53
 4 | 3
 8 | 7
 16 |@@ 450
 32 |@@ 430
 64 |@ 175
 128 |@ 161
 256 |@ 144
 512 | 97
 1024 | 49
 2048 | 10
 4096 | 19
 8192 | 34
 16384 | 84
 32768 |@ 154
 65536 |@ 307
 131072 |@@ 528
 262144 |@@@ 598
 524288 |@ 266
 1048576 | 23
 2097152 | 0

 0 sched\0

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@ 3160
 1 | 2
 2 | 38
 4 | 11
 8 | 3
 16 | 265
 32 |@ 309

continues

Gregg.book Page 395 Wednesday, February 2, 2011 12:35 PM

396 Chapter 5 � File Systems

This shows that the disks are often seeking to perform I/O. From this, we could
look at how the files were created and what file system parameters existed to opti-
mize placement in order to reduce seeking.

Running iopattern from Chapter 4 (and the DTraceToolkit) yields the following:

iopattern confirms the previous findings.
Finally, an iolatency.d script was written to show overall device latency as a

distribution plot:

 64 |@ 442
 128 |@ 528
 256 |@ 767
 512 |@ 749
 1024 |@ 427
 2048 | 165
 4096 | 250
 8192 |@ 406
 16384 |@ 870
 32768 |@@@ 1623
 65536 |@@@@@ 2801
 131072 |@@@@@@@ 4113
 262144 |@@@@@@@ 4167
 524288 |@@@ 1787
 1048576 | 141
 2097152 | 7
 4194304 |@ 718
 8388608 |@ 354
 16777216 | 0

iopattern
%RAN %SEQ COUNT MIN MAX AVG KR KW
 72 28 72996 36 131072 59152 4130835 85875
 70 30 71971 512 131072 61299 4217260 91147
 67 33 68096 512 131072 59652 3872788 94092
 63 37 72490 36 131072 60248 4173898 91155
 66 34 73607 512 131072 60835 4285085 95988
[...]

1 #!/usr/sbin/dtrace -s
2
3 io:::start
4 {
5 start[arg0] = timestamp;
6 }
7
8 io:::done
9 /start[arg0]/
10 {
11 @time["disk I/O latency (ns)"] = quantize(timestamp - start[arg0]);
12 start[arg0] = 0;
13 }

Script iolatency.d

Gregg.book Page 396 Wednesday, February 2, 2011 12:35 PM

Summary 397

The latency for these disk I/Os is fairly large, often exceeding 8 ms.
There are a few ways we might improve performance here.

� Tuning file system on-disk placement to promote sequential access, which
should take I/O latency closer to 1 ms.

� Upgrading (or improving) caches by increasing the size of the Level 1 cache
(the ARC, which is DRAM-based) or using a level-two cache (the ZFS L2ARC,
which is SSD-based) to span more of the working set. The internal workings
of these caches can also be examined.

� Faster disks.

Conclusion

In this case study, we’ve demonstrated using DTrace to solve one problem and
gather data on the next. This isn’t the end of the road for DTrace—we can con-
tinue to study the internals of file system on-disk placement using DTrace, as well
as the workings of the level-one file system cache to hunt for suboptimalities.

Summary

In this chapter, DTrace was used to examine file system usage and internals. This
was performed from different perspectives: at the system call layer, at the virtual

iolatency.d -n 'tick-5sec { exit(0); }'
dtrace: script 'io-latency.d' matched 10 probes
dtrace: description 'tick-5sec ' matched 1 probe
CPU ID FUNCTION:NAME
 15 85688 :tick-5sec

 disk I/O latency (ns)
 value ------------- Distribution ------------- count
 32768 | 0
 65536 | 1
 131072 | 259
 262144 |@ 457
 524288 |@@ 1330
 1048576 |@@@@ 2838
 2097152 |@@@@@ 4095
 4194304 |@@@@@@@ 5303
 8388608 |@@@@@@@@@ 7460
 16777216 |@@@@@@@ 5538
 33554432 |@@@@ 3480
 67108864 |@@ 1338
 134217728 | 147
 268435456 | 3
 536870912 | 0

Gregg.book Page 397 Wednesday, February 2, 2011 12:35 PM

398 Chapter 5 � File Systems

file system (VFS) layer, and from the file system software itself. For performance
investigations, at the ability to measure I/O latency from these different layers can
be crucial for pinpointing the source of latency—whether that’s from the file sys-
tem or underlying devices. Characteristics of the file system workload were also
measured, such as I/O types and filenames, to provide context for understanding
what the file system is doing and why.

Gregg.book Page 398 Wednesday, February 2, 2011 12:35 PM

