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Foreword

In early 2004, DTrace remained nascent; while Mike Shapiro, Adam Leventhal,
and I had completed our initial implementation in late 2003, it still had substan-
tial gaps (for example, we had not yet completed user-level instrumentation on
x86), many missing providers, and many features yet to be discovered. In part
because we were still finishing it, we had only just started to publicly describe
what we had done—and DTrace remained almost entirely unknown outside of
Sun. Around this time, I stumbled on an obscure little Solaris-based tool called
psio that used the operating system’s awkward pre-DTrace instrumentation facil-
ity, TNF, to determine the top I/O-inducing processes. It must be noted that TNF—
which arcanely stands for Trace Normal Form—is a baroque, brittle, pedantic
framework notable only for painfully yielding a modicum of system observability
where there was previously none; writing a tool to interpret TNF in this way is a
task of Herculean proportions. Seeing this TNF-based tool, I knew that its
author—an Australian named Brendan Gregg—must be a kindred spirit: gritty,
persistent, and hell-bent on shining a light into the inky black of the system’s
depths. Given that his TNF contortionist act would be reduced to nearly a one-
liner in DTrace, it was a Promethean pleasure to introduce Brendan to DTrace:

 From: Bryan Cantrill <bmc@eng.sun.com>
 To: Brendan Gregg <brendan.gregg@tpg.com.au>
 Subject: psio and DTrace
 Date: Fri, 9 Jan 2004 13:35:41 -0800 (PST)
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 Brendan,

 A colleague brought your "psio" to my attention -- very interesting.
 Have you heard about DTrace, a new facility for dynamic instrumentation
 in Solaris 10? As you will quickly see, there's a _lot_ you can do with
 DTrace -- much more than one could ever do with TNF.
 ...

With Brendan’s cordial reply, it was clear that although he was very interested
in exploring DTrace, he (naturally) hadn’t had much of an opportunity to really
use it. And perhaps, dear reader, this describes you, too: someone who has seen
DTrace demonstrated or perhaps used it a bit and, while understanding its poten-
tial value, has perhaps never actually used it to solve a real problem. It should
come as no surprise that one’s disposition changes when DTrace is used not to make
some academic point about the system but rather to save one’s own bacon. After
this watershed moment—which we came to (rather inarticulately) call the DTrace-
just-saved-my-butt moment—DTrace is viewed not as merely interesting but as
essential, and one starts to reach for it ever earlier in the diagnostic process.

Given his aptitude and desire for understanding the system, it should come as
no surprise that when I heard back from Brendan again some two months later, he
was long past his moment, having already developed a DTrace dependency:

 From: Brendan Gregg <brendan.gregg@tpg.com.au>
 To: Bryan Cantrill <bmc@eng.sun.com>
 Subject: Re: psio and DTrace
 Date: Mon, 29 Mar 2004 00:43:27 +1000 (EST)

 G'Day Bryan,

 DTrace is a superb tool. I'm already somewhat dependent on using it.
 So far I've rewritten my "psio" tool to use DTrace (now it is more
 robust and can access more details) and an iosnoop.d tool.
 ...

Brendan went on to an exhaustive list of what he liked and didn’t like in
DTrace. As one of our first major users outside of Sun, this feedback was tremen-
dously valuable to us and very much shaped the evolution of DTrace.

And Brendan became not only one of the earliest users and foremost experts on
DTrace but also a key contributor: Brendan’s collection of scripts—the DTrace-
Toolkit—became an essential factor in DTrace’s adoption (and may well be how
you yourself came to learn about DTrace). Indeed, one of the DTraceToolkit scripts,
shellsnoop, remains a personal favorite of mine: It uses the syscall provider to
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display the contents of every read and write executed by a shell. In the early days
of DTrace, whenever anyone asked whether there were security implications to
running DTrace, I used to love to demo this bad boy; there’s nothing like seeing
someone else’s password come across in clear text to wake up an audience!

Given not only Brendan’s essential role in DTrace but also his gift for clearly
explaining complicated systems, it is entirely fitting that he is the author of the
volume now in your hands. And given the degree to which proficient use of DTrace
requires mastery not only of DTrace itself but of the larger system around it, it is
further appropriate that Brendan teamed up with Jim Mauro of Solaris Internals
(McDougall and Mauro, 2006) fame. Together, Brendan and Jim are bringing you
not just a book about DTrace but a book about using it in the wild, on real prob-
lems and actual systems. That is, this book isn’t about dazzling you with what
DTrace can do; it is about getting you closer to that moment when it is your butt
that DTrace saves. So, enjoy the book, and remember: DTrace is a workhorse, not a
show horse. Don’t just read this book; put it to work and use it!

—Bryan Cantrill
Piedmont, California
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Preface

“[expletive deleted] it’s like they saw inside my head and gave me The One True Tool.”

—A Slashdotter, in a post referring to DTrace

“With DTrace, I can walk into a room of hardened technologists and
get them giggling.”

—Bryan Cantrill, father of DTrace

Welcome to Oracle Solaris Dynamic Tracing—DTrace! It’s been more than five
years since DTrace made its first appearance in Solaris 10 3/05, and it has been
just amazing to see how it has completely changed the rules of understanding sys-
tems and the applications they run. The DTrace technical community continues to
grow, embracing the technology, pushing DTrace in every possible direction, and
sharing new and innovative methods for using DTrace to diagnose myriad system
and application problems. Our personal experience with DTrace has been an
adventure in learning, helping customers solve problems faster, and improving our
internal engineering efforts to analyze systems and find ways to make our technol-
ogy better and faster.

The opening quotes illustrate just some of the reactions we have seen when
users experience how DTrace empowers them to observe, analyze, debug, and
understand their systems and workloads. The community acceptance and adop-
tion of DTrace has been enormously gratifying to watch and participate in. We
have seen DTrace ported to other operating systems: Mac OS X and FreeBSD both
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ship with DTrace. We see tools emerging that leverage the power of DTrace, most
of which are being developed by community members. And of course feedback and
comments from users over the years have driven continued refinements and new
features in DTrace.

About This Book

This book is all about DTrace, with the emphasis on using DTrace to understand,
observe, and diagnose systems and applications. A deep understanding of the
details of how DTrace works is not necessary to using DTrace to diagnose and
solve problems; thus, the book covers using DTrace on systems and applications,
with command-line examples and a great many D scripts. Depending on your level
of experience, we intend the book’s organization to facilitate its use as a reference
guide, allowing you to refer to specific chapters when diagnosing a particular area
of the system or application.

This is not a generic performance and tools book. That is, many tools are avail-
able for doing performance analysis, observing the system and applications, debug-
ging, and tuning. These tools exist in various places—bundled with the operating
system, part of the application development environment, downloadable tools, and
so on. It is probable that other tools and utilities will be part of your efforts involv-
ing DTrace (for example, using system stat tools to get a big-picture view of sys-
tem resource utilization). Throughout this book, you’ll see examples of some of
these tools being used as they apply to the subject at hand and aid in highlighting
a specific point, and coverage of the utility will include only what is necessary for
clarity.

Our approach in writing this book was that DTrace is best learned by example.
This approach has several benefits. The volume of DTrace scripts and one-liners
included in the text gives readers a chance to begin making effective and practical
use of DTrace immediately. The examples and scripts in the book were inspired by
the DTraceToolkit scripts, originally created by Brendan Gregg to meet his own
needs and experiences analyzing system problems. The scripts in this book encap-
sulate those experiences but also introduce analysis of different topics in a focused
and easy-to-follow manner, to aid learning. They generate answers to real and use-
ful questions and serve as a starting point for building more complex scripts.
Rather than an arbitrary collection of programs intended to highlight a poten-
tially interesting feature of DTrace or the underlying system, the scripts and one-
liners are all based on practical requirements, providing insight about the system
under observation. Explanations are provided throughout that discuss the DTrace
used, as well as the output generated.
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DTrace was first introduced in Oracle Solaris 10 3/05 (the first release of Solaris
10) in March 2005. It is available in all Solaris 10 releases, as well as OpenSolaris,
and has been ported to Mac OS X 10.5 (Leopard) and FreeBSD 7.1. Although much
of DTrace is operating system–agnostic, there are differences, such as newer DTrace
features that are not yet available everywhere.1 Using DTrace to trace operating
system–specific functions, especially unstable interfaces within the kernel, will of
course be very different across the different operating systems (although the same
methodologies will be applicable to all). These differences are discussed through-
out the book as appropriate. The focus of the book is Oracle Solaris, with key
DTrace scripts provided for Mac OS X and FreeBSD. Readers on those operating
systems are encouraged to examine the Solaris-specific examples, which demon-
strate principles of using DTrace and often only require minor changes to execute
elsewhere. Scripts that have been ported to these other operating systems will be
available on the DTrace book Web site, www.dtracebook.com.

How This Book Is Structured

This book is organized in three parts, each combining a logical group of chapters
related to a specific area of DTrace or subject matter.

Part I, Introduction, is introductory text, providing an overview of DTrace and
its features in Chapter 1, Introduction to DTrace, and a quick tour of the D Lan-
guage in Chapter 2, D Language. The information contained in these chapters is
intended to support the material in the remaining chapters but does not necessar-
ily replace the more detailed language reference available in the online, wiki-based
DTrace documentation (see “Supplemental Material and References”).

Part II, Using DTrace, gets you started using DTrace hands-on. Chapter 3, Sys-
tem View, provides an introduction to the general topic of system performance,
observability, and debugging—the art of system forensics. Old hands and those
who have read McDougall, Mauro, and Gregg (2006) may choose to pass over this
chapter, but a holistic view of system and software behavior is as necessary to
effective use of DTrace as knowledge of the language syntax. The next several
chapters deal with functional areas of the operating system in detail: the I/O
path—Chapter 4, Disk I/O, and Chapter 5, File Systems—is followed by Chapter 6,
Network Lower-Level Protocols, and Chapter 7, Application-Level Protocols, on the
network protocols. A change of direction occurs at Chapter 8, Languages, where
application-level concerns become the focus. Chapter 8 itself covers programming

1. This will improve after publication of this book, because other operating systems
include the newer features.

www.dtracebook.com
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languages and DTrace’s role in the development process. Chapter 9, Applications,
deals with the analysis of applications. Databases are dealt with specifically in
Chapter 10, Databases. 

Part III, Additional User Topics, continues the “using DTrace” theme, covering
using DTrace in a security context (Chapter 11, Security), analyzing the kernel
(Chapter 12, Kernel), tools built on top of DTrace (Chapter 13, Tools), and some
tips and tricks for all users (Chapter 14, Tips and Tricks).

Each chapter follows a broadly similar format of discussion, strategy sugges-
tions, checklists, and example programs. Functional diagrams are also included in
the book to guide the reader to use DTrace effectively and quickly.

For further sources of information, see the online “Supplemental Material and
References” section, as well as the annotated bibliography of textbook and online
material provided at the end of the book.

Intended Audience

DTrace was designed for use by technical staff across a variety of different roles,
skills, experience, and knowledge levels. That said, it is a software analysis and
debugging tool, and any substantial use requires writing scripts in D. D is a struc-
tured language very similar to C, and users of that language can quickly take
advantage of that familiarity. It is assumed that the reader will have some knowl-
edge of operating system and software concepts and some programming back-
ground in scripting languages (Perl, shell, and so on) and/or languages (C, C++,
and so on).

In addition, you should be familiar with the architecture of the platform you’re
using DTrace on. Textbooks on Solaris, FreeBSD, and Mac OS X are detailed in the
bibliography.

To minimize the level of programming skill required, we have provided many
DTrace scripts that you can use immediately without needing to write code. These
also help you learn how to write your own DTrace scripts, by providing example
solutions that are also starting points for customization. The DTraceToolkit2 is a
popular collection of such DTrace scripts that has been serving this role to date,
created and mostly written by the primary author of this book. Building upon that
success, we have created a book that is (we hope) the most comprehensive source
for DTrace script examples.3

2. This is linked on www.brendangregg.com/dtrace.html and www.dtracebook.com.

3. The DTraceToolkit now needs updating to catch up!

www.brendangregg.com/dtrace.html
www.dtracebook.com
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This book will serve as a valuable reference for anyone who has an interest in or
need to use DTrace, whether it is a necessary part of your day job, a student study-
ing operating systems, or a casual user interested in figuring out why the hard
drive on your personal computer is clattering away doing disk I/Os.

Specific audiences for this book include the following.

� Systems administrators, database administrators, performance ana-
lysts, and support staff responsible for the care and feeding of their pro-
duction systems can use this book as a guide to diagnose performance and 
pathological behavior problems, understand capacity and resource usage, and 
work with developers and software providers to troubleshoot application 
issues and optimize system performance.

� Application developers can use DTrace for debugging applications and uti-
lizing DTrace’s User Statically Defined Tracing (USDT) for inserting DTrace 
probes into their code. 

� Kernel developers can use DTrace for debugging kernel modules.

� Students studying operating systems and application software can use 
DTrace because the observability that it provides makes it a perfect tool to 
supplement the learning process. Also, there’s the implementation of DTrace 
itself. DTrace is among the most well-thought-out and well-designed soft-
ware systems ever created, incorporating brilliantly crafted solutions to the 
extremely complex problems inherent in building a dynamic instrumentation 
framework. Studying the DTrace design and source code serves as a world-
class example of software engineering and computer science.

Note that there is a minimum knowledge level assumed on the part of the
reader for the topics covered, allowing this book to focus on the application of
DTrace for those topics.

Supplemental Material and References

Readers are encouraged to visit the Web site for this book: www.dtracebook.com.
All the scripts contained in the book, as well as reader feedback and comments,

book errata, and subsequent material that didn’t make the publication deadline,
can be downloaded from the site.

Brendan Gregg’s DTraceToolkit is free to download and contains more than 200
scripts covering every everything from disks and networks to languages and the
kernel. Some of these are used in this text: http://hub.opensolaris.org/bin/view/
Community+Group+dtrace/dtracetoolkit.

www.dtracebook.com
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
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The DTrace online documentation should be referenced as needed: http://
wikis.sun.com/display/DTrace/Documentation.

The OpenSolaris DTrace Community site contains links and information,
including projects and additional sources for scripts: http://hub.opensolaris.org/
bin/view/Community+Group+dtrace/.

The following texts (found in the bibliography) can be referenced to supplement
DTrace analysis and used as learning tools:

� McDougall and Mauro, 2006

� McDougall, Mauro, and Gregg, 2006

� Gove, 2007

� Singh, 2006 

� Neville-Neil and McKusick, 2004

http://wikis.sun.com/display/DTrace/Documentation
http://wikis.sun.com/display/DTrace/Documentation
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/
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9
Applications

DTrace has the ability to follow the operation of applications from within the
application source code, through system libraries, through system calls, and into
the kernel. This visibility allows the root cause of issues (including performance
issues) to be found and quantified, even if it is internal to a kernel device driver or
something else outside the boundaries of the application code. Using DTrace, ques-
tions such as the following can be answered.

� What transactions are occurring? With what latency?

� What disk I/O is the application performing? What network I/O?

� Why is the application on-CPU?

As an example, the following one-liner frequency counts application stack traces
when the Apache Web server (httpd) performs the read() system call:

# dtrace -n 'syscall::read:entry /execname == "httpd"/ { @[ustack()] = count(); }'
dtrace: description 'syscall::read:entry ' matched 1 probe
[...]

    libc.so.1`__read+0x7
  libapr-1.so.0.3.9`apr_socket_recv+0xb0
 libaprutil-1.so.0.3.9`socket_bucket_read+0x5b

   httpd`ap_core_input_filter+0x294
  mod_ssl.so`bio_filter_in_read+0xbc

   libcrypto.so.0.9.8`BIO_read+0xaf
  libssl.so.0.9.8`ssl3_get_record+0xb5

   libssl.so.0.9.8`ssl3_read_n+0x144
continues
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The output has been truncated to show only the last stack trace. This stack
trace was responsible for calling read() 31 times and shows the application code
path through libssl (the Secure Sockets Layer library, because this was an HTTPS
read). Each of the functions shown by the stack trace can be traced separately
using DTrace, including function arguments, return value, and time.

The previous chapter focused on the programming languages of application soft-
ware, particularly for developers who have access to the source code. This chapter
focuses on application analysis for end users, regardless of language or layer in the
software stack.

Capabilities

DTrace is capable of tracing every layer of the software stack, including examin-
ing the interactions of the various layers (see Figure 9-1).

Strategy

To get started using DTrace to examine applications, follow these steps (the target
of each step is in bold):

1. Try the DTrace one-liners and scripts listed in the sections that follow and 
from the other chapters in the “See Also” section (which includes disk, file 
system, and network I/O).

2. In addition to those DTrace tools, familiarize yourself with any existing 
application logs and statistics that are available and also by any add-ons. 
(For example, before diving into Mozilla Firefox performance, try add-ons for 
performance analysis.) The information that these retrieve can show what is 
useful to investigate further with DTrace.

  libssl.so.0.9.8`ssl3_read_bytes+0x161
  libssl.so.0.9.8`ssl3_read_internal+0x66

   libssl.so.0.9.8`ssl3_read+0x16
   libssl.so.0.9.8`SSL_read+0x42
   mod_ssl.so`ssl_io_input_read+0xf0
  mod_ssl.so`ssl_io_filter_input+0xd0

   httpd`ap_rgetline_core+0x66
   httpd`ap_read_request+0x1d1
  httpd`ap_process_http_connection+0xe4
  httpd`ap_run_process_connection+0x28

    httpd`child_main+0x3d8
    httpd`make_child+0x86
    httpd`ap_mpm_run+0x410
    httpd`main+0x812
    httpd`_start+0x7d

               31
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3. Check whether any application USDT providers are available (for example, 
the mozilla provider for Mozilla Firefox).

4. Examine application behavior using the syscall provider, especially if the 
application has a high system CPU time. This is often an effective way to get 
a high-level picture of what the application is doing by examining what it is 
requesting the kernel to do. System call entry arguments and return errors 
can be examined for troubleshooting issues, and system call latency can be 
examined for performance analysis.

5. Examine application behavior in the context of system resources, such as 
CPUs, disks, file systems, and network interfaces. Refer to the appropriate 
chapter in this book.

6. Write tools to generate known workloads, such as performing a client 
transaction. It can be extremely helpful to have a known workload to refer to 
while developing DTrace scripts.

7. Familiarize yourself with application internals. Sources may include applica-
tion documentation and source code, if available. DTrace can also be used to 
learn the internals of an application, such as by examining stack traces
whenever the application performs I/O (see the example at the start of this 
chapter).

8. Use a language provider to trace application code execution, if one exists 
and is available (for example, perl). See Chapter 8, Languages.

Figure 9-1 Software stack
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9. Use the pid provider to trace the internals of the application software and 
libraries it uses, referring to the source code if available. Write scripts to 
examine higher-level details first (operation counts), and drill down deeper 
into areas of interest.

Checklist

Consider Table 9-1 a checklist of application issue types that can be examined
using DTrace. This is similar to the checklist in Chapter 8 but is in terms of appli-
cations rather than the language.

Table 9-1 Applications Checklist

Issue Description

on-CPU time An application is hot on-CPU, showing high %CPU in top(1) or 
prstat(1M). DTrace can identify the reason by sampling user stack traces 
with the profile provider and by tracing application functions with vtime-
stamps. Reasons for high on-CPU time may include the following:

•  Compression

•  Encryption

•  Dataset iteration (code path loops)

•  Spin lock contention

•  Memory I/O

The actual make-up of CPU time, whether it is cycles on core (for example, 
for the Arithmetic Logic Unit) or cycles while stalled (for example, waiting 
for memory bus I/O) can be investigated further using the DTrace cpc pro-
vider, if available.

off-CPU time Applications will spend time off-CPU while waiting for I/O, waiting for locks 
(not spinning), and while waiting to be dispatched on a CPU after returning 
to the ready to run state. These events can be examined and timed with 
DTrace, such as by using the sched provider to look at thread events. Time 
off-CPU during I/O, especially disk or network I/O, is a common cause of 
performance issues (for example, an application performing file system reads 
served by slow disks, or a DNS lookup during client login, waiting on net-
work I/O to the DNS server). When interpreting off-CPU time, it is impor-
tant to differentiate between time spent off-CPU because of the following:

•  Waiting on I/O during an application transaction

•  Waiting for work to do

Applications may spend most of their time waiting for work to do, which is 
not typically a problem.
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Providers

Table 9-2 shows providers of most interest when tracing applications.

Volume Applications may be calling a particular function or code path too fre-
quently; this is the simplest type of issue to DTrace: frequency count func-
tion calls. Examining function arguments may identify other inefficiencies, 
such as performing I/O with small byte sizes when larger sizes should be 
possible.

Locks Waiting on locks can occur both on-CPU (spin) and off-CPU (wait). Locks 
are used for synchronization of multithreaded applications and, when 
poorly used, can cause application latency and thread serialization. Use 
DTrace to examine lock usage using the plockstat provider if available or 
using pid or profile.

Memory 
Allocation

Memory allocation can be examined in situations when applications con-
sume excessive amounts of memory. Calls to manage memory (such as 
malloc()) can be traced, along with entry and return arguments.

Errors Applications can encounter errors in their own code and from system 
libraries and system calls that they execute. Encountering errors is normal 
for software, which should be written to handle them correctly. However, it 
is possible that errors are being encountered but not handled correctly by 
the application. DTrace can be used to examine whether errors are occur-
ring and, if so, their origin.

Table 9-2 Providers for Applications

Provider Description

proc Trace application process and thread creation and destruction and signals.

syscall Trace entry and return of operating system calls, arguments, and return values. 

profile Sample application CPU activity at a custom rate.

sched Trace application thread scheduling events.

vminfo Virtual memory statistic probes, based on vmstat(1M) statistics.

sysinfo Kernel statistics probes, based on mpstat(1M) statistics.

plockstat Trace user-land lock events.

cpc CPU Performance Counters provider, for CPU cache hit/miss by function.

pid Trace internals of the application including calls to system libraries.

language Specific language provider: See Chapter 8.

Table 9-1 Applications Checklist (Continued)

Issue Description
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You can find complete lists of provider probes and arguments in the DTrace
Guide.1

pid Provider

The Process ID (pid) provider instruments user-land function execution, providing
probes for function entry and return points and for every instruction in the func-
tion. It also provides access to function arguments, return codes, return instruc-
tion offsets, and register values. By tracing function entry and return, the elapsed
time and on-CPU time during function execution can also be measured. It is avail-
able on Solaris and Mac OS X and is currently being developed for FreeBSD.2

The pid provider is associated with a particular process ID, which is part of the
provider name: pid<PID>. The PID can be written literally, such as pid123, or
specified using the macro variable $target, which provides the PID when either
the -p PID or -c command option is used.

Listing pid provider function entry probes for the bash shell (running as PID
1122) yields the following:

1. This is currently at http://wikis.sun.com/display/DTrace/Documentation.

2. This is by Rui Paulo for the DTrace user-land project: http://freebsdfoundation.blogspot.com/
2010/06/dtrace-userland-project.html.

# dtrace -ln 'pid$target:::entry' -p 1122
   ID   PROVIDER    MODULE               FUNCTION NAME
12539    pid1122        bash       _start entry
12540    pid1122        bash       __fsr entry
12541    pid1122        bash       main entry
12542    pid1122       bash parse_long_options entry
12543    pid1122       bash parse_shell_options entry
12544    pid1122         bash     exit_shell entry
12545    pid1122        bash      sh_exit entry
12546    pid1122          bash   execute_env_file entry
12547    pid1122       bash  run_startup_files entry
12548    pid1122       bash shell_is_restricted entry
12549    pid1122        bash maybe_make_restricted entry
12550    pid1122        bash       uidget entry
12551    pid1122       bash  disable_priv_mode entry
12552    pid1122         bash     run_wordexp entry
12553    pid1122          bash   run_one_command entry
[...]
15144    pid1122    libcurses.so.1              addstr entry
15145    pid1122    libcurses.so.1             attroff entry
15146    pid1122    libcurses.so.1              attron entry
15147    pid1122    libcurses.so.1             attrset entry
15148    pid1122    libcurses.so.1               beep entry
15149    pid1122    libcurses.so.1               bkgd entry
[...]
15704    pid1122 libsocket.so.1       endnetent entry
15705    pid1122 libsocket.so.1   getnetent_r entry
15706    pid1122 libsocket.so.1    str2netent entry
15707    pid1122  libsocket.so.1  getprotobyname entry

http://wikis.sun.com/display/DTrace/Documentation
http://freebsdfoundation.blogspot.com/2010/06/dtrace-userland-project.html
http://freebsdfoundation.blogspot.com/2010/06/dtrace-userland-project.html
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There were 8,003 entry probes listed. The previous truncated output shows a
sample of the available probes from the bash code segment and three libraries: lib-
curses, libsocket, and libc. The probe module name is the segment name.

Listing all pid provider probes for the libc function fputc()yields the following:

The probes listed are the entry and return probes for the fputc() function, as well
as probes for each instruction offset in hexadecimal (0, 1, 3, 4, 7, c, d, and so on).

Be careful when using the pid provider, especially in production environments.
Application processes vary greatly in size, and many production applications have
large text segments with a large number of instrumentable functions, each with
tens to hundreds of instructions and with each instruction another potential probe
target for the pid provider. The invocation dtrace -n 'pid1234::::' will instruct
DTrace to instrument every function entry and return and to instrument every
instruction in process PID 1234. Here’s an example:

15708    pid1122  libsocket.so.1         getprotobynumber entry
15709    pid1122 libsocket.so.1            getprotoent entry
[...]
19019    pid1122    libc.so.1                fopen entry
19020    pid1122  libc.so.1          _freopen_null entry
19021    pid1122 libc.so.1              freopen entry
19022    pid1122 libc.so.1              fgetpos entry
19023    pid1122 libc.so.1              fsetpos entry
19024    pid1122    libc.so.1                fputc entry
[...]

# dtrace -ln 'pid$target::fputc:' -p 1122
   ID   PROVIDER    MODULE               FUNCTION NAME
19024    pid1122    libc.so.1                fputc entry
20542    pid1122    libc.so.1      fputc return
20543    pid1122    libc.so.1                fputc 0
20544    pid1122    libc.so.1                fputc 1
20545    pid1122    libc.so.1                fputc 3
20546    pid1122    libc.so.1                fputc 4
20547    pid1122    libc.so.1                fputc 7
20548    pid1122    libc.so.1                fputc c
20549    pid1122    libc.so.1                fputc d
20550    pid1122    libc.so.1                fputc 13
20551    pid1122    libc.so.1                fputc 16
20552    pid1122    libc.so.1                fputc 19
20553    pid1122    libc.so.1                fputc 1c
20554    pid1122    libc.so.1                fputc 21
20555    pid1122    libc.so.1                fputc 24
20556    pid1122    libc.so.1                fputc 25
20557    pid1122    libc.so.1                fputc 26

solaris# dtrace -n 'pid1471:::'
dtrace: invalid probe specifier pid1471:::: failed to create offset probes in 
'__1cFStateM_sub_Op_ConI6MpknENode__v_': Not enough space 

solaris# dtrace -n 'pid1471:::entry'
dtrace: description 'pid1471:::entry' matched 26847 probes
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Process PID 1471 was a Java JVM process. The first DTrace command
attempted to insert a probe at every instruction location in the JVM but was
unable to complete. The Not enough space error means the default number of
250,000 pid provider probes was not enough to complete the instrumentation. The
second invocation in the example instruments the same process, but this time with
the entry string in the name component of the probe, instructing DTrace to insert
a probe at the entry point of every function in the process. In this case, DTrace
found 26,847 instrumentation points.

Once a process is instrumented with the pid provider, depending on the number
of probes and how busy the process is, using the pid provider will induce some
probe effect, meaning it can slow the execution speed of the target process, in some
cases dramatically.

Stability

The pid provider is considered an unstable interface, meaning that the provider
interface (which consists of the probe names and arguments) may be subject to
change between application software versions. This is because the interface is
dynamically constructed based on the thousands of compiled functions that make
up a software application. It is these functions that are subject to change, and
when they do, so does the pid provider. This means that any DTrace scripts or one-
liners based on the pid provider may be dependent on the application software ver-
sion they were written for.

Although application software can and is likely to change between versions,
many library interfaces are likely to remain unchanged, such as libc, libsocket, lib-
pthread, and many others, especially those exporting standard interfaces such as
POSIX. These can make good targets for tracing with the pid provider, because
one-liners and scripts will have a higher degree of stability than when tracing
application-specific software.

If a pid-based script has stopped working because of minor software changes,
then ideally the script can be repaired with equivalent minor changes to match the
newer software. If the software has changed significantly, then the pid-based script
may need to be rewritten entirely. Because of this instability, it is recommended to
use pid only when needed. If there are stable providers available that can serve a
similar role, they should be used instead, and the scripts that use them will not
need to be rewritten as the software changes.

Since pid is an unstable interface, the pid provider one-liners and scripts in this
book are not guaranteed to work or be supported by software vendors.

The pid provider scripts in this book serve not just as examples of using the pid
provider in D programs but also as example data that DTrace can make available and
why that can be useful. If these scripts stop working, you can try fixing them or check
for updated versions on the Web (try this book’s Web site, www.dtracebook.com).

www.dtracebook.com
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Arguments and Return Value

The arguments and return value for functions can be inspected on the pid entry
and return probes.

� pid<PID>:::entry: The function arguments is (uint64_t) arg0 ... 
argn.

� pid<PID>:::return: The program counter is (uint64_t) arg0; the return 
value is (uint64_t) arg1.

The uregs[] array can also be accessed to examine individual user registers.

cpc Provider

The CPU Performance Counter (cpc) provider provides probes for profiling CPU
events, such as instructions, cache misses, and stall cycles. These CPU events are
based on the performance counters that the CPUs provide, which vary between
manufacturers, types, and sometimes versions of the same type of CPU. A generic
interface for the performance counters has been developed, the Performance Appli-
cation Programming Interface (PAPI),3 which is supported by the cpc provider in
addition to the platform-specific counters. The cpc provider is fully documented in
the cpc provider section of the DTrace Guide and is currently available only in
Solaris Nevada.4

The cpc provider probe names have the following format:

The event name may be a PAPI name or a platform-specific event name. On
Solaris, events for the current CPU type can be listed using cpustat(1M):

3. See http://icl.cs.utk.edu/papi.

4. This was integrated in snv_109, defined by PSARC 2008/480, and developed by Jon Haslam.
See his blog post about cpc, currently at http://blogs.sun.com/jonh/entry/finally_dtrace_
meets_the_cpu.

cpc:::<event name>-<mode>-<optional mask-><count>

solaris# cpustat -h
Usage:
        cpustat [-c events] [-p period] [-nstD] [-T d|u] [interval [count]]
[...]
        Generic Events:

continues

http://icl.cs.utk.edu/papi
http://blogs.sun.com/jonh/entry/finally_dtrace_meets_the_cpu
http://blogs.sun.com/jonh/entry/finally_dtrace_meets_the_cpu
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The first group, Generic Events, is the PAPI events and is documented on
Solaris in the generic_events(3CPC) man page. The second group,  Platform
Specific Events, is from the CPU manufacturer and is typically documented in
the CPU user guide referenced in the cpustat(1M) output.

The mode component of the probe name can be user for profiling user-mode,
kernel for kernel-mode, or all for both.

The optional mask component is sometimes used by platform-specific events, as
directed by the CPU user guide.

The final component of the probe name is the overflow count: Once this many of
the specified event has occurred on the CPU, the probe fires on that CPU. For fre-
quent events, such as cycle and instruction counts, this can be set to a high num-
ber to reduce the rate that the probe fires and therefore reduce the impact on
target application performance.

cpc provider probes have two arguments: arg0 is the kernel program counter or
0 if not executing in the kernel, and arg1 is the user-level program counter or 0 if
not executing in user-mode.

Depending on the CPU type, it may not be possible to enable more than one cpc
probe simultaneously. Subsequent enablings will encounter a Failed to enable
probe error. This behavior is similar to, and for the same reason as, the operating
system, allowing only one invocation of cpustat(1M) at a time. There is a finite
number of performance counter registers available for each CPU type.

The sections that follow have example cpc provider one-liners and output.

        event[0-3]: PAPI_br_ins PAPI_br_msp PAPI_br_tkn PAPI_fp_ops 
 PAPI_fad_ins PAPI_fml_ins PAPI_fpu_idl PAPI_tot_cyc 
 PAPI_tot_ins PAPI_l1_dca PAPI_l1_dcm PAPI_l1_ldm 

  PAPI_l1_stm PAPI_l1_ica PAPI_l1_icm PAPI_l1_icr 
  PAPI_l2_dch PAPI_l2_dcm PAPI_l2_dcr PAPI_l2_dcw 
  PAPI_l2_ich PAPI_l2_icm PAPI_l2_ldm PAPI_l2_stm 
 PAPI_res_stl PAPI_stl_icy PAPI_hw_int PAPI_tlb_dm 

  PAPI_tlb_im PAPI_l3_dcr PAPI_l3_icr PAPI_l3_tcr 
   PAPI_l3_stm PAPI_l3_ldm PAPI_l3_tcm 

        See generic_events(3CPC) for descriptions of these events

Platform Specific Events:

        event[0-3]: FP_dispatched_fpu_ops FP_cycles_no_fpu_ops_retired
   FP_dispatched_fpu_ops_ff LS_seg_reg_load 
  LS_uarch_resync_self_modify LS_uarch_resync_snoop 
 LS_buffer_2_full LS_locked_operation LS_retired_cflush
LS_retired_cpuid DC_access DC_miss DC_refill_from_L2 

 DC_refill_from_system DC_copyback DC_dtlb_L1_miss_L2_hit
  DC_dtlb_L1_miss_L2_miss DC_misaligned_data_ref 

[...]
        See "BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h 
        Processors" (AMD publication 31116) 
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See Also

There are many topics relevant to application analysis, most of which are covered
fully in separate chapters of this book. 

� Chapter 3: System View

� Chapter 4: Disk I/O

� Chapter 5: File Systems

� Chapter 6: Network Lower-Level Protocols

� Chapter 7: Application-Level Protocols

� Chapter 8: Languages

All of these can be considered part of this chapter. The one-liners and scripts
that follow summarize application analysis with DTrace and introduce some
remaining topics such as signals, thread scaling, and the cpc provider.

One-Liners

For many of these, a Web server with processes named httpd is used as the target
application. Modify httpd to be the name of the application process of interest.

proc provider

Trace new processes:

Trace new processes (current FreeBSD5):

New processes (with arguments):

dtrace -n 'proc:::exec-success { trace(execname); }'

dtrace -n 'proc:::exec_success { trace(execname); }'

5. FreeBSD 8.0; this will change to become exec-success (consistent with Solaris and Mac
OS X), now that support for hyphens in FreeBSD probe names is being developed.

dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
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New threads created, by process:

Successful signal details:

syscall provider

System call counts for processes named httpd:

System calls with non-zero errno (errors):

profile provider

User stack trace profile at 101 Hertz, showing process name and stack:

User stack trace profile at 101 Hertz, showing process name and top five stack
frames:

User stack trace profile at 101 Hertz, showing process name and stack, top ten
only:

dtrace -n 'proc:::lwp-create { @[pid, execname] = count(); }'

dtrace -n 'proc:::signal-send { printf("%s -%d %d", execname, args[2], args[1]->pr_pid); }'

dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'

dtrace -n 'syscall:::return /errno/ { @[probefunc, errno] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack()] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack(5)] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack()] = count(); } END { trunc(@, 10); }'
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User stack trace profile at 101 Hertz for processes named httpd:

User function name profile at 101 Hertz for processes named httpd:

User module name profile at 101 Hertz for processes named httpd:

sched provider

Count user stack traces when processes named httpd leave CPU:

pid provider

The pid provider instruments functions from a particular software version; these
example one-liners may therefore require modifications to match the software ver-
sion you are running. They can be executed on an existing process by using -p PID
or by running a new process using -c command.

Count process segment function calls:

Count libc function calls:

Count libc string function calls:

dtrace -n 'profile-101 /execname == "httpd"/ { @[ustack()] = count(); }'

dtrace -n 'profile-101 /execname == "httpd"/ { @[ufunc(arg1)] = count(); }'

dtrace -n 'profile-101 /execname == "httpd"/ { @[umod(arg1)] = count(); }'

dtrace -n 'sched:::off-cpu /execname == "httpd"/ { @[ustack()] = count(); }'

dtrace -n 'pid$target:a.out::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'pid$target:libc::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'pid$target:libc:str*:entry { @[probefunc] = count(); }' -p PID
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Trace libc fsync() calls showing file descriptor:

Trace libc fsync() calls showing file path name:

Count requested malloc() bytes by user stack trace:

Trace failed malloc() requests:

See the “C” section of Chapter 8 for more pid provider one-liners.

plockstat provider

As with the pid provider, these can also be run using the -c command.
Mutex blocks by user-level stack trace:

Mutex spin counts by user-level stack trace:

Reader/writer blocks by user-level stack trace:

dtrace -n 'pid$target:libc:fsync:entry { trace(arg0); }' -p PID

dtrace -n 'pid$target:libc:fsync:entry { trace(fds[arg0].fi_pathname); }' -p PID

dtrace -n 'pid$target::malloc:entry { @[ustack()] = sum(arg0); }' -p PID

dtrace -n 'pid$target::malloc:return /arg1 == NULL/ { ustack(); }' -p PID

dtrace -n 'plockstat$target:::mutex-block { @[ustack()] = count(); }' -p PID

dtrace -n 'plockstat$target:::mutex-acquire /arg2/ { @[ustack()] = sum(arg2); }' -p PID

dtrace -n 'plockstat$target:::rw-block { @[ustack()] = count(); }' -p PID



Providers 797

cpc provider

These cpc provider one-liners are dependent on the availability of both the cpc pro-
vider and the event probes (for Solaris, see cpustat(1M) to learn what events are
available on your system). The following overflow counts (200,000; 50,000; and
10,000) have been picked to balance between the rate of events and fired DTrace
probes.

User-mode instructions by process name:

User-mode instructions by process name and function name:

User-mode instructions for processes named httpd by function name:

User-mode CPU cycles by process name and function name:

User-mode level-one cache misses by process name and function name:

User-mode level-one instruction cache misses by process name and function
name:

User-mode level-one data cache misses by process name and function name:

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 /execname == "httpd"/ { @[ufunc(arg1)] = 
count(); }'

dtrace -n 'cpc:::PAPI_tot_cyc-user-200000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_icm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_dcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
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User-mode level-two cache misses by process name and function name:

User-mode level-three cache misses by process name and function name:

User-mode conditional branch misprediction by process name and function name:

User-mode resource stall cycles by process name and function name:

User-mode floating-point operations by process name and function name:

User-mode TLB misses by process name and function name:

One-Liner Selected Examples

There are additional examples of one-liners in the “Case Study” section.

New Processes (with Arguments)

New processes were traced on Solaris while the man ls command was executed:

dtrace -n 'cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l3_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_br_msp-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_res_stl-user-50000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_fp_ops-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_tlb_tl-user-10000 { @[execname, ufunc(arg1)] = count(); }'

solaris# dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
dtrace: description 'proc:::exec-success ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0  13487  exec_common:exec-success   man ls
  0  13487         exec_common:exec-success   sh -c cd /usr/share/man; tbl /usr/share/
man/man1/ls.1 |neqn /usr/share/lib/pub/
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The variety of programs that are executed to process man ls are visible, ending
with the more(1) command that shows the man page.

Mac OS X currently doesn’t provide the full argument list in pr_psargs, which
is noted in the comments of the curpsinfo translator:

And using pr_psargs in trace() on Mac OS X can trigger tracemem()
behavior, printing hex dumps from the address, which makes reading the output a
little difficult. It may be easier to just use the execname for this one-liner for now.
Here’s an example of tracing man ls on Mac OS X:

Note that the output is shuffled (the CPU ID change is a hint). For the correct
order, include a time stamp in the output and postsort.

  0  13487         exec_common:exec-success   tbl /usr/share/man/man1/ls.1
  0  13487         exec_common:exec-success   neqn /usr/share/lib/pub/eqnchar -
  0  13487         exec_common:exec-success   nroff -u0 -Tlp -man -
  0  13487  exec_common:exec-success   col -x
  0  13487         exec_common:exec-success   sh -c trap '' 1 15; /usr/bin/mv -f /tmp/
mpcJaP5g /usr/share/man/cat1/ls.1 2> /d
  0  13487         exec_common:exec-success   /usr/bin/mv -f /tmp/mpcJaP5g /usr/share/
man/cat1/ls.1
  0  13487    exec_common:exec-success   sh -c more -s /tmp/mpcJaP5g
  0  13487         exec_common:exec-success more -s /tmp/mpcJaP5g
^C

macosx# grep pr_psargs /usr/lib/dtrace/darwin.d
      char pr_psargs[80];     /* initial characters of arg list */
      pr_psargs = P->p_comm; /* XXX omits command line arguments XXX */
      pr_psargs = xlate <psinfo_t> ((struct proc *)(T->task->bsd_info)).pr_psargs; /* 

XXX omits command line arguments XXX */

macosx# dtrace -n 'proc:::exec-success { trace(execname); }'
dtrace: description 'proc:::exec-success ' matched 2 probes
CPU     ID            FUNCTION:NAME
  0  19374 posix_spawn:exec-success   sh 
  0  19374 posix_spawn:exec-success   sh 
  0  19368        __mac_execve:exec-success   sh 
  0  19368        __mac_execve:exec-success tbl
  0  19368        __mac_execve:exec-success   sh 
  0  19368 __mac_execve:exec-success   grotty
  0  19368 __mac_execve:exec-success   more
  1  19368        __mac_execve:exec-success man
  1  19368        __mac_execve:exec-success   sh 
  1  19368 __mac_execve:exec-success   gzip
  1  19368 __mac_execve:exec-success   gzip
  1  19374 posix_spawn:exec-success   sh 
  1  19368 __mac_execve:exec-success   groff
  1  19368 __mac_execve:exec-success   troff
  1  19368 __mac_execve:exec-success   gzip
^C
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System Call Counts for Processes Called httpd

The Apache Web server runs multiple httpd processes to serve Web traffic. This
can be a problem for traditional system call debuggers (such as truss(1)), which
can examine only one process at a time, usually by providing a process ID. DTrace
can examine all processes simultaneously, making it especially useful for multipro-
cess applications such as Apache.

This one-liner frequency counts system calls from all running Apache httpd
processes:

The most frequently called system call was lstat64(), called 245 times.

User Stack Trace Profile at 101 Hertz, Showing Process Name and 
Top Five Stack Frames

This one-liner is a quick way to see not just who is on-CPU but what they are
doing:

solaris# dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 225 probes
^C

  accept                     1
  getpid                     1
  lwp_mutex_timedlock                    1
  lwp_mutex_unlock                     1
  shutdown                    1
  brk                      4
  gtime                     5
  portfs                     7
  mmap64                     10
  waitsys                    30
  munmap                     33
  doorfs                     39
  openat                     49
  writev                     51
  stat64                     60
  close                     61
  fcntl                     73
  read                     74
  lwp_sigmask                   78
  getdents64                    98
  pollsys                    100
  fstat64                    109
  open64                    207
  lstat64                    245

solaris# dtrace -n 'profile-101 { @[execname, ustack(5)] = count(); }'
dtrace: description 'profile-101 ' matched 1 probe
^C
[...]
  mpstat

    libc.so.1`p_online+0x7
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No stack trace was shown for sched (the kernel), since this one-liner is examin-
ing user-mode stacks (ustack()), not kernel stacks (stack()). This could be elim-
inated from the output by adding the predicate /arg1/ (check that the user-mode
program counter is nonzero) to ensure that only user stacks are sampled.

User-Mode Instructions by Process Name

To introduce this one-liner, a couple of test applications were written and executed
called app1 and app2, each single-threaded and running a continuous loop of code.
Examining these applications using top(1) shows the following:

top(1) reports that each application is using 12.5 percent of the total CPU
capacity, which is a single core on this eight-core system. The Solaris prstat -mL
breaks down the CPU time into microstates and shows this in terms of a single
thread:

prstat(1M) shows that each thread is running at 100 percent user time (USR).
This is a little more information than simply %CPU from top(1), and it indicates
that these applications are both spending time executing their own code.

   mpstat`acquire_snapshot+0x131
    mpstat`main+0x27d
    mpstat`_start+0x7d

               13
  httpd

    libc.so.1`__forkx+0xb
    libc.so.1`fork+0x1d
   mod_php5.2.so`zif_proc_open+0x970
  mod_php5.2.so`execute_internal+0x45
  mod_php5.2.so`dtrace_execute_internal+0x59

               42
  sched
              541

last pid:  4378;  load avg:  2.13,  2.00,  1.62;  up 4+02:53:19       06:24:05
98 processes: 95 sleeping, 3 on cpu
CPU states: 73.9% idle, 25.2% user,  0.9% kernel,  0.0% iowait,  0.0% swap
Kernel: 866 ctxsw, 19 trap, 1884 intr, 2671 syscall
Memory: 32G phys mem, 1298M free mem, 4096M total swap, 4096M free swap

   PID USERNAME NLWP PRI NICE  SIZE   RES STATE  TIME    CPU COMMAND
  4319 root        1  10  0 1026M  513M cpu/3   10:50 12.50% app2
  4318 root        1  10  0 1580K  808K cpu/7   10:56 12.50% app1
[...]

   PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID 
  4318 root     100 0.0 0.0 0.0 0.0 0.0 0.0 0.0   0   8   0   0 app1/1
  4319 root     100 0.0 0.0 0.0 0.0 0.0 0.0 0.0   0   8   0   0 app2/1
[...]
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The cpc provider allows %CPU time to be understood in greater depth. This one-
liner uses the cpc provider to profile instructions by process name. The probe speci-
fied fires for every 200,000th user-level instruction, counting the current process
name at the time:

So, although the output from top(1) and prstat(1M) suggests that both
applications are very similar in terms of CPU usage, the cpc provider shows that
they are in fact very different. During the same interval, app1 executed roughly
300 times more CPU instructions than app2.

The other cpc one-liners can explain this further; app1 was written to continu-
ally execute fast register-based instructions, while app2 continually performs
much slower main memory I/O.

User-Mode Instructions for Processes Named httpd by Function Name

This one-liner matches processes named httpd and profiles instructions by func-
tion, counting on every 200,000th instruction:

solaris# dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-user-200000 ' matched 1 probe
^C

  sendmail                    1
  dtrace                     2
  mysqld                     6
  sshd                      7
  nscd                     14
  httpd                     16
  prstat                     23
  mpstat                     52
  app2                     498
  app1                   154801

solaris# dtrace -n 'cpc:::PAPI_tot_ins-user-200000 /execname == "httpd"/ { 
@[ufunc(arg1)] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-user-200000 ' matched 1 probe
^C

  httpd`ap_invoke_handler                    1
  httpd`pcre_exec                     1
  libcrypto.so.0.9.8`SHA1_Update                  1
[...]
  libcrypto.so.0.9.8`bn_sqr_comba8                 39
  libz.so.1`crc32_little                     41
  libcrypto.so.0.9.8`sha1_block_data_order              50
  libcrypto.so.0.9.8`_x86_AES_encrypt                88
  libz.so.1`compress_block                   103
  libcrypto.so.0.9.8`bn_mul_add_words               117
  libcrypto.so.0.9.8`bn_mul_add_words               127
  libcrypto.so.0.9.8`bn_mul_add_words               133
  libcrypto.so.0.9.8`bn_mul_add_words               134
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The functions executing the most instructions are in the libz library, which per-
forms compression.

User-Mode Level-Two Cache Misses by Process Name and Function Name

This example is included to suggest what to do when encountering this error:

This system does have the cpc provider; however, this probe is invalid. After
checking for typos, check whether the event name is supported on this system
using cpustat(1M) (Solaris):

This output shows that the PAPI_l2_tcm event (level-two cache miss) is not sup-
ported on this system. However, it also shows that PAPI_l2_dcm (level-two data
cache miss) and PAPI_l2_icm (level-two instruction cache miss) are supported.
Adjusting the one-liner for, say, data cache misses only is demonstrated by the fol-
lowing one-liner:

  libz.so.1`fill_window                    222
  libz.so.1`deflate_slow                    374
  libz.so.1`longest_match                    1022

solaris# dtrace -n 'cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
dtrace: invalid probe specifier cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] =
 count(); }: probe description cpc:::PAPI_l2_tcm-user-10000 does not match any probes

solaris# cpustat -h
Usage:
        cpustat [-c events] [-p period] [-nstD] [-T d|u] [interval [count]]
[...]
        Generic Events:

        event[0-3]: PAPI_br_ins PAPI_br_msp PAPI_br_tkn PAPI_fp_ops 
 PAPI_fad_ins PAPI_fml_ins PAPI_fpu_idl PAPI_tot_cyc 
 PAPI_tot_ins PAPI_l1_dca PAPI_l1_dcm PAPI_l1_ldm 
  PAPI_l1_stm PAPI_l1_ica PAPI_l1_icm PAPI_l1_icr 
  PAPI_l2_dch PAPI_l2_dcm PAPI_l2_dcr PAPI_l2_dcw 
  PAPI_l2_ich PAPI_l2_icm PAPI_l2_ldm PAPI_l2_stm 
 PAPI_res_stl PAPI_stl_icy PAPI_hw_int PAPI_tlb_dm 
  PAPI_tlb_im PAPI_l3_dcr PAPI_l3_icr PAPI_l3_tcr 

   PAPI_l3_stm PAPI_l3_ldm PAPI_l3_tcm 

        See generic_events(3CPC) for descriptions of these events

Platform Specific Events:

        event[0-3]: FP_dispatched_fpu_ops FP_cycles_no_fpu_ops_retired
[...]
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This one-liner can then be run for instruction cache misses so that both types of
misses can be considered.

Should the generic PAPI events be unavailable or unsuitable, the platform-spe-
cific events (as listed by cpustat(1M)) may allow the event to be examined, albeit
in a way that is tied to the current CPU version.

Scripts

Table 9-3 summarizes the scripts that follow and the providers they use.

procsnoop.d

This is a script version of the “New Processes” one-liner shown earlier. Tracing the
execution of new processes provides important visibility for applications that call

solaris# dtrace -n 'cpc:::PAPI_l2_dcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
dtrace: description 'cpc:::PAPI_l2_dcm-user-10000 ' matched 1 probe
^C

  dtrace    libproc.so.1`byaddr_cmp                          1
  dtrace     libproc.so.1`symtab_getsym              1
  dtrace  libc.so.1`memset              1
  mysqld mysqld`srv_lock_timeout_and_monitor_thread        1
  mysqld       mysqld`sync_array_print_long_waits                1
  dtrace      libproc.so.1`byaddr_cmp_common             2
  dtrace  libc.so.1`qsort              2
  dtrace     libproc.so.1`optimize_symtab             3
  dtrace    libproc.so.1`byname_cmp                          6
  dtrace  libc.so.1`strcmp              17
  app2        app2`main                 399

Table 9-3 Application Script Summary

Script Description Provider

procsnoop Snoop process execution proc

procsystime System call time statistics by process syscall

uoncpu.d Profile application on-CPU user stacks profile

uoffcpu.d Count application off-CPU user stacks by time sched

plockstat User-level mutex and read/write lock statistics plockstat

kill.d Snoop process signals syscall

sigdist.d Signal distribution by source and destination processes syscall

threaded.d Sample multithreaded CPU usage profile
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the command line; some applications can call shell commands so frequently that it
becomes a performance issue—one that is difficult to spot in traditional tools (such
as prstat(1M) and top(1)) because the processes are so short-lived.

Script

Example

The following shows the Oracle Solaris commands executed as a consequence of
restarting the cron daemon via svcadm(1M):

The TIME(ms) column is printed so that the output can be postsorted if desired
(DTrace may shuffle the output slightly because it collects buffers from multiple
CPUs).

See Also: execsnoop

A program called execsnoop exists from the DTraceToolkit, which has similar
functionality to that of procsnoop. It was written originally for Oracle Solaris and
is now shipped on Mac OS X by default. execsnoop wraps the D script in the shell
so that command-line options are available:

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   dtrace:::BEGIN
7   {
8 printf("%-8s %5s %6s %6s %s\n", "TIME(ms)", "UID", "PID", "PPID",
9               "COMMAND");
10   start = timestamp;
11  }
12
13  proc:::exec-success
14  {
15          printf("%-8d %5d %6d %6d %s\n", (timestamp - start) / 1000000,
16  uid, pid, ppid, curpsinfo->pr_psargs);
17  }

Script procsnoop.d

solaris# procsnoop.d
TIME(ms)   UID  PID   PPID COMMAND
3227         0 13273  12224 svcadm restart cron
3709         0  13274   106 /sbin/sh -c exec /lib/svc/method/svc-cron
3763         0  13274    106 /sbin/sh /lib/svc/method/svc-cron
3773         0  13275  13274 /usr/bin/rm -f /var/run/cron_fifo
3782         0  13276  13274 /usr/sbin/cron
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execsnoop traces process execution by tracing the exec() system call (and
variants), which do differ slightly between operating systems. Unfortunately, sys-
tem calls are not a stable interface, even across different versions of the same oper-
ating system. Small changes to execsnoop have been necessary to keep it working
across different versions of Oracle Solaris, because of subtle changes with the names
of the exec() system calls. The lesson here is to always prefer the stable provid-
ers, such as the proc provider (which is stable) instead of syscall (which isn’t).

procsystime

procsystime is a generic system call time reporter. It can count the execution of
system calls, their elapsed time, and on-CPU time and can produce a report show-
ing the system call type and process details. It is from the DTraceToolkit and
shipped on Mac OS X by default in /usr/bin.

Script

The essence of the script is explained here; the actual script is too long and too
uninteresting (mostly dealing with command-line options) to list; see the DTrace-
Toolkit for the full listing.

macosx# execsnoop -h
USAGE: execsnoop [-a|-A|-ehjsvZ] [-c command]
       execsnoop           # default output
                -a            # print all data
                -A          # dump all data, space delimited
                -e   # safe output, parseable
                -j            # print project ID
                -s           # print start time, us
                -v # print start time, string
                -Z             # print zonename

-c command  # command name to snoop
  eg,
        execsnoop -v   # human readable timestamps
        execsnoop –Z         # print zonename
        execsnoop -c ls  # snoop ls commands only

1      syscall:::entry
2      /self->ok/
3      {
4   @Counts[probefunc] = count();
5   self->start = timestamp;
6  self->vstart = vtimestamp;
7      }
8
9      syscall:::return
10      /self->start/
11      {
12 this->elapsed = timestamp - self->start;
13            this->oncpu = vtimestamp - self->vstart;
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A self->ok variable is set beforehand to true if the current process is sup-
posed to be traced. The code is then straightforward: Time stamps are set on the
entry to syscalls so that deltas can be calculated on the return.

Examples

Examples include usage and file system archive.

Usage

Command-line options can be listed using -h:

File System Archive

The tar(1) command was used to archive a file system, with procsystime tracing
elapsed times (which is the default) for processes named tar:

14 @Elapsed[probefunc] = sum(this->elapsed);
15  @CPU[probefunc] = sum(this->cpu);
16            self->start = 0;
17    self->vstart = 0;
18      }

solaris# procsystime -h
lox# ./procsystime -h
USAGE: procsystime [-aceho] [ -p PID | -n name | command ]
                  -p PID  # examine this PID
                  -n name         # examine this process name
                  -a    # print all details
                  -e    # print elapsed times
                  -c    # print syscall counts
                  -o    # print CPU times
                  -T     # print totals
  eg,
       procsystime -p 1871     # examine PID 1871
       procsystime -n tar     # examine processes called "tar"
       procsystime -aTn bash   # print all details for bash
       procsystime df -h      # run and examine "df -h"

solaris# procsystime -n tar
Tracing... Hit Ctrl-C to end...
^C

Elapsed Times for processes tar,

         SYSCALL         TIME (ns)
           fcntl             58138
         fstat64            96490
          openat            280246
           chdir           1444153
           write           8922505
          open64           15294117

continues
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Most of the elapsed time for the tar(1) command was in the read() syscall,
which is expected because tar(1) is reading files from disk (which is slow I/O).
The total time spent waiting for read() syscalls during the procsystime trace was
1.55 seconds.

uoncpu.d

This is a script version of the DTrace one-liner to profile the user stack trace of a
given application process name. As one of the most useful one-liners, it may save
typing to provide it as a script, where it can also be more easily enhanced.

Script

Example

Here the uoncpu.d script is used to frequency count the user stack trace of all cur-
rently running Perl programs. Note perl is passed as a command-line argument,
evaluated in the predicate (line 4):

        openat64          16804949
           close           17855422
      getdents64         46679462
       fstatat64         98011589
            read         1551039139

1 #!/usr/sbin/dtrace -s
2
3 profile:::profile-1001
4      /execname == $$1/
5      {
6            @["\n on-cpu (count @1001hz):", ustack()] = count();
7      }

Script uoncpu.d

# uoncpu.d perl
dtrace: script 'uoncpu.d' matched 1 probe
^C
[...output truncated...]

  on-cpu (count @1001hz):
   libperl.so.1`Perl_sv_setnv+0xc8
  libperl.so.1`Perl_pp_multiply+0x3fe
  libperl.so.1`Perl_runops_standard+0x3b

   libperl.so.1`S_run_body+0xfa
   libperl.so.1`perl_run+0x1eb

     perl`main+0x8a
    perl`_start+0x7d

              105
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The hottest stacks identified include the Perl_pp_multiply() function, sug-
gesting that Perl is spending most of its time doing multiplications. Further analy-
sis of those functions and using the perl provider, if available (see Chapter 8),
could confirm.

uoffcpu.d

As a companion to uoncpu.d, the uoffcpu.d script measures the time spent off-
CPU by user stack trace. This time includes device I/O, lock wait, and dispatcher
queue latency.

Script

Example

Here the uoffcpu.d script was used to trace CPU time of bash shell processes:

  on-cpu (count @1001hz):
  libperl.so.1`Perl_pp_multiply+0x3f7
  libperl.so.1`Perl_runops_standard+0x3b

   libperl.so.1`S_run_body+0xfa
   libperl.so.1`perl_run+0x1eb

     perl`main+0x8a
    perl`_start+0x7d

              111

1 #!/usr/sbin/dtrace -s
2
3      sched:::off-cpu
4      /execname == $$1/
5      {
6   self->start = timestamp;
7      }
8
9      sched:::on-cpu
10      /self->start/
11      {
12            this->delta = (timestamp - self->start) / 1000;
13            @["off-cpu (us):", ustack()] = quantize(this->delta);
14            self->start = 0;
15      }

Script uoffcpu.d

# uoffcpu.d bash
dtrace: script 'uoffcpu.d' matched 6 probes
^C
[...]

continues



810 Chapter 9 � Applications

While tracing, in another bash shell, the command sleep 1 was typed and exe-
cuted. The previous output shows the keystroke latency (mostly 65 ms to 131 ms) of
the read commands, as well as the time spent waiting for the sleep(1) command
to complete (in the 524 to 1048 ms range, which matches expectation: 1000 ms).

Note the user stack frame generated by the ustack() function contains a mix
of symbol names and hex values (for example, bash`0x806dff4) in the output.
This can happen for one of several reasons whenever ustack() is used. DTrace
actually collects and stores the stack frames has hex values. User addresses are
resolved to symbol names as a postprocessing step before the output is generated.
It is possible DTrace will not be able to resolve a user address to a symbol name if
any of the following is true:

� The user process being traced has exited before the processing can be done.

  off-cpu (us):
    libc.so.1`__waitid+0x7
    libc.so.1`waitpid+0x65

     bash`0x8090627
    bash`wait_for+0x1a4
  bash`execute_command_internal+0x6f1

   bash`execute_command+0x5b
    bash`reader_loop+0x1bf

     bash`main+0x7df
    bash`_start+0x7d

           value  ------------- Distribution ------------- count
          262144 |                0
          524288 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
         1048576 |               0

  off-cpu (us):
    libc.so.1`__read+0x7
    bash`rl_getc+0x47
    bash`rl_read_key+0xeb
   bash`readline_internal_char+0x99

     bash`0x80d945a
     bash`0x80d9481
    bash`readline+0x55

     bash`0x806e11f
     bash`0x806dff4
     bash`0x806ed06
     bash`0x806f9b4
     bash`0x806f3a4
    bash`yyparse+0x4b9
    bash`parse_command+0x80
    bash`read_command+0xd9
    bash`reader_loop+0x147

     bash`main+0x7df
    bash`_start+0x7d

           value  ------------- Distribution ------------- count
           32768 |             0
           65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            5
          131072 |@@@@@@@@@@@             2
          262144 |                 0
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� The symbol table has been stripped, either from the user process binary or 
from the shared object libraries it has linked.

� We are executing user code out of data via jump tables.6

plockstat

plockstat(1M) is a powerful tool to examine user-level lock events, providing
details on contention and hold time. It uses the DTrace plockstat provider, which is
available for developing custom user-land lock analysis scripts. The plockstat pro-
vider (and the plockstat(1M) tool) is available on Solaris and Mac OS X and is
currently being developed for FreeBSD.

Script

plockstat(1M) is a binary executable that dynamically produces a D script that
is sent to libdtrace (instead of a static D script sent to libdtrace via dtrace(1M)).
If it is of interest, this D script can be examined using the -V option:

Example

Here the plockstat(1M) command traced all lock events (-A for both hold and
contention) on the Name Service Cache Daemon (nscd) for 60 seconds:

6. See www.opensolaris.org/jive/thread.jspa?messageID=436419&#436419.

solaris# plockstat -V -p 12219
plockstat: vvvv D program vvvv
plockstat$target:::rw-block
{
        self->rwblock[arg0] = timestamp;
}
plockstat$target:::mutex-block
{
        self->mtxblock[arg0] = timestamp;
}
plockstat$target:::mutex-spin
{
        self->mtxspin[arg0] = timestamp;
}
plockstat$target:::rw-blocked
/self->rwblock[arg0] && arg1 == 1 && arg2 != 0/
{
        @rw_w_block[arg0, ustack(5)] =

sum(timestamp - self->rwblock[arg0]);
        @rw_w_block_count[arg0, ustack(5)] = count();
        self->rwblock[arg0] = 0;

rw_w_block_found = 1;
}
[...output truncated...]

www.opensolaris.org/jive/thread.jspa?messageID=436419&#436419
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While tracing, there were very few contention events and many hold events.
Hold events are normal for software execution and are ideally as short as possible,
while contention events can cause performance issues as threads are waiting for
locks.

The output has caught a spin event for the lock at address 0x8089ab8 (no sym-
bol name) from the code path location nscd`_nscd_restart_if_cfgfile_
changed+0x3e, which was for 38 us. This means a thread span on-CPU for 38 us

solaris# plockstat -A -e 60 -p `pgrep nscd`
Mutex hold

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
   30  1302583 0x814c08c     libnsl.so.1`rpc_fd_unlock+0x4d
  326    15687 0x8089ab8                  nscd`_nscd_restart_if_cfgfile_changed+0x6c
    7   709342 libumem.so.1`umem_cache_lock libumem.so.1`umem_cache_applyall+0x5e
  112    16702 0x80b67b8       nscd`lookup_int+0x611
    3   570898 0x81a0548      libscf.so.1`scf_handle_bind+0x231
   60    24592 0x80b20e8      nscd`_nscd_mutex_unlock+0x8d
   50    24306 0x80b2868      nscd`_nscd_mutex_unlock+0x8d
   30    19839 libnsl.so.1`_ti_userlock  libnsl.so.1`sig_mutex_unlock+0x1e
    7    83100 libumem.so.1`umem_update_lock libumem.so.1`umem_update_thread+0x129
[...output truncated...]

R/W reader hold

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
   30    95341 0x80c0e14        nscd`_nscd_get+0xb8
  120    15586 nscd`nscd_nsw_state_base_lock nscd`_get_nsw_state_int+0x19c
   60    20256 0x80e0a7c        nscd`_nscd_get+0xb8
  120     9806 nscd`addrDB_rwlock    nscd`_nscd_is_int_addr+0xd1
   30    39155 0x8145944        nscd`_nscd_get+0xb8
[...output truncated...]

R/W writer hold

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
   30    16293 nscd`addrDB_rwlock    nscd`_nscd_del_int_addr+0xeb
   30    15440 nscd`addrDB_rwlock    nscd`_nscd_add_int_addr+0x9c
    3    14279 nscd`nscd_smf_service_state_lock nscd`query_smf_state+0x17b

Mutex block

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
    2   119957 0x8089ab8                   nscd`_nscd_restart_if_cfgfile_changed+0x3e

Mutex spin

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
    1    37959 0x8089ab8                    nscd`_nscd_restart_if_cfgfile_changed+0x3e

Mutex unsuccessful spin

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
    2    42988 0x8089ab8                    nscd`_nscd_restart_if_cfgfile_changed+0x3e
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before being able to grab the lock. On two other occasions, the thread gave up spin-
ning after an average of 43 us (unsuccessful spin) and was blocked for 120 us
(block), both also shown in the output.

kill.d

The kill.d script prints details of process signals as they are sent, such as the
PID source and destination, signal number, and result. It’s named kill.d after
the kill() system call that it traces, which is used by processes to send signals.

Script

This is based on the kill.d script from the DTraceToolkit, which uses the syscall
provider to trace the kill() syscall. The proc provider could also be used via the
signal-* probes, which will match other signals other than via kill() (see
sigdist.d next).

Note that the target PID is cast as a signed integer on line 13; this is because
the kill() syscall can also send signals to process groups by providing the pro-
cess group ID as a negative number, instead of the PID. By casting it, it will be cor-
rectly printed as a signed integer on line 19.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7  printf("%-6s %12s %6s %-8s %s\n",
8 "FROM", "COMMAND", "SIG", "TO", "RESULT");
9   }
10
11  syscall::kill:entry
12  {
13  self->target = (int)arg0;
14   self->signal = arg1;
15  }
16
17  syscall::kill:return
18  {
19          printf("%-6d %12s %6d %-8d %d\n",
20              pid, execname, self->signal, self->target, (int)arg0);
21   self->target = 0;
22   self->signal = 0;
23  }

Script kill.d
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Example

Here the kill.d script has traced the bash shell sending signal 9 (SIGKILL) to
PID 12838 and sending signal 2 (SIGINT) to itself, which was a Ctrl-C. kill.d
has also traced utmpd sending a 0 signal (the null signal) to various processes:
This signal is used to check that PIDs are still valid, without signaling them to do
anything (see kill(2)).

sigdist.d

The sigdist.d script shows which processes are sending which signals to other
processes, including the process names. This traces all signals: the kill() system
call as well as kernel-based signals (for example, alarms).

Script

This script is based on /usr/demo/dtrace/sig.d from Oracle Solaris and uses
the proc provider signal-send probe.

# kill.d
FROM       COMMAND  SIG TO       RESULT
12224         bash      9 12838    0
3728         utmpd     0 4174     0
3728         utmpd     0 3949     0
3728         utmpd      0 10621    0
3728         utmpd      0 12221    0
12224         bash      2 12224    0

1 #!/usr/sbin/dtrace -s
[...]
45      #pragma D option quiet
46
47      dtrace:::BEGIN
48      {
49 printf("Tracing... Hit Ctrl-C to end.\n");
50      }
51
52      proc:::signal-send
53      {
54            @Count[execname, stringof(args[1]->pr_fname), args[2]] = count();
55      }
56
57      dtrace:::END
58      {
59 printf("%16s %16s %6s %6s\n", "SENDER", "RECIPIENT", "SIG", "COUNT");
60            printa("%16s %16s %6d %6@d\n", @Count);
61      }

Script sigdist.d
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Example

The sigdist.d script has traced the bash shell sending signal 9 (SIGKILL) to a
sleep process and also signal 2 (SIGINT, Ctrl-C) to itself. It’s also picked up sshd
sending bash the SIGINT, which happened via a syscall write() of the Ctrl-C to the
ptm (STREAMS pseudo-tty master driver) device for bash, not via the kill() syscall.

threaded.d

The threaded.d script provides data for quantifying how well multithreaded
applications are performing, in terms of parallel execution across CPUs. If an
application has sufficient CPU bound work and is running on a system with multi-
ple CPUs, then ideally the application would have multiple threads running on
those CPUs to process the work in parallel.

Script

This is based on the threaded.d script from the DTraceToolkit.

# sigdist.d
Tracing... Hit Ctrl-C to end.
^C
          SENDER      RECIPIENT    SIG  COUNT
            bash       bash      2      1
            bash      sleep      9      1
            sshd       bash      2      1
            sshd     dtrace      2      1
           sched       bash     18      2
            bash       bash     20      3
           sched    sendmail     14      3
           sched    sendmail     18      3
           sched     proftpd     14      7
           sched    in.mpathd     14     10

1 #!/usr/sbin/dtrace -s
2
3      #pragma D option quiet
4
5      profile:::profile-101
6      /pid != 0/
7      {
8            @sample[pid, execname] = lquantize(tid, 0, 128, 1);
9      }
10
11      profile:::tick-1sec
12      {
13   printf("%Y,\n", walltimestamp);
14   printa("\n @101hz   PID: %-8d CMD: %s\n%@d", @sample);
15     printf("\n");
16     trunc(@sample);
17      }

Script threaded.d
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Example

To demonstrate threaded.d, two programs were written (called test0 and test1)
that perform work on multiple threads in parallel. One of the programs was coded
with a lock “serialization” issue, where only the thread holding the lock can really
make forward progress. See whether you can tell which one:

threaded.d prints output every second, which shows a distribution plot where
value is the thread ID and count is the number of samples during that second.
By glancing at the output, both programs had every thread sampled on-CPU dur-
ing the one second, so the issue may not be clear. The clue is in the counts:
threaded.d is sampling at 101 Hertz (101 times per second), and the sample
counts for test0 only add up to 118 (a little over one second worth of samples on
one CPU), whereas test1 adds up to 691. The program with the issue is test0,
which is using a fraction of the CPU cycles that test1 is able to consume in the
same interval.

This was a simple way to analyze the CPU execution of a multithreaded applica-
tion. A more sophisticated approach would be to trace kernel scheduling events
(the sched provider) as the application threads stepped on- and off-CPU.

# threaded.d
2010 Jul  4 05:17:09,

 @101hz   PID: 12974    CMD: test0

           value  ------------- Distribution ------------- count
               1 |              0
               2 |@@@@@@@@@            28
               3 |@@              6
               4 |@@@@@@@@@@@            32
               5 |@@@@@             14
               6 |@@@@@             15
               7 |@@@              8
               8 |@@              5
               9 |@@@              10
              10 |                 0

 @101hz   PID: 12977    CMD: test1

           value ------------- Distribution ------------- count
               1 |                   0
               2 |@@@@                  77
               3 |@@@@@@                  97
               4 |@@@@                  77
               5 |@@@@@                  87
               6 |@@@@                  76
               7 |@@@@@@                 101
               8 |@@@@                  76
               9 |@@@@@@                 100
              10 |                   0

[...]
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Case Studies

In this section, we apply the scripts and methods discussed in this chapter to
observe and measure applications with DTrace.

Firefox idle

This case study examines the Mozilla Firefox Web browser version 3, running on
Oracle Solaris.

The Problem

Firefox is 8.9 percent on-CPU yet has not been used for hours. What is costing 8.9
percent CPU?

Profiling User Stacks

The uoncpu.d script (from the “Scripts” section) was run for ten seconds:

# prstat
   PID USERNAME  SIZE  RSS STATE  PRI NICE TIME  CPU PROCESS/NLWP
 27060 brendan   856M  668M sleep   59 0   7:30:44 8.9% firefox-bin/17
 27035 brendan   150M  136M sleep   59 0   0:20:51 0.4% opera/3
 18722 brendan   164M 38M sleep   59 0   0:57:53 0.1% java/18
  1748 brendan  6396K 4936K sleep   59    0  0:03:13 0.1% screen-4.0.2/1
 17303 brendan   305M  247M sleep   59  0  34:16:57 0.1% Xorg/1
 27754 brendan  9564K 3772K sleep   59 0   0:00:00 0.0% sshd/1
 19998 brendan    68M 7008K sleep   59 0   2:41:34 0.0% gnome-netstatus/1
 27871 root     3360K 2792K cpu0    49 0   0:00:00 0.0% prstat/1
 29805 brendan    54M 46M sleep   59 0   1:53:23 0.0% elinks/1
[...]

# uoncpu.d firefox-bin
dtrace: script 'uoncpu.d' matched 1 probe
^C
[...output truncated...]

  on-cpu (count @1001hz):
 libmozjs.so`js_FlushPropertyCacheForScript+0xe6

   libmozjs.so`js_DestroyScript+0xc1
 libmozjs.so`JS_EvaluateUCScriptForPrincipals+0x87

              libxul.so`__1cLnsJSContextOEvaluateString6MrknSnsAString_internal_pvpnMn
sIPrincip8
              libxul.so`__1cOnsGlobalWindowKRunTimeout6MpnJnsTimeout__v_+0x59c
              libxul.so`__1cOnsGlobalWindowNTimerCallback6FpnInsITimer_pv_v_+0x2e

  libxul.so`__1cLnsTimerImplEFire6M_v_+0x144
  libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
continues
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The output was many pages long and includes C++ signatures as function
names (they can be passed through c++filt to improve readability). The hottest
stack is in libmozjs, which is SpiderMonkey—the Firefox JavaScript engine. How-
ever, the count for this hot stack is only 42, which, when the other counts from the
numerous truncated pages are tallied, is likely to represent only a fraction of the
CPU cycles. (uoncpu.d can be enhanced to print a total sample count and the end
to make this ratio calculation easy to do.)

Profiling User Modules

Perhaps an easier way to find the origin of the CPU usage is to not aggregate on
the entire user stack track but just the top-level user module. This won’t be as
accurate—a user module may be consuming CPU by calling functions from a
generic library such as libc—but it is worth a try:

The hottest module was libxul, which is the core Firefox library. The next was
libmozjs (JavaScript) and then libc (generic system library). It is possible that lib-
mozjs is responsible for the CPU time in both libc and libxul, by calling functions
from them. We’ll investigate libmozjs (JavaScript) first; if this turns out to be a
dead end, we’ll return to libxul.

  libxul.so`__1cMnsAppStartupDRun6M_I_+0x34
   libxul.so`XRE_main+0x35e3
    firefox-bin`main+0x223
    firefox-bin`_start+0x7d

               42

# dtrace -n 'profile-1001 /execname == "firefox-bin"/ { @[umod(arg1)] = count(); }
tick-60sec { exit(0); }'
dtrace: description 'profile-1001 ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1  63284            :tick-60sec 

  libsqlite3.so                      1
  0xf0800000                      2
  libplds4.so                    2
  libORBit-2.so.0.0.0                    5
  0xf1600000                      8
  libgthread-2.0.so.0.1400.4                   10
  libgdk-x11-2.0.so.0.1200.3                   14
  libplc4.so                    16
  libm.so.2                      19
  libX11.so.4                   50
  libnspr4.so                   314
  libglib-2.0.so.0.1400.4                    527
  0x0                     533
  libflashplayer.so                   1143
  libc.so.1                   1444
  libmozjs.so                   2671
  libxul.so                   4143
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Function Counts and Stacks

To investigate JavaScript, the DTrace JavaScript provider can be used (see Chap-
ter 8). For the purposes of this case study, let’s assume that such a convenient pro-
vider is not available. To understand what the libmosjs library is doing, we’ll first
frequency count function calls:

The most frequent function called was JS_CallTracer(), which was called
almost two million times during the ten seconds that this one-liner was tracing. To
see what it does, the source code could be examined; but before we do that, we can
get more information from DTrace including frequency counting the user stack
trace to see who is calling this function:

# dtrace -n 'pid$target:libmozjs::entry { @[probefunc] = count(); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target:libmozjs::entry ' matched 1617 probes
^C

  CloseNativeIterators                     1
  DestroyGCArenas                     1
  JS_CompareValues                     1
  JS_DefineElement                     1
  JS_FloorLog2                      1
  JS_GC                     1
[...]
  JS_free                   90312
  js_IsAboutToBeFinalized                   92414
  js_GetToken                  99666
  JS_DHashTableOperate                 102908
  GetChar                  109323
  fun_trace                  132924
  JS_GetPrivate                 197322
  js_TraceObject                   213983
  JS_TraceChildren                  228323
  js_SearchScope                   267826
  js_TraceScopeProperty                 505450
  JS_CallTracer                1923784

# dtrace -n 'pid$target:libmozjs:JS_CallTracer:entry { @[ustack()] = 
count(); }' -p `pgrep firefox-bin`
[...]

   libmozjs.so`JS_CallTracer
  libmozjs.so`js_TraceScopeProperty+0x54

   libmozjs.so`js_TraceObject+0xd5
  libmozjs.so`JS_TraceChildren+0x351

              libxul.so`__1cLnsXPConnectITraverse6MpvrnbInsCycleCollectionTraversalCal
lback__I_+0xc7
              libxul.so`__1cQnsCycleCollectorJMarkRoots6MrnOGCGraphBuilder__v_+0x96

libxul.so`__1cQnsCycleCollectorPBeginCollection6M_i_+0xf1
libxul.so`__1cbGnsCycleCollector_beginCollection6F_i_+0x26

              libxul.so`__1cZXPCCycleCollectGCCallback6FpnJJSContext_nKJSGCStatus__i_+0xd8
    libmozjs.so`js_GC+0x5ef

continues
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The stack trace here has been truncated (increase the ustackframes tunable
to see all); however, enough has been seen for this and the truncated stack traces
to see that they originate from JS_GC()—a quick look at the code confirms that
this is JavaScript Garbage Collect.

Function CPU Time

Given the name of the garbage collect function, a script can be quickly written to
check the CPU time spent in it (named jsgc.d):

This specifically measures the elapsed CPU time (vtimestamp) for JS_GC().
(Another approach would be to use the profile provider and count stack traces that
included JS_GC().)

Here we execute jsgc.d:

    libmozjs.so`JS_GC+0x4e
 libxul.so`__1cLnsXPConnectHCollect6M_i_+0xaf
 libxul.so`__1cQnsCycleCollectorHCollect6MI_I_+0xee
 libxul.so`__1cYnsCycleCollector_collect6F_I_+0x28
libxul.so`__1cLnsJSContextGNotify6MpnInsITimer__I_+0x375

  libxul.so`__1cLnsTimerImplEFire6M_v_+0x12d
  libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
              libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
            40190

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  pid$target::JS_GC:entry
6  {
7  self->vstart = vtimestamp;
8  }
9
10  pid$target::JS_GC:return
11  /self->vstart/
12  {
13          this->oncpu = (vtimestamp - self->vstart) / 1000000;
14          printf("%Y GC: %d CPU ms\n", walltimestamp, this->oncpu);
15   self->vstart = 0;
16  }

Script jsgc.d

# jsgc.d -p `pgrep firefox-bin`
2010 Jul  4 01:06:57 GC: 331 CPU ms
2010 Jul  4 01:07:38 GC: 316 CPU ms
2010 Jul  4 01:08:18 GC: 315 CPU ms
^C
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So, although GC is on-CPU for a significant time, more than 300 ms per call, it’s
not happening frequently enough to explain the 9 percent CPU average of Firefox.
This may be a problem, but it’s not the problem. (This is included here for com-
pleteness; this is the exact approach used to study this issue.)

Another frequently called function was js_SearchScope(). Checking its stack
trace is also worth a look:

This time, the function is being called by js_Execute(), the entry point for
JavaScript code execution (and itself was called by JS_EvaluateUCScriptFor-
Principals()). Here we are modifying the earlier script to examine on-CPU time
(now jsexecute.d):

# dtrace -n 'pid$target:libmozjs:js_SearchScope:entry { @[ustack()] = 
count(); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target:libmozjs:js_SearchScope:entry ' matched 1 probe
^C
[...output truncated...]

   libmozjs.so`js_SearchScope
  libmozjs.so`js_DefineNativeProperty+0x2f1

   libmozjs.so`call_resolve+0x1e7
  libmozjs.so`js_LookupProperty+0x3d3
  libmozjs.so`js_PutCallObject+0x164

   libmozjs.so`js_Interpret+0x9cd4
   libmozjs.so`js_Execute+0x3b4

 libmozjs.so`JS_EvaluateUCScriptForPrincipals+0x58
              libxul.so`__1cLnsJSContextOEvaluateString6MrknSnsAString_internal_pvpnMn
sIPrincipal_pkcIIp1pi_I_+0x2e8
              libxul.so`__1cOnsGlobalWindowKRunTimeout6MpnJnsTimeout__v_+0x59c
              libxul.so`__1cOnsGlobalWindowNTimerCallback6FpnInsITimer_pv_v_+0x2e

  libxul.so`__1cLnsTimerImplEFire6M_v_+0x144
  libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
  libxul.so`__1cMnsAppStartupDRun6M_I_+0x34

   libxul.so`XRE_main+0x35e3
    firefox-bin`main+0x223
    firefox-bin`_start+0x7d

             9287

1  #!/usr/sbin/dtrace -s
2
3  pid$target::js_Execute:entry
4  {
5  self->vstart = vtimestamp;
6  }
7
8  pid$target::js_Execute:return
9  /self->vstart/
10  {
11          this->oncpu = vtimestamp - self->vstart;
12          @["js_Execute Total(ns):"] = sum(this->oncpu);
13   self->vstart = 0;
14  }

Script jsexecute.d
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Here we run it for ten seconds:

This shows 428 ms of time in js_Execute() during those ten seconds, and so
this CPU cost can explain about half of the Firefox CPU time (this is a single-CPU
system; therefore, there is 10,000 ms of available CPU time every 10 seconds, so
this is about 4.3 percent of CPU).

The JavaScript functions could be further examined with DTrace to find out
why this JavaScript program is hot on-CPU, in other words, what exactly it is
doing (the DTrace JavaScript provider would help here, or a Firefox add-on could
be tried).

Fetching Context

Here we will find what is being executed: preferably the URL. Examining the ear-
lier stack trace along with the Firefox source (which is publically available) showed
the JavaScript filename is the sixth argument to the JS_EvaluateUCScriptFor-
Principals() function. Here we are pulling this in and frequency counting:

The name of the URL has been modified in this output (to avoid embarrassing
anyone); it pointed to a site that I didn’t think I was using, yet their script was get-
ting executed more than 700 times per second anyway, which is consuming (wast-
ing!) at least 4 percent of the CPU on this system.

The Fix

An add-on was already available that could help at this point: SaveMemory, which
allows browser tabs to be paused. The DTrace one-liner was modified to print con-
tinual one-second summaries, while all tabs were paused as an experiment:

# jsexecute.d -p `pgrep firefox-bin` -n 'tick-10sec { exit(0); }'
dtrace: script 'jsexecute.d' matched 2 probes
dtrace: description 'tick-10sec ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0  64907            :tick-10sec 

  js_Execute Total(ns):                 427936779

# dtrace -n 'pid$target::*EvaluateUCScriptForPrincipals*:entry { @[copyinstr(arg5)] =
 count(); } tick-10sec { exit(0); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target::*EvaluateUCScriptForPrincipals*:entry ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1  64907            :tick-10sec 

  http://www.example.com/js/st188.js                   7056
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The execution count for the JavaScript program begins at around 700 execu-
tions per second and then vanishes when pausing all tabs. (The output has also
caught the execution of greasemonkey.js, executed as the add-on was used.)

prstat(1M) shows the CPU problem is no longer there (shown after waiting a
few minutes for the %CPU decayed average to settle):

Next, the browser tabs were unpaused one by one to identify the culprit, while
still running the DTrace one-liner to track JavaScript execution by file. This
showed that there were seven tabs open on the same Web site that was running
the JavaScript program—each of them executing it about 100 times per second.
The Web site is a popular blogging platform, and the JavaScript was being exe-
cuted by what appears to be an inert icon that links to a different Web site (but as
we found out—it is not inert).7 The exact operation of that JavaScript program can
now be investigated using the DTrace JavaScript provider or a Firefox add-on
debugger.

Conclusion

A large component of this issue turned out to be a rogue JavaScript program, an
issue that could also have been identified with Firefox add-ons. The advantage of

# dtrace -n 'pid$target::*EvaluateUCScriptForPrincipals*:entry { @[copyinstr(arg5)] =
 count(); } tick-1sec { printa(@); trunc(@); }' -p `pgrep firefox-bin`
[...]
  1  63140             :tick-1sec 
  http://www.example.com/js/st188.js                   697

  1  63140             :tick-1sec 
  http://www.example.com/js/st188.js                   703

  1  63140             :tick-1sec 
file:///export/home/brendan/.mozilla/firefox/3c8k4kh0.default/extensions/%7Be4a8a97b-f
2ed-450b-b12d-ee082ba24781%7D/components/greasemonkey.js                1
  http://www.example.com/js/st188.js                   126

  1  63140             :tick-1sec 

  1  63140             :tick-1sec

# prstat
   PID USERNAME  SIZE  RSS STATE  PRI NICE TIME  CPU PROCESS/NLWP
 27035 brendan   150M  136M sleep   49 0   0:27:15 0.2% opera/4
 27060 brendan   407M  304M sleep   59 0   7:35:12 0.1% firefox-bin/17
 28424 root     3392K 2824K cpu1    49 0   0:00:00 0.0% prstat/1
[...]

7. An e-mail was sent to the administrators of the blogging platform to let them know.
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using DTrace is that if there is an issue, the root cause can be identified—no mat-
ter where it lives in the software stack. As an example of this,8 about a year ago a
performance issue was identified in Firefox and investigated in the same way—
and found to be a bug in a kernel frame buffer driver (video driver); this would be
extremely difficult to have identified from the application layer alone.

Xvnc

Xvnc is a Virtual Network Computing (VNC) server that allows remote access to
X server–based desktops. This case study represents examining an Xvnc process
that is CPU-bound and demonstrates using the syscall and profile providers.

When performing a routine check of running processes on a Solaris system by
using prstat(1), it was discovered that an Xvnc process was the top CPU con-
sumer. Looking just at that process yields the following:

We can see the Xvnc process is spending most of its time executing in user mode
(USR, 86 percent) and some of its time in the kernel (SYS, 14 percent). Also worth
noting is it is executing about 200,000 system calls per second (SCL value of .2M).

syscall Provider

Let’s start by checking what those system calls are. This one-liner uses the syscall
provider to frequency count system calls for this process and prints a summary
every second:

8. I’d include this as a case study here, if I had thought to save the DTrace output at the time.

solaris# prstat -c -Lmp 5459
   PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID 
  5459 nobody    86 14 0.0 0.0 0.0 0.0 0.0 0.0   0  36 .2M 166 Xvnc/1

solaris# dtrace -qn 'syscall:::entry /pid == 5459/ { @[probefunc] = 
count(); } tick-1sec { printa(@); trunc(@); }'

  read                      4
  lwp_sigmask                   34
  setcontext                    34
  setitimer                      68
  accept                   48439
  gtime                   48439
  pollsys                   48440
  write                   97382

continues
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Because the rate of system calls was relatively high, as reported by
prstat(1M), we opted to display per-second rates with DTrace. The output shows
more than 97,000 write() system calls per second and just more than 48,000
accept(), poll(), and gtime() calls.

Let’s take a look at the target of all the writes and the requested number of
bytes to write:

The vast majority of the writes are to a file, /var/adm/X2msgs. The number of
bytes to write was 82 bytes and 35 bytes for the most part (more than 361,000
times each). Checking that file yields the following:

Looking at the file Xvnc is writing to, we can see it is getting very large (more
than 2GB), and the messages themselves appear to be error messages. We will
explore that more closely in just a minute.

Given the rate of 97,000 writes per second, we can already extrapolate that each
write is taking much less than 1 ms (1/97000 = 0.000010), so we know the data is
probably being written to main memory (since the file resides on a file system and

  read                     4
  lwp_sigmask                   33
  setcontext                    33
  setitimer                      66
  gtime                   48307
  pollsys                   48307
  accept                   48308
  write                   97117

solaris# dtrace -qn 'syscall::write:entry /pid == 5459/ { @[fds[arg0].fi_pathname,
arg2] = count(); }'
^C

  /var/adm/X2msgs 26                8
  /devices/pseudo/mm@0:null          8192            3752
  /var/adm/X2msgs             82           361594
  /var/adm/X2msgs             35           361595

solaris# ls -l /var/adm/X2msgs
-rw-r--r--   1 root   nobody   2147483647 Aug 13 15:05 /var/adm/X2msgs
solaris# tail /var/adm/X2msgs

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
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the writes are not synchronous, they are being satisfied by the in-memory file sys-
tem cache). We can of course time these writes with DTrace:

Before measuring the write time, we wanted to be sure we knew the target file
system type of the file being written, which was ZFS. We used that in the predi-
cate in the w.d script to measure write system calls for this process (along with the
process PID test). The output of w.d is a quantize aggregation that displays wall
clock time for all the write calls executed to a ZFS file system from that process
during the sampling period. We see that most of the writes fall in the 512-nanosec-
ond to 1024-nanosecond range, so these are most certainly writes to memory.

We can determine the user code path leading up to the writes by aggregating on
the user stack when the write system call is called:

solaris# dtrace -qn 'syscall::write:entry /pid == 5459/
{ @[fds[arg0].fi_fs] = count(); }'
^C
  specfs                    2766
  zfs                   533090

solaris# cat -n w.d
1   #!/usr/sbin/dtrace -qs 
2
3   syscall::write:entry 
4   /pid == 5459 && fds[arg0].fi_fs == "zfs"/ 
5   { 
6  self->st = timestamp; 
7   } 
8   syscall::write:return
9   /self->st/
10  {
11 @ = quantize(timestamp - self->st);
12          self->st = 0;
13  }

solaris# ./w.d
^C

           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1477349
            1024 |               2312
            2048 |               3100
            4096 |              250
            8192 |              233
           16384 |              145
           32768 |             90
           65536 |                  0

solaris# dtrace -qn 'syscall::write:entry /pid == 5459 && fds[arg0].fi_fs == 
"zfs"/ { @[ustack()] = count(); }'
^C
[...]
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We see two very similar stack frames, indicating a log event is causing the Xvnc
process to write to its log file.

We can even use DTrace to observe what is being written to the file, by examin-
ing the contents of the buffer pointer from the write(2) system call. It is passed
to the copyinstr() function, both to copy the data from user-land into the kernel
address space and to treat it as a string:

    libc.so.1`_write+0x7
   libc.so.1`_ndoprnt+0x2816
    libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1a5
  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

           430879

    libc.so.1`_write+0x7
   libc.so.1`_ndoprnt+0x2816
    libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1eb
  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

           430879

solaris# dtrace -n 'syscall::write:entry /pid == 5459/ { @[copyinstr(arg1)] = 
count(); }'
dtrace: description 'syscall::write:entry ' matched 1 probe
^C

Sun Aug 22 00:09:05 2010
ent (22)
keupHandler: unable to accept new
             st!
Ltd.
See http://www.realvnc.com for information on VNC.
                1

Sun Aug 22 00:09:06 2010
ent (22)
keupHandler: unable to accept new
             st!
                2
[...]
upHandler: unable to accept new connection: Invalid argument (22)XserverDesktop::wakeu
pHandler: unable to accept new connection: Invalid argument (22)XserverDesktop::wakeup
Handler: unable to accept new connection: Invalid argument (22)XserverDesktop::wake
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This shows the text being written to the log file, which largely contains errors
describing invalid arguments used for new connections. Remember that our initial
one-liner discovered more than 48,000 accept() system calls per-second—it
would appear that these are failing because of invalid arguments, which is being
written as an error message to the /var/adm/X2msgs log.

DTrace can confirm that the accept() system calls are failing in this way, by
examining the error number (errno) on syscall return:

All the accept() system calls are returning with errno 22, EINVAL (Invalid
argument). The reason for this can be investigated by examining the arguments to
the accept() system call.

We see the first argument to accept is 3, which is the file descriptor for the
socket. The second two arguments are both NULL, which may be the cause of the
EINVAL error return from accept. It is possible it is valid to call accept with the
second and third arguments as NULL values,9 in which case the Xvnc code is not
handling the error return properly. In either case, the next step would be to look at
the Xvnc source code and find the problem. The code is burning a lot of CPU with
calls to accept(2) that are returning an error and each time generating a log file
write.

                59
valid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: I
nvalid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: In
valid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: In 
                59

solaris# dtrace -n 'syscall::accept:return /pid == 5459/ { @[errno] = count(); }'
dtrace: description 'syscall::accept:return ' matched 1 probe
^C

       22           566135

solaris# grep 22 /usr/include/sys/errno.h
#define     EINVAL 22    /* Invalid argument                 */

solaris# dtrace -n 'syscall::accept:entry /execname == "Xvnc"/ { @[arg0, arg1, 
arg2] = count(); }'
dtrace: description 'syscall::accept:entry ' matched 1 probe
^C

                3            0        0           150059

9. Stevens (1998) indicates that it is.



Case Studies 829

While still using the syscall provider, the user code path for another of the other
hot system calls can be examined:

This shows that calls to gtime(2) are part of the log file writes in the applica-
tion, based on the user function names we see in the stack frames.

profile Provider

To further understand the performance of this process, we will sample the on-CPU
code at a certain frequency, using the profile provider.

This one-liner shows which user functions were on-CPU most frequently. It tests
for user mode (arg1) and the process of interest and uses the ufunc() function to
convert the user-mode on-CPU program counter (arg1) into the user function
name. The most frequent is a libc function, _ndoprnt(), followed by several func-
tions from the standard C++ library.

For a detailed look of the user-land code path that is responsible for consuming
CPU cycles, aggregate on the user stack:

solaris# dtrace -n 'syscall::gtime:entry /pid == 5459/ { @[ustack()] = count(); }'
dtrace: description 'syscall::gtime:entry ' matched 1 probe
^C

    libc.so.1`__time+0x7
 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0xce

  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

           370156

solaris# dtrace -n 'profile-997hz /arg1 && pid == 5459/ { @[ufunc(arg1)] = count(); }'
dtrace: description 'profile-997hz ' matched 1 probe
^C
[...]
  libc.so.1`memcpy                    905
  Xvnc`_ZN14XserverDesktop12blockHandlerEP6fd_set           957
  libgcc_s.so.1`uw_update_context_1                1155
  Xvnc`_ZN3rdr15SystemExceptionC2EPKci               1205
  libgcc_s.so.1`execute_cfa_program                1278
  libc.so.1`strncat                   1418
  libc.so.1`pselect                   1686
  libstdc++.so.6.0.3`_Z12read_uleb128PKhPj                  1700
  libstdc++.so.6.0.3`_Z28read_encoded_value_with_basehjPKhPj     2198
  libstdc++.so.6.0.3`__gxx_personality_v0              2445
  libc.so.1`_ndoprnt                   3918
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Note that only the two most frequent stack frames are shown here. We see the
event loop in the Xvnc code and visually decoding the mangled function names; we
can see a function with network TCPListener accept in the function name.
This makes sense for an application like Xvnc, which would be listening on a net-
work socket for incoming requests and data. And we know that there’s an issue
with the issued accept(2) calls inducing a lot of looping around with the error
returns.

We can also take a look at the kernel component of the CPU cycles consumed by
this process, again using the profile provider and aggregating on kernel stacks:

solaris# dtrace -n 'profile-997hz /arg1 && pid == 5459/ { @[ustack()] = 
count(); } tick-10sec { trunc(@, 20); exit(0); }'
^c
[...]

 libstdc++.so.6.0.3`__gxx_personality_v0+0x29f
  libgcc_s.so.1`_Unwind_RaiseException+0x88
  libstdc++.so.6.0.3`__cxa_throw+0x64
 Xvnc`_ZN7network11TcpListener6acceptEv+0xb3
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              125

    libc.so.1`memset+0x10c
  libgcc_s.so.1`_Unwind_RaiseException+0xb7
  libstdc++.so.6.0.3`__cxa_throw+0x64
 Xvnc`_ZN7network11TcpListener6acceptEv+0xb3
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              213

solaris# dtrace -n 'profile-997hz /pid == 5459 && arg0/ { @[stack()] = count(); }'
^c
[...]

    unix`mutex_enter+0x10
   genunix`pcache_poll+0x1a5
   genunix`poll_common+0x27f
    genunix`pollsys+0xbe
    unix`sys_syscall32+0x101

               31

    unix`tsc_read+0x3
    genunix`gethrtime+0xa
    unix`pc_gethrestime+0x31
    genunix`gethrestime+0xa
   unix`gethrestime_sec+0x11
    genunix`gtime+0x9
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The kernel stack is consistent with previously observed data. We see system call
processing (remember, this process is doing 200,000 system calls per second), we
see the gtime system call stack in the kernel, as well as the poll system call kernel
stack. We could measure this to get more detail, but the process profile was only 14
percent kernel time, and given the rate and type of system calls being executed by
this process, there is minimal additional value in terms of understanding the CPU
consumption by this process in measuring kernel functions.

For a more connected view, we can trace code flow from user mode through the
kernel by aggregating on both stacks:

    unix`sys_syscall32+0x101
               41

    unix`tsc_read+0x3
   genunix`gethrtime_unscaled+0xa
   genunix`syscall_mstate+0x4f
    unix`sys_syscall32+0x11d

              111

    unix`lock_try+0x8
   genunix`post_syscall+0x3b6
   genunix`syscall_exit+0x59
    unix`sys_syscall32+0x1a0

              229

solaris# dtrace -n 'profile-997hz /pid == 5459/ { @[stack(), ustack()] = 
count(); } tick-10sec { trunc(@, 2); exit(0); }'
dtrace: description 'profile-997hz ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1 122538            :tick-10sec 

    unix`lock_try+0x8
   genunix`post_syscall+0x3b6
   genunix`syscall_exit+0x59
    unix`sys_syscall32+0x1a0

    libc.so.1`_write+0x7
   libc.so.1`_ndoprnt+0x2816
    libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1eb
  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              211

    unix`lock_try+0x8
   genunix`post_syscall+0x3b6
   genunix`syscall_exit+0x59
    unix`sys_syscall32+0x1a0

continues



832 Chapter 9 � Applications

Here we see the event loop calling into the accept(3S) interface in libc and
entering the system call entry point in the kernel. The second set of stack frames
shows the log write path. One of the stacks has also caught _ndoprnt, which we
know from earlier to be the hottest on-CPU function, calling write() as part of
Xvnc logging.

Conclusions

The initial analysis with standard operating system tools showed that the single-
threaded Xvnc process was CPU bound, spending most of its CPU cycles in user-
mode and performing more than 200,000 system calls per second. DTrace was used
to discover that the application was continually encountering new connection fail-
ures because of invalid arguments (accept(2)) and was writing this message to a
log file, thousands of times per second.

Summary

With DTrace, applications can be studied like never before: following the flow of
code from the application source, through libraries, through system calls, and
through the kernel. This chapter completed the topics for application analysis; see
other chapters in this book for related topics, including the analysis of program-
ming languages, disk, file system, and network I/O.

    libc.so.1`_so_accept+0x7
 Xvnc`_ZN7network11TcpListener6acceptEv+0x18
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              493
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Symbols
!, 1022–1023
!=, 28
", 880, 1021
%, 27
%=, 1023
&, 28, 1022–1023
&&, 22, 28, 1022–1023
&=, 1023
(), 1023–1024
*, 27
*=, 1023
+, 27, 1023
++, 1022
+=, 1023
=, 1023
==, 28
??, 160, 203
@, 14, 33
[], 1023–1024
^, 1022–1023
^=, 1023–1024
^^, 1022–1023
|=, 1023–1024
$1..$N, 32
$$1..$$N, 32
| (or), 28, 491, 1022–1024
| | (OR), 28, 458
~ (tilde), 1022–1023

^^ (XOR), 28
^ (xor), 28
:, 23, 200, 545
?:, 1024
, (comma operator), 1024
-=, 1023
/=, 1023
/ (division), 27
- (subtraction), 27
--, 1022
` (backquote) character, 33, 64, 78, 231
%@ format code, 36
* (asterisk) pattern-matching character, 69–70, 

133
' single quote, 24, 194, 201, 231, 880, 1021
>, 28
>=, 28
>>, 28
<, 28
<=, 28
<<, 28

A
-a, 917, 1007
-A, 917
@a, 36, 527
accept(), 427, 445, 453, 468, 828
accept-established, 482
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Access control list (ACL), 925
Actions, 13, 23

copyin(), 39, 1014
copyinstr(), 39–40, 1014
exit(), 41, 1014
jstack(), 40–41, 1017
printf(), 38, 1017
sizeof(), 41
speculations, 41–42
stack(), 40–41, 1017, 1071
stringof(), 39–40
strjoin(), 40, 1016
strlen(), 40, 687–688, 1000, 1016
trace(), 37, 684–685
tracemem(), 39, 1017
translators, 42
ustack(), 40–41, 1008, 1017, 1071

Active (TCP term), 482
Active service time, 213
Adaptive-block, 920–921
Adaptive mutex, 1015, 1077
Address family, 449–454, 1015
Administrator privileges, 868–869
Advanced Host Controller Interface (AHCI), 237, 289
AES_encrypt() function, 651–654
AF_INET, AF_INET6, 449–452
aggrate, 1006, 1016–1017
Aggregation drops (error), 1065
Aggregations, 13–14, 1077

buffers, 1006, 1065, 1077
functions, 33-34, 1017-1018

lquantize(), 35
normalize(), 36
printa(), 36–37
quantize(), 34–35
trunc() and clear(), 36

types, 34
variables, 999, 1017

aggsize, 1006, 1065, 1077
aggsortkey, 37
aggsortkeypos, 37
aggsortpos, 37, 459
aggsortrev, 37
ahci, 237, 289
aio_read(), 306
Alert (\a), 1021
Analytics

abstractions, 974
breakdown statistics, 979
control bar, 983
control descriptions, 983
controls, 983
datasets, 984

diagnostic cycle, 975
drill-downs, 981–983
heat maps, 979–981
hierarchical breakdowns, 979–980
load vs. architecture, 975
real time, 975
shouting in the data center, 269–273
statistics, 977
visualizations, 975
worksheets, 983

Anchored probes, 1077
Anonymous memory segment, 103
Anonymous state, 1007
Anonymous tracing, 917–918
Apache, 610–611
Apache Web server, 560, 732, 783–784, 800
Appends output, 43, 1071
Apple, 370, 620, 949, 972

see also Mac OS X
Application-level protocols

capabilities, 400–401
checklist, 559–560
providers

fbt provider, 561
iSCSI scripts, 634–638
one-liners

fc provider, 568
http provider, 567
http provider examples, 573
iscsi provider, 567
nfsv3 provider, 563
nfsv4 provider, 564–566
NFSv3 provider examples, 569–571
NFSv4 provider examples, 571–572
smb provider, 566
smb provider examples, 572–573
syscall provider, 563
syscall provider examples, 568–569

pid provider, 562
scripts

CIFS scripts
cifserrors.d, 605–607
cifsfbtnofile.d, 607–609
cifsfileio.d, 603
cifsops.d, 602–603
cifsrwsnoop.d, 600–601
cifsrwtime.d, 604

DNS scripts
dnsgetname.d, 623–625
getaddrinfo.d, 622–623

Fibre Channel scripts
fcerror.d, 647–649
fcwho.d, 647



Index 1091

FTP scripts
ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

HTTP scripts
httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

iSCSI scripts
iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers, 634–638

LDAP scripts
ldapsyslog.d, 664–666

multiscripts, 666–668
network script summary, 574–576
NFSv3 scripts

nfsv3commit.d, 585–587
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

NIS scripts, 663–664
SSH scripts

scpwatcher.d, 661–663
sshcipher.d, 649–655
sshconnect.d, 657–661
sshdactivity.d, 655–657

strategy, 558–559
Applications

capabilities, 784
case studies

Firefox idle, 817–824
Xvnc, 824–832

checklist, 786–787
providers

cpc provider, 791–792
one-liner examples

new processes (with arguments), 798–799
system call counts, 800
user-mode instructions, 801–803
user-mode level-two cache misses, 

803–804
user stack trace profile at 101 hertz, 

800–801
one-liners

cpc provider, 797–798
pid provider, 795–796
plockstat provider, 796
proc provider, 793–794
profile provider, 794–795
sched provider, 795
syscall provider, 794

pid provider, 788–791
script summary, 804
scripts

execsnoop, 805–806
kill.d, 813–814
plockstat, 811–813
procsnoop.d, 804–806
procsystime, 806–808
sigdist.d, 814–815
threaded.d, 815–816
uoffcpu.d, 809–811
uoncpu.d, 808–809

strategy, 784–786
Arc_get_data_buf(), 901
Architecture, 16–17
arg0, 31, 61, 174–175
arg1, 61
Args[], 31
Arguments

bufinfo_t, 1038
conninfo_t, 1040
cpuinfo_t, 1039
csinfo_t, 1040
devinfo_t, 1038
fileinfo_t, 1038
ifinfo_t, 1041
ipinfo_t, 1040
ipv4info_t, 1041
ipv6info_t, 1041
lwpsinfo_t, 1039
pktinfo_t, 1040
psinfo_t, 1039
tcpinfo_t, 1042
tcplsinfo_t, 1043
tcpsinfo_t, 1042
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Arguments and return value
kernel functions, 901–903
pid provider, 791

Arithmetic operators, 27, 1021–1022
Array operators, 545
Assembly language, 677–679
Assignment operators, 27
Associative arrays, 29, 81, 200, 240, 285–286, 1078
Assumptions, 1000
Asynchronous writes, 332, 584
Asyncronous write workloads, 241
AT attachment disk driver, 251
ata, 251
Automatic drilldown analysis, 964
avg() function, 34, 81
awk, 20

B
-b flag, 1003, 1006
Backquote (`) character, 33, 64, 78, 231
Backslash (\\), 1021
Backspace (\b), 491, 1021
Bart, 206–207
basename(), 736
B_ASYNC, 159
B_DONE, 159
B_ERROR, 159
b_flags, 157–159, 178
B_PAGEIO, 159
B_PHYS, 159
B_READ, 159
B_WRITE, 159
BEGIN, 44
BEGIN and END, 24
Berkeley Internet Name Daemon (BIND), 575, 

623–624
Binary arithmetic operators, 1021
Binary assignment operators, 1023
Binary bitwise operators, 1022
Binary logical operators, 1022
Binary relational operators, 1022
Birrell, John, 1047
Bitwise operators, 28, 1022–1023
Blank fields, 24
Blowfish, 651, 654
Boolean operators, 28
Boot processes, 917–918
Bourne shell, 764–774
Bourne shell provider, 1052–1061
Breakdowns, 979
broken.php, 733, 736
bsdtar(1) command, 164, 210
Buckley, Joel, 229

buffer-read-done, 852
buffer-read-start, 852
Buffer resizing, 1006
buffer-sync-start, 852
buffer-sync-written, 852
bufinfo_t, 157–159, 1026, 1038
bufpolicy, 1006, 1078
bufresize, 1006
Bufsize, 1006
bufsize, 43, 1064, 1071, 1084
Built-in functions, 1014–1019
Built-in variables, 31–32, 1011–1013
Bus adapter driver, 234
Bytes read by filename, 302, 309–310
Bytes written by filename, 302, 310

C
-c, 43, 528, 788, 795–796, 1006
-C, 231, 478, 683–684
C (language)

includes and the preprocessor, 683
kernel C, 681
one-liner examples

count kernel function calls, 688
function entry arguments, 687
user stack trace, 687–688

one-liners
fbt provider, 685–686
pid provider, 684–685
profile provider, 686–687

probes and arguments, 681–682
script summary, 689
scripts, 689
struct types, 682–683
user-land C, 680

C++ language, 689–691
Cache allocations, 909–911, 922
Cache file system read, 331–332
Cache misses, 923–924
Cantrill, Bryan, 269, 661, 973, 1003
Carriage return (\r), 1021
Case studies

Bourne shell provider, 1057–1061
disk I/O, 269–290
file systems, 387–398
Firefox idle, 817–824
Xvnc, 824–832

cd(1), 301
CD-ROMs, 376–378
c++filt, 432, 690
char, 26
Character escape sequences, 1021
chdir(), 569
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Cheat sheet, 1069–1072
Chime (tool), 962–965
CIFS, 1078

count of operations by client address, 572
count of operations by file path name, 573
frequency of operations by type, 572
read I/O size distribution, 573

CIFS scripts
cifserrors.d, 575, 605–607
cifsfbtnofile.d, 575, 607–609
cifsfileio.d, 575, 603
cifsops.d, 575, 602–603
cifsrwsnoop.d, 575, 600–601
cifsrwtime.d, 575, 604

cipher, 649–655
cipher_crypt(), 653
Class-loading probes, 691
Clause, 9, 21
Clause-local variables, 30–31, 998
cleanrate, 1006
clear(), 34, 36
CLI queries, 842–843
Client initiator, 636
Client-server components, 835
close(), 445
cmdk, 251
cnwrite(), 885
Command-line aliases, 1005
Command-line hints, 161–162
Comment / uncomment characters, 1078, 1088
Common Internet File System. see CIFS
Compact C Type Format (CTF), 682, 1079
Compression, 652
COMSTAR, 634, 638–640
Conditional branch misprediction, 798, 924
Conditional statements, 22
Connection latency, 414
connection-start/connection-done, 838
connections, 399
conninfo_t, 1040
Contention. see Locks and lock contention
Context switch time, 943
Controls, 983
Cool Stack, 731
copyin(), 39, 624, 1002, 1014, 1067
copyinstr(), 39–40, 304, 622–624, 679, 687, 1002, 

1014, 1067
count(), 34
Count file systems calls, 302–303
Count function calls, 710–711, 735, 742, 767
Count interrupts, 921
Count kernel function calls, 688
Count line execution by filename and line 

number, 754, 767

Count method calls by filename, 754
Count of operations, 563, 570
Count subroutine calls by file, 721–722, 741
Count system calls, 45, 824, 925
cpc provider, 787, 791–792, 797–798, 923–925
CPU cross calls by kernel stack trace, 928
CPU events, 791–792
CPU Performance Counter (cpc). see cpc 

provider
cpuinfo_t, 1039
CPUms, 846–847, 856
CPUs, tracking

analysis, 60–85
checklist, 57–58
events, 87–94
interrupts, 85–88
one-liners, 58–60
providers, 58

cpustat(1M), 791–792, 803
CR (Change Request), 1079
Cross calls, 390–393, 897, 928
crypt functions, 650
csinfo_t, 409, 1040
curpsinfo, 31
curthread, 31

D
-D (dtrace(1M)), 199, 231
D language, 14–16

actions
copyin(), 39
copyinstr(), 39–40
exit(), 41
jstack(), 40–41
list of, 1014–1019
printf(), 38
sizeof(), 41
speculations, 41–42
stack(), 40–41
stringof(), 39–40
strjoin(), 40
strlen(), 40
trace(), 37
tracemem(), 39
translators, 42
ustack(), 40–41

aggregations
lquantize(), 35
normalize(), 36
printa(), 36–37
quantize(), 34–35
trunc() and clear(), 36
types, 34
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D language (continued)
components

actions, 23
predicates, 22
probe format, 21–22
program structure, 21
usage, 20–21

example programs
counting system calls by a named process, 

45
Hello World, 44
profiling process names, 46–47
showing read byte distributions by process, 

45–46
snoop process execution, 48–49
timing a system call, 47–48
tracing fork() and exec(), 45

options, 43–44
probes

BEGIN and END, 24
profile and tick, 24–25
syscall entry and return, 25
wildcards, 23–24

variables
associative arrays, 29
built-in, 31–32
clause local, 30–31
external, 33
macro, 32
operators, 27–28
scalar, 28
structs and pointers, 29
thread local, 30
types, 26–27

dad (driver), 251
Data cache misses by function name, 931
Data corruption, 242
Data recording actions, 1016–1017
Databases

capabilities, 834–835
client-server components, 835
MySQL

one-liner examples, 840–841
one-liners, 838–840
script summary, 841
scripts, 841–851

libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

Oracle, 858–865
PostgreSQL

one-liner examples, 854–858

one-liners, 853–854
pid provider, 854
postgresql provider, 853

script summary, 855
scripts, 854–858

providers, 836–837
strategy, 835–836

Datasets, 984
dcmd (d-command, mdb(1))), 99
Debuggers/debugging, 2–3, 261, 671, 682, 800, 

898, 1005
Decryption, 871
Default cipher, 650
defaultargs, 43, 334, 360, 373, 656, 1007, 1071
DES_encrypt3(), 650
destructive, 43, 886–890, 1007, 1018–1019
Device drivers, 537–543, 917–918
Device insertion, 242–243
devinfo_t, 160, 1038
DFCI, 534
Diagnostic cycle, 975
DIF (DTrace Intermediate Format), 1079
Direct Memory Access, 242
Directory Name Lookup Cache (dnlc), 314, 346, 

952
Dirty data, 310, 332, 347, 349, 369
Disk and network I/O activity

analysis, 128–134
checklist, 125
disk I/O, 134–141
one-liners, 127–128
providers, 126–127
strategy, 125

Disk I/O
capabilities, 152–154
case studies, 269–290
checklist, 155–156
IDE scripts, 250

ideerr.d, 173, 257
idelatency.d, 173, 252–254
iderw.d, 173, 255–257

io provider scripts
bitesize.d, 181–183
disklatency.d, 172, 175–177
geomiosnoop.d, 172, 209–210
iolatency.d, 172–175
iopattern, 172, 207–209
iosnoop, 172, 187–203
iotop, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

providers
fbt provider, 163–166
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io provider, 157–163, 165
one-liner examples, 166–171
one-liners, 165–166

SAS scripts
mptevents.d, 173, 264–267
mptlatency.d, 173, 267–269
mptsassscsi.d, 173, 263–267

SATA scripts
satacmds.d, 172, 237–243
satalatency.d, 173, 248–250
satareasons.d, 173, 246–248
satarw.d, 172, 243–246
scsi.d, 172, 236

SCSI scripts
SCSI probes, 212–213
scsicmds.d, 172, 218–221
scsi.d, 229–236
scsilatency.d, 172, 221–223
scsireasons.d, 172, 227–229
scsirw.d, 172, 223–226
sdqueue.d, 172, 213–215
sdretry.d, 172, 215–218

size aggregation, 167
size by process ID, 166–167
size distribution, 840–841
strategy, 154–155

Disk queueing, 201–202
Disk reads and writes, 232–233
Disk reads with multipathing, 234
Disk time, 205–206
Dispatcher queue, 529, 938, 950, 1079
Displays (Chime), 963–964
Distribution plots, 13–14, 34, 45, 98, 165, 

310–312, 433, 841, 855
DLight, Oracle Solaris Studio 12.2, 966–971
DLPI, 534
dmake, 308
dnlcps.d, 314, 346–347, 952
DNS scripts, 621

dnsgetname.d, 623–625
getaddrinfo.d, 622–623

do_copy_fault_nta(), 931
DOF (Dtrace Object Format), 1079
done probe, 157
doorfs(), 658
Double quote, 880, 1021
Downloading and installing

Chime, 962–963
DTrace GUI plug-in, 966
DTraceToolkit, 948–949
Mac OS X Instruments, 971–972

Drill-downs, 964–965, 981–983
Driver interface, 542
Driver internals, 538

Drops, 699, 870, 935, 1003, 1064–1066
DTrace GUI Plug-in for NetBeans and Sun 

Studio, 966
DTrace Guide. See Solaris Dynamic Tracing Guide
dtrace provider, 11
dtrace(7d), 1080
dtrace_kernel, 868, 872, 1064
dtrace(1M), 19, 1080
dtrace_proc, 868, 1064
DTraceToolkit

downloading and installing, 948–949
man page, 959–960
script example: cpuwalk.d, 957–961
script summary, 949–957
scripts, 949–957
versions, 949

dtrace_user, 868, 1064
DVDs, 378–379
Dynamic probes, 4, 1080
dynvardrops, 343, 1003, 1066, 1079–1080
dynvarsize, 43, 1003, 1007, 1066

E
egrep(1), 539
Elevator seeking, 199
Encrypted sessions, 871
enqueue probe (sched provider), 84
Entropy stat, 709, 711–712
Entry (syscall), 25
Erickson, Tom, 962
er_kernel (kernel profiler tool), 966
errno, 25, 31, 794, 1080
Error(s)

cifserrors.d, 605–606
codes, 467–468
disk I/O, 156
error messages

aggregation drops, 1065
drops, 1064–1065
dynamic variable drops, 1066
invalid address, 1066–1067
maximum program size, 1067
not enough space, 1067
privileges, 1063–1064

file system I/O, 297
fserrors.d, 326–327
httperrors.d, 614
network I/O, 404
network I/O checklist, 404
nfsv3errors.d, 588
nfsv4errors.d, 595
number, 170–171
PHP, 736
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Error(s) (continued)
socket system call errors, 467–468
soerrors.d, 465
translation table, 595–597

Ethernet scripts
device driver tracing, 537–543
Mac tracing with fbt, 534
macops.d, 534–537
ngelink.d, 546–547
ngesnoop.d, 544–546

Ethernet vs. Wi-Fi, 462
Example programs

counting system calls, 45
Hello World, 44
profiling process names, 46–47
showing read byte distributions by process, 

45–46
snoop process execution, 48–49
timing a system call, 47–48
tracing fork() and exec(), 45
tracing open(2), 44–45

Exclusive time, 703, 718, 730, 750, 762
execname, 31, 110, 1080
exec_simple_query(), 854
execsnoop, 805–806
exit(), 41, 1002, 1014
ExtendedDTraceProbes, 692, 694, 696
External Data Representation. see XDR
External variables, 33

F
-F (dtrace(1M)), 438, 1007
Failed to enable probe (error), 792
Fast File System (FFS), 351
fasttrap, 868, 1064, 1068
fbt, 12, 155–156, 163–166, 170, 298, 352, 405
fbt-based script maintenance, 418
fc provider, 568, 646
fc provider probes and arguments, 1025–1026
FC (Fibre Channel) scripts, 646

fcerror.d, 647–649
fcwho.d, 647

fds[], 68, 131, 145, 300, 429, 1080
fds[].fi_fs variable, 91
fdsp[.fi_dirname variable, 161
File System Archive, 807
File systems

capabilities, 292–295
case study, 387–398
checklist, 296–297
functional diagram, 293
providers

fsinfo provider, 298–300

one-liners
fbt provider, 303
fsinfo provider, 302
sdt provider, 303
syscall provider, 300–301
vfs provider, 303
vminfo provider, 302

one-liners: fsinfo provider examples
bytes read by filename, 309–310
bytes written by filename, 310
calls by fs operation, 308–309
calls by mountpoint, 309
read/write I/O size distribution, 

310–312
one-liners: sdt provider examples, 312–313
one-liners: syscall provider examples

frequency count stat() files, 305
reads by file system type, 306–307
trace file creat() calls with process 

name, 304–305
trace file opens with process name, 304
tracing cd, 306
writes by file system type, 307
writes by process name and file system 

type, 307
one-liners: vminfo provider examples, 308

scripts
fsinfo scripts

fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

HFS+ scripts
hfsfileread.d, 374–375
hfsslower.d, 372–374
hfssnoop.d, 371–372

HSFS scripts, 376–378
NFS client scripts

nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

PCFS scripts, 375–376
syscall provider

fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

TMPFS scripts
tmpgetpage.d, 386–387
tmpusers.d, 385–386

UDFS scripts, 378–379
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UFS scripts
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

VFS scripts
dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
vfslife.d, 345
vfssnoop.d, 340–343

ZFS scripts
perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

strategy, 295–296
write operation, 295

Filebench, 296, 559, 989
fileinfo_t, 160–161, 1038
filesort (probes), 838
filesort-start/filesort-done, 838
fill buffer, 1080, 1084
Find vs. Bart, 206–207
Firefox case study

fetching context, 822
function counts and stacks, 819
function CPU time, 820
profiling user modules, 818
profiling user stacks, 817

First-byte latency, 460–461, 499
Floating-point data types, 1020
Floating-point suffixes, 1021
Floating-point types, 27
flowindent, 43, 104, 438, 684, 685, 896, 903–906, 1007
flush write-cache, 241–242
fop interface, 303, 336, 349
Formfeed (\f), 1021
FreeBSD, 164, 949, 1075, 1080

AF_INET values, 451
hyphens in probe names, 793n
iostat(8), 125
kmem layer, 123
netstat(8), 125
stack trace, 170, 421
system tools, 55

FreeBSD 7.1 and 8.0
installing DTrace, 1045–1046

Frequency count, 991–992
Frequency count fbt, 166, 278–279
Frequency count functions, 166, 171
Frequency count sdt, 276–277
fsinfo, 126, 132
fsinfo provider, 298–300, 302
fsinfo provider examples, 308–312
fsinfo provider probes and arguments, 1026
fsinfo scripts

fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

FTP Analytics, 625
FTP scripts

ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

Function arguments, 283–285
Function Boundary Tracing. see fbt
Function counts and stacks, 819
Function CPU time, 820
function-entry, 752
Function execution, 672–673
Function names, 690, 1014–1019
function-return, 752

G
Garbage collection, 691, 751, 753, 759, 820
gc++filt, 432, 690
GEOM, 164, 172, 209–210
Gerhard, Chris, 229
GET, 616
gld, 405
GLDv3, 534, 1081
Global and aggregation variables, 33, 350, 

997–999
Global zone, 870–872

H
-h (dtrace1M)), 807
Hardware address translation (HAT), 928
Hargreaves, Alan, 1051
Haslam, Jon, 350
HC (High Capacity), 407
Header files, 683
Heat maps, 979–981
Hertz rates, 24–25, 61
HFS+, 370, 929
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HFS+ scripts
hfsslower.d, 372–374
hfssnoop.d, 371–372

hfs_file_is_compressed(), 929
HIDS (Host-based Intrusion Detection Systems), 

871
Hierarchal File System. see HFS+
Hierarchical breakdowns, 979–980
High Sierra File System (HSFS), 376
Hold events, 812
Horizontal tab (\t), 1021
Host name lookup latency, 660
Hot code paths, 897, 944, 990, 996
hotkernel, 64
hotspot, 675, 691, 694
HotSpot VM, 691
hotuser, 64
HSFS scripts, 376–378
HTTP

flow diagram, 610
scripts

httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

summarize user agents, 573
HTTP files opened by the httpd server, 563, 568
http provider, 567
http provider examples, 573
httpd, 563, 568, 783–784, 795, 802–803
Hyphens in probe names, 793n

I
%I, 488
IA (interactive scheduling class), 942
ICMP, 1081
ICMP event by kernel stack trace, 424, 439
ICMP event trace, 424, 437
ICMP scripts

icmpsnoop.d, 447, 522–525
icmpstat.d, 447, 521
superping.d, 447, 526–529

IDE driver reference, 251
IDE scripts

ideerr.d, 257–259
idelatency.d, 252–254
iderw.d, 255–257

ifinfo_t, 410, 1041
Inbound TCP connections, 441, 446, 486–487, 489
Inclusive time, 703, 718, 730, 750, 762, 908
inet*() functions, 590, 608
inet_ntoa(), 455, 502

inet_ntoa6(), 455, 502
inet_ntop(), 451
Instruction cache misses by function name, 

931–932
Instruments (Mac OS X tool), 971–972
Integer data types, 1020
Integer suffixes, 1021
Integer type aliases, 1020
Integer variable types, 26–27
Internet Control Message Protocol (ICMP). see

ICMP
Internet Small Computer System Interface 

(iSCSI). see iSCSI
Interrupt load, 58
Interrupt start count, 921
Interrupts, 85–88, 932, 962
intrstat(1M), 16, 85, 932-934
Intrusion detection, 871, 886
Invalid address (error), 1066–1067
Invasion of privacy issues, 875–877
I/O

analysis, 130
checklist, 127
one-liners, 129
providers, 128
strategy, 127

io probes, 157–158
io provider, 165, 637–638, 840

bufinfo_t, 158–159
command-line hints, 161–162
devinfo_t, 160
fileinfo_t, 160–161
probes and arguments, 1026

io provider scripts
bitesize.d, 172, 181–183
disklatency.d, 172, 175–177
geomiosnoop.d, 209–210
iolatency.d, 172–175, 270
iopattern, 207–209
iosnoop, 187–203
iotop, 172, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

iostat(8), 55, 125
iostat(1M), 55, 125, 134, 288, 863
iotop, 204–207
IP event statistics, 424, 435
IP-layer network traffic, 126
ip probe arguments, 408
ip provider, 404, 425

csinfo_t, 409
ifinfo_t, 410
ipinfo_t, 409
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ipv4info_t, 410
ipv6info_t, 410
pktinfo_t, 409

ip provider development, 473
ip provider examples, 440
ip provider probes, 408
ip provider probes and arguments, 1027
IP scripts

fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477
ipproto.d, 477–478
ipstat.d, 474–475

ipfbtsnoop.d, 446, 478–481
ipIfStatsHCInOctets (probe), 407
ipIfStatsHCOutOctets (probe), 407
ipinfo_t, 409, 1040
ip_input(), 481, 555
ipio.d, 446, 475–477
ip_output(), 419, 555
ipproto.d, 446, 477–478
ipstat.d, 446, 474–475
ipv4info_t, 410
ipv4info_t, 1041
ipv6info_t, 410
ipv6info_t, 1041
iSCSI

client initiator, 636
functional diagram, 634
provider, 567, 635
target server, 635

iscsi provider probes and arguments, 1027
iSCSI scripts

iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers

fbt provider, 635–637
io provider, 637–638
iscsi provider, 635

iscsi_iodone(), 637
iscsit_op_scsi_cmd(), 636
iscsit_xfer_scsi_data(), 636

J
Java

code, 693
one-liner examples, 694–696
one-liners, 693–694
script summary, 696
scripts

j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

Java virtual machine (JVM), 691
JavaScript (language)

code, 707–708
one-liner examples

count function calls by function filename, 
710–711

object entropy stat, 711–712
trace function calls, 710
trace program execution showing filename 

and line number, 709
one-liners, 708–709
script summary, 712
scripts

js_calls.d, 712–713
js_calltime.d, 715–718
js_flowinfo.d, 670, 713–715, 952
js_stat.d, 718

JavaScript Garbage Collect, 820
JBODs, 269–273
JNI functions, 692
Joyent, 751
jstack(), 40–41, 108, 743, 1017
jstackframes, 1007, 1017
jstackstrsize, 44, 1007, 1017

K
kalloc(), 916–917
Kernel

capabilities, 894–895
checklist, 897–898
clock interrupt, 61
destructive actions, 1018
functional diagram, 895
ktrace.d, 903–906
lock events, 934–935
memory

allocation, 122, 914–915, 922
Mac OS X, 122–124
tools, 118–120

memory allocations, 915–916
profiler tool, 966
profiling, 64–70, 72
providers

anonymous tracing, 917–918
fbt provider

arguments and return value, 901–903
module name, 900–901
probe count, 899–900
stability, 898–899
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Kernel, providers (continued)
kernel memory usage, 908–917
kernel tracing, 903–908
one-liner examples

count system calls by type, 925
CPU cross calls by kernel stack trace, 

928
kernel function call counts for functions 

beginning with hfs_ by module, 929
kernel-mode instructions by function 

name, 930
kernel-mode instructions by module 

name, 930–931
kernel-mode level-one data cache misses 

by function name, 931
kernel-mode level-one instruction cache 

misses by function name, 931–932
kernel module name profile at 1001 

hertz, 927
kernel stack backtrace counts for calls 

to function foo(), 929
kernel stack trace profile at 1001 hertz, 

925–927
kernel thread name profile at 1001 

hertz (freebsd):, 928
one-liners

cpc provider, 923–925
fbt provider, 921–923
lockstat provider, 920–921
profile provider, 919
sched provider, 920
sdt provider, 921
syscall provider, 919
sysinfo provider, 920
vminfo provider, 920

script summary, 932
scripts

cswstat.d, 932, 943–944
intrstat, 932–934
koffcpu.d, 932, 938–939
koncpu.d, 932, 937–938
lockstat, 934–937
priclass.d, 932, 941–943
putnexts.d, 932, 944–945
taskq.d, 932, 939–941

stacks, 168–170
statistics, 896
strategy, 896–897

Kernel file system flush thread, 347
kernel_memory_allocate(), 122–123, 914–915, 922
keycache (probes), 838
Keys, 15, 33, 36, 1082
Keystroke captures, 875–876
Keywords, table of, 1019

KILL signal, 888, 890
kmem, 119

kmem_alloc(), 911–912, 916
kmem_cache_alloc(), 909–910
kmem_cache_free(), 910
kmem_free(), 916

kstat(1M), 55,118, 896, 983

L
-l (dtrace(1M)), 1071
Languages

Assembly, 677–679
C

includes and the preprocessor, 683
kernel C, 681
one-liner examples

count kernel function calls, 688
show user stack trace, 687–688
trace function entry arguments, 687

one-liners
fbt provider, 685–686
pid provider, 684–685
profile provider, 686–687

probes and arguments, 681–682
scripts, 689
struct types, 682–683
user-land C, 680

C++, 690–691
capabilities, 671–672
checklist, 674
Java

code, 693
one-liner examples, 694–696
one-liners, 693–694
scripts

j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

JavaScript
code, 707–708
js_stat.d, 718
one-liner examples

count function calls by function 
filename, 710–711

object entropy stat, 711–712
trace function calls showing function 

name, 710
trace program execution showing 

filename and line number, 709
one-liners, 708–709
scripts

js_calls.d, 712–713
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js_calltime.d, 715–718
js_flowinfo.d, 713–715

Perl
code, 720
one-liner examples, 721–722
one-liners, 720–721
scripts

pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

PHP
code, 733
one-liner examples

count function calls by filename, 735
trace function calls showing function 

name, 735
trace PHP errors, 736

one-liners, 734–735
script summary, 736
scripts

php_calls.d, 736
php_flowinfo.d, 738

providers, 675–679
Python

code, 741
one-liner examples

count function calls by file, 742
profile stack traces, 743–744
trace function calls, 742

one-liners, 741
scripts

py_calls.d, 745–746
py_calltime.d, 748–751
py_flowinfo.d, 746–748
py_who.d, 744–745

Ruby
code, 752
one-liner examples

count line execution by filename and 
line number, 754

count method calls by filename, 754
trace method calls showing class and 

method, 754
one-liners, 753
scripts

rb_calls.d, 756–757
rb_calltime.d, 759–762
rb_flowinfo.d, 757–759
rb_who.d, 755–756

scripting, 669
Shell

code, 765
one-liner examples

count function calls by filename, 767
count line execution by filename and 

line number, 767
trace function calls showing function 

name, 766
one-liners, 765–766
scripts

sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_who.d, 768–769

strategy, 672–673
Tcl

code, 776
one-liner examples, 777–778
one-liners, 776–777
scripts

tcl_calls.d, 779–780
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_who.d, 778–779

Latency, 156
disk I/O, 285–287, 269-273
by driver instance, 234–236
file system I/O, 296
heat maps, 980
network I/O checklist, 403
TCP connection, 414

latency.d, 288
LDAP scripts, 664–666
Leventhal, Adam, 1, 1003
libc, 105, 680, 684, 789, 829
libc fsync() calls, 796
libc function calls, 795
libcurses, 788–789
libdtrace(3LIB), 1082
Libmysql_snoop.d, 849–850
libsocket, 789–790
libssl (Secure Sockets Layer library), 784
Local ports, 442
Locks and lock contention, 58, 87–88, 674, 787, 

811–813, 816, 897, 935
lockstat(1M), 12, 16, 62, 87, 811–813, 920-921, 

934-937
Logical operators, 1022
Loopback traffic, 408, 493, 525
lquantize(), 34, 35, 270, 630
lwpid, 81–82
lwpsinfo_t, 1039

M
Mac OS X

AF_INET values, 451
disk I/O, 177
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Mac OS X (continued)
ether_frameout(), 418
fbt provider, 418, 421, 474
iostat(8), 125
kernel memory allocation, 122
netstat(8), 125
system tools, 55

Mac OS X Instruments, 971–972
Mac OS X Internals, 296, 370
Mac OS X Interprocess Communication (IPC) and 

IO Kit path, 915
Mac OS X tracing with fbt, 534
mach_kernel, 900
Macro variables, 32
MacRuby, 751
Maguire, Alan, 500
malloc(), 674, 676, 763, 787, 796, 922
Man(ual) pages for scripts, 948
Matteson, Ryan, 610
max() function, 34, 81
Maximum program size (error), 1067
mdb(1), 2, 261, 677, 902, 909
mdb(1) kmastat dcmd, 118
MediaWiki, 735, 737–738, 842–843
Memory allocation, 787
Memory Management Unit (MMU), 1082, 1087
Memory monitoring

analysis, 98–101
checklist, 96
kernel memory, 118–124
one-liners, 97–98
providers, 96–97
strategy, 95
user process memory activity, 101–117

Memory usage, 908–917
memstat dcmd (d-command), 99
Method compilation probes, 691
MIB (Message Information Base), 126, 404, 1082
mib probes, 407
mib provider, 404–408, 423
mib provider examples

ICMP event by kernel stack trace, 439
ICMP event trace, 437
IP event statistics, 435
SNMP MIB event count, 434–435
TCP event statistics, 436
UDP event statistics, 437

Microsoft FAT16, 375
Microsoft FAT32, 375
Millisecond to nanosecond conversion, 846
min() function, 34, 81
Minor faults, 920, 952
modinfo(1M), 918
Monitor probes, 691

Mountpoint, 302, 309–312
Mozilla Firefox, 45–46, 109, 428, 706, 769
mpstat(1M), 2, 55–57, 72–73, 88, 91, 388
mpt, 260–262, 1082
Multipathing, 234
Multiple aggregations, 37
Multithreaded applications, 815, 957, 967
Mutex blocks, 796
Mutex lock, 87
Mutex spin counts, 796
mutex_enter(), 66–67, 86–87, 931–932
MySQL

C API, 849–850
DTrace probes, 838
one-liner examples, 840–841
one-liners, 838–840
Reference Manual, 850
references, 850–851
script summary, 841
scripts

libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

N
-n, 43, 322, 1071
Namecache, 210, 340–341, 345–346
NetBeans IDE, 962, 966–967
netstat(1M), 55, 125, 402, 406, 455
network (probes), 838
Network Address Translation (NAT), 555
Network device driver tracing with fbt, 537–543
Network file system. see NFS
Network I/O, 141–148
Network I/O checklist, 403, 559–560
Network I/O providers, 560–561
Network Information Service, 1083
Network Intrusion Detection Systems (NIDS), 

871
Network lower-level protocols

capabilities, 400–402
checklist, 403–404
common mistakes

packet size, 553
receive context, 548–550
send context, 550–553
stack reuse, 554–555

providers
fbt provider

receive, 419–422
send, 416–419
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ip provider
csinfo_t, 409
ifinfo_t, 410
ipinfo_t, 409
ipv4info_t, 410
ipv6info_t, 410
pktinfo_t, 409

mib provider, 405–408
network providers, 411–415
one-liners

ip provider, 425
ip provider examples, 440
mib provider, 423
mib provider examples, 434–439
syscall provider, 422
syscall provider examples, 427–434
tcp provider, 425
tcp provider examples, 441–445
udp provider, 427
udp provider examples, 445

planned network provider argument types, 
412

planned network provider arguments, 412
planned network providers, 412

scripts
Ethernet scripts

Mac tracing with fbt, 534
macops.d, 534–537
network device driver tracing with fbt, 

537–543
ngelink.d, 546–547
ngesnoop.d, 544–546

ICMP scripts
icmpsnoop.d, 522–525
icmpstat.d, 521
superping.d, 526–529

IP scripts
fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477, 476
ipproto.d, 477–478
ipstat.d, 474–475

socket scripts
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

TCP scripts
fbt provider, 483–485
tcp provider, 482–483

tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516
tcpstat.d, 485–486
tcp1stbyte.d, 499

UDP scripts
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

XDR scripts, 529–533
strategy, 402–403

Network packet sniffer, 890
Network providers, 411–415
Network script summary, 445–447, 574–576
Network-sniffing tools, 400
Network statistic tools, 402
New Processes (with Arguments), 798–799
Newline (\n), 1021
NFS client back-end I/O, 157
NFS client scripts

nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

NFS I/O, 162–163
nfsstat, 588
nfsv3 probes, 577
nfsv3 provider, 563
NFSv3 provider examples, 569–571
nfsv3 provider probes and arguments, 1028–1030
NFSv3 scripts

nfsv3commit.d, 585–587
nfsv3disk.d, 666–668
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
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NFSv4 scripts (continued)
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

nfsv4 provider, 564–566
NFSv4 provider examples, 571–572
nfsv4 provider probes and arguments, 1030–1034
nge driver (Nvidia Gigabit Ethernet), 537
NIDS, 871
NIS (Network Information Service), 1083
NIS scripts, 663–664
nmap port scan, 453
Nonglobal (local) zone, 870–872
normalize(), 34, 36, 143
Not enough space (error), 1067
Nouri, Nasser, 966
nscd (Name Service Cache Daemon), 452, 461, 

660, 811
nspec, 1007
ntohs(), 451, 502, 508
NULL character (\0), 1021
Nvidia, 237
nv_sata, 237, 275

O
-o, 43, 727, 935, 1071
Object arguments, C++, 690–691
Object entropy stat, 709, 711–712
Octal value (\0oo), 1021
Off-CPU sched provider probe, 674, 786, 897, 932
On-CPU sched provider probe, 58–61, 674, 786, 

897, 932
One-liners

C, 684–687
cheat sheet, 1072
cpu, 58–60
disk I/O, 165–166
file systems, 300–303
I/O, 127–128
Java, 693–694
JavaScript, 708–709
kernel, 918
memory, 97–98
MySQL, 838
network, 411, 422–427
Perl, 720–721
PHP, 734
PostgreSQL, 853
provider, 563–568, 793
Python, 741
Ruby, 753

Shell, 765
Tcl, 776

OpenSolaris, xxx, 1, 336, 411, 451, 949, 1083
OpenSolaris security group site, 873
OpenSolaris Web site, 962
OpenSSH, 649, 876
Operator(s)

arithmetic, 27, 1021–1022
assignment, 27
associativity, 1023–1024
binary arithmetic, 1021
binary bitwise, 1022
binary logical, 1022
binary relational, 1022
boolean, 28
precedence, 1023–1024
relational, 28, 1022
ternary, 28, 178, 195
unary arithmetic, 1022
unary bitwise, 1023
unary logical, 1022

@ops aggregation, 602
Options, 43–44
or ( | ), 28, 491, 1022–1024
OR (| |), 28, 458
Oracle, 858–865
Oracle Solaris, xxv

DTrace privileges, 868
Studio 12, 672
Studio IDE, 966
see also Solaris

Oracle Sun Web Stack, 731, 733
Oracle Sun ZFS Storage Appliance, 599, 625
OSI model, 400
Outbound TCP connections, 489

P
-p, 664, 849
-p PID, 43, 684, 788, 795
%P, 488
Pacheco, David, 610
Packet sniffers, 525, 890
Packets (network), 553, 483
Page-ins, 95–97, 111–113, 297, 308, 1083
Page-outs, 95–97, 297, 1083
pagefault, 96, 114–115, 119, 1083
panic(), 42, 1007, 1018
Passive (TCP term), 482
Passive FTP transfers, 629
Password sniffing, 869
pause(), 923
PCFS scripts, 375–376
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Performance Application Programming Interface 
(PAPI), 791–792, 803

Perl language, 993–994
bug #73630, 720
code, 720
one-liner examples, 721–722
one-liners, 720–721
provider, 719
script summary, 722
scripts

pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

Perturbations, 269–273
pgrep(1), 629–631, 849
PHP

code, 733
one-liner examples

count function calls by filename, 735
trace errors, 736
trace function calls showing function name, 

735
one-liners, 734–735
script summary, 736
scripts

php_calls.d, 736
php_flowinfo.d, 736, 738
php_flowtime.d, 739
php_syscolors.d, 739

pid (process ID), 31, 33, 97–98, 165, 167–168, 788, 
790-791

pid provider, 98, 562, 788–791, 795–796, 839–840, 
854

ping, 447, 462, 522, 525–529, 1081
Pipe ( | ) character, 28, 491, 1022–1024
pktinfo_t, 409, 1040
Platform Specific Events, 792
plockstat, 58, 96–97, 689, 787, 811–813
plockstat provider, 796
Policy enforcement, 871–872
Population functions, 1077
Port closed, 493, 510–511
Port number, 455
Port scan, 453, 496
POSIX, 622, 790, 1084
PostgreSQL

documentation, 858
one-liner examples, 854–858
one-liners, 853–854
probes, 851–852
script summary, 855
scripts, 854–858

PostgreSQL-DTrace-Toolkit, The, 858

postgresql provider, 853
Postprocessing, 993–994
ppid, 31
ppriv(1), 872, 868
Predicates, 9, 12, 22, 63, 1084
Prefetch, 313, 329
Prefetch requests, 313
Prefetch Technologies, 610
Preprocessor, 683
Principal buffer, 43, 1001, 1003, 1006, 1064–1065, 

1080, 1084
printa(), 34, 36–37, 519
printf(), 38, 520, 1017
priv-err, 872, 874
priv-ok, 872, 874
Privacy violations, 875–877
Privilege debugging, 872–874
Privileges, 868, 1063–1064
Privileges, detection, and debugging

HIDS, 871
policy enforcement, 871–872
privilege debugging, 872–874
reverse engineering, 874–875
security audit logs, 870
sniffing, 869

probefunc, 31, 71, 91, 110, 132
probemod, 31, 71
probename, 31, 110
probeprov, 31
proc provider, 11, 793–794
proc provider probes and arguments, 1034
Process destructive actions, 1019
Process ID (pid) provider. see pid provider
Process name, 307
Process watching, 881
Processes paging in from the file system, 308
Processors. see CPUs
procstat(1), 55
procsystime, 806–808
Production queries, 843
profile, 24–25, 46, 61, 996–997, 1084
profile provider, 11, 58–59, 63, 794–795, 919
Profile Python Stack Traces, 743–744
Profiling process names, 46–47
Profiling user modules, 818
Profiling user stacks, 817
Program counter (PC), 61
Program execution flow, 673
Programming language providers, 675
Promiscuous mode, 525, 544, 875, 890–891
Provider, 11, 1084
Provider arguments reference

arguments
bufinfo_t, 1038



1106 Index

Provider arguments reference, arguments (continued)
conninfo_t, 1040
cpuinfo_t, 1039
csinfo_t, 1040
devinfo_t, 1038
fileinfo_t, 1038
ifinfo_t, 1041
ipinfo_t, 1040
ipv4info_t, 1041
ipv6info_t, 1041
lwpsinfo_t, 1039
pktinfo_t, 1040
psinfo_t, 1039
tcpinfo_t, 1042
tcplsinfo_t, 1043
tcpsinfo_t, 1042

fc provider probes and arguments, 1025–1026
fsinfo provider probes and arguments, 1026
io provider probes and arguments, 1026
ip provider probes and arguments, 1027
iscsi provider probes and arguments, 1027
nfsv3 provider probes and arguments, 

1028–1030
nfsv4 provider probes and arguments, 

1030–1034
proc provider probes and arguments, 1034
sched provider probes and arguments, 1035
srp provider probes and arguments, 1035
sysevent provider probes and arguments, 1036
tcp provider probes and arguments, 1036
udp provider probes and arguments, 1036
xpv provider probes and arguments, 1037

Providers for Various Shells Web site, 764–765
prstat(1), 73–74, 77–78, 82, 100
prstat(1M), 55, 60, 73, 74, 801
ps(1), 62, 100
PSARC, 764, 1084
psinfo_t, 1039
Python language

code, 741
one-liner examples, 742–744
one-liners, 741
patches and bugs, 740
script summary, 744
scripts

py_calldist.d, 750
py_calls.d, 744–746
py_calltime.d, 744, 748–751
py_cpudist.d, 750
py_cputime.d, 750
py_flowinfo.d, 746–748
py_flowtime.d, 748
py_syscolors.d, 748
py_who.d, 744–745

Q
-q, 43–44, 69, 880–881, 885, 1007
quantize(), 34–35, 138, 148, 270, 571
Query (probes), 838
Query cache hit rate, 841, 844–845
Query count summary, 840
Query execution (probes), 838
Query parsing (probes), 838
Query processing, database, 836
Query time distribution plots, 841, 848–849
Question mark, 160, 203, 1021
Quiet mode, 43–44, 69, 880–881, 885, 1007, 1071
Quote marks

backquote, 33, 64, 78, 231
double, 880, 1021
single, 24, 194, 201, 231, 880, 1021

R
raise(), 872, 888–891, 1007, 1019
Random I/O, 202, 208–209
Random reads, 579
Random workload, 185–186
Read-aheads, 197, 298, 314, 354–355, 377, 989
Read I/O size distribution, 571
Read workload, 220
Reader/writer locks, 9, 796, 1085
read_nocancel(), 306
Reads by file system type, 306–307
Receive (network), 408, 419–422
Receive context, 548–550
Relational operators, 28, 1022
Remote host latency, 661
Remote hosts, 442–443
Return (syscall), 25
Reusable kernel objects, 909
Reverse engineering, 874–875
RFC, 473, 481, 517, 1015, 1085
Ring buffer, 1084–1085
RIP protocol, 562
Root privileges, 20
Root user privileges, 868–869
Round-trip time (RTT), 477
RT (real time), 942
ruby-dtrace, 751
Ruby language

code, 752
one-liner examples, 753–755
one-liners, 753
provider, 751
script summary, 755
scripts

rb_calls.d, 756–757
rb_calltime.d, 759–762
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rb_flowinfo.d, 757–759
rb_who.d, 755–756

S
-s file, 43
sar(1), 55
SAS driver reference, 260
SAS scripts

mptevents.d, 264–267
mptlatency.d, 267–269
mptsassscsi.d, 263–267

sata, 275
SATA command, 279–290
SATA driver reference, 237
SATA DTracing

documentation, 274
frequency count fbt, 278–279
frequency count sdt, 276–277
function arguments, 283–285
latency, 285–287
stable providers, 275
stack backtraces, 280–283
testing, 288
unstable providers: fbt, 277–278
unstable providers: sdt, 275–276

SATA scripts
satacmds.d, 172, 237–243
satalatency.d, 248–250
satareasons.d, 246–248
satarw.d, 243–246

SATA stack, 274
Scalar globals, 31–32
Scalar variables, 28
sched, 405
Sched (scheduler), 202–203
sched provider, 60, 97, 405, 795, 920
sched provider probes and arguments, 1035
Scheduling class, 57, 347, 420, 932, 941–942, 952
scp, 308, 649–651, 654
Script summaries

application, 804
C, 689
disk I/O, 172–173
DTraceToolkit, 949–957
file systems, 313–315
Java, 696
JavaScript, 712
kernel, 932
MySQL, 841
network, 445–447, 574–576
Perl, 722
PHP, 736
PostgreSQL, 855

Python, 744
Ruby, 755
security, 875
shell, 768
Tcl, 778

Scripting languages, 669
Scripts

applications scripts, 804
execsnoop, 805–806
kill.d, 813–814
plockstat, 811–813
procsnoop.d, 804–806
procsystime, 806–808
sigdist.d, 814–815
threaded.d, 815–816
uoffcpu.d, 809–811
uoncpu.d, 808–809

C language, 689
CIFS scripts, 599

cifserrors.d, 605–607
cifsfbtnofile.d, 607–609
cifsfileio.d, 603
cifsops.d, 602–603
cifsrwsnoop.d, 600–601
cifsrwtime.d, 604

DNS scripts, 621
dnsgetname.d, 623–625
getaddrinfo.d, 622–623

DTrace Toolkit scripts list, 949–961
ethernet scripts, 533

Mac tracing with fbt, 534
macops.d, 534–537
network device driver tracing, 537–543
ngelink.d, 546–547
ngesnoop.d, 544–546

Fibre Channel scripts, 646
fcerror.d, 647–649
fcwho.d, 647

fsinfo scripts, 327
fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

FTP scripts, 625
ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

HFS+ scripts, 370
hfsfileread.d, 374–375
hfsslower.d, 372–374
hfssnoop.d, 371–372
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Scripts (continued)
HSFS scripts, 376

cdrom.d, 377–378
HTTP scripts, 609

httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

ICMP scripts, 521
icmpsnoop.d, 522–525
icmpstat.d, 521
superping.d, 526–529

IDE scripts, 250
ideerr.d, 257
idelatency.d, 252–254
iderw.d, 255–257

io provider scripts, 172
bitesize.d, 181–183
disklatency.d, 175–177
geomiosnoop.d, 209–210
iolatency.d, 172–175
iopattern, 207–209
iosnoop, 187–203
iotop, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

IP scripts, 469
fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477, 476
ipproto.d, 477–478
ipstat.d, 474–475

iSCSI scripts, 633
iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers, 634–638

Java, 696
j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

JavaScript, 712
js_calls.d, 712–713
js_calltime.d, 715–718
js_flowinfo.d, 713–715

kernel, 932
cswstat.d, 932, 943–944
intrstat, 932–934
koffcpu.d, 932, 938–939

koncpu.d, 932, 937–938
lockstat, 934–937
priclass.d, 932, 941–943
putnexts.d, 932, 944–945
taskq.d, 932, 939–941

LDAP scripts, 664
ldapsyslog.d, 664–666

multiscripts, 666
nfsv3disk.d, 666–668

MySQL, 841
libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

NFS client scripts, 379
nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

NFSv3 scripts, 576
nfsv3commit.d, 585–587
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts, 592
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

NIS scripts, 663
nismatch.d, 663–664

PCFS scripts, 375
pcfsrw.d, 375–376

Perl, 722
pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

PHP, 736
php_calls.d, 736
php_flowinfo.d, 738

PostgreSQL, 854
pg_pid_qtime.d, 856–858
pg_qslower.d, 855–856

Python, 744
py_calls.d, 745–746
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py_calltime.d, 748–751
py_flowinfo.d, 746–748
py_who.d, 744–745

Ruby, 755
rb_calls.d, 756–757
rb_calltime.d, 759–762
rb_flowinfo.d, 757–759
rb_who.d, 755–756

SAS scripts, 259
mptevents.d, 264–267
mptlatency.d, 267–269
mptsassscsi.d, 263–267

SATA scripts, 236
satacmds.d, 237–243
satalatency.d, 248–250
satareasons.d, 246–248
satarw.d, 243–246

SCSI scripts, 211
SCSI probes, 212–213
scsicmds.d, 218–221
scsi.d, 229–236
scsilatency.d, 221–223
scsireasons.d, 227–229
scsirw.d, 223–226
sdqueue.d, 213–215
sdretry.d, 215–218

security scripts, 875
cuckoo.d, 884–886
keylatency.d, 882–884
networkwho.d, 891–892
nosetuid.d, 888–889
nosnoopforyou.d, 890–891
script summary, 875
shellsnoop, 878–882
sshkeysnoop.d, 875–878
watchexec.d, 886–888

Shell, 768
sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_who.d, 768–769

socket scripts, 447
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

SSH scripts, 649
scpwatcher.d, 661–663
sshcipher.d, 649–655
sshconnect.d, 657–661
sshdactivity.d, 655–657

syscall provider, 315
fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

Tcl, 778
tcl_calls.d, 779–780
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_who.d, 778–779

TCP scripts, 481
fbt provider, 483–485
tcp provider, 482–483
tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516

script: fbt-based, 505–515
script: tcp-based, 515–516

tcpstat.d, 485–486
tcp1stbyte.d, 499

TMPFS scripts, 385
tmpgetpage.d, 386–387
tmpusers.d, 385–386

UDFS scripts, 378
dvd.d, 378

UDP scripts, 517
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

UFS scripts, 351
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

VFS scripts, 335
dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
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Scripts, VFS scripts (continued)
vfslife.d, 345
vfssnoop.d, 340–343

XDR scripts, 529
xdrshow.d, 529–533

ZFS scripts, 357
perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

scrwtop10.d script, 132–133
SCSI probes, 212–213
SCSI scripts, 211

SCSI probes, 212–213
scsicmds.d, 218–221
scsi.d, 229–236
scsilatency.d, 221–223
scsireasons.d, 227–229
scsirw.d, 223–226
sdqueue.d, 213–215
sdretry.d, 215–218

SCSI virtual host controller interconnect, 221, 
234–236

sctp, 412–413
sdt (statically defined tracing), 156, 275–276
sdt provider, 303, 921
sdt provider examples, 312–313
Secure Shell. see SSH
Security, 867

audit logs, 870
privileges, detection, and debugging, 867

HIDS, 871
malicious acts, 869
policy enforcement, 871–872
privilege debugging, 872–874
privileges, 868
reverse engineering, 874–875
security logging, 870
sniffing, 869–870

script summary, 875
scripts

cuckoo.d, 884–886
keylatency.d, 882–884
networkwho.d, 891–892
nosetuid.d, 888–889
nosnoopforyou.d, 890–891
shellsnoop, 878–882
sshkeysnoop.d, 875–878
watchexec.d, 886–888

sed, 240
segkmem, 121

Segment driver, 121
select-start / select-done, 838
self->, 30, 41, 143, 228, 660, 997, 1085
Semaphore system call, 93
Semicolons, 23
Send, 408, 416–419
Send context, 550–553
Sequential I/O, 208
Sequential Workload, 185
Server Message Block (SMB). see CIFS
Server query status trace (simple snoop), 854
Service time, disk I/O, 155
setuid(), 875
Shapiro, Mike, 1, 1003
Shared memory, 100–101
Shell (language), 764, 1085

code, 765
one-liner examples

count function calls by filename, 767
count line execution by filename and line 

number, 767
trace function calls showing function name, 

766
one-liners, 765–766
script summary, 768
scripts

sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_flowtime.d, 774
sh_syscolors.d, 774
sh_who.d, 768–769

shellsnoop, 878–882
short, 26
Shouting in the data center, 269–273
Show user stack trace on function call, 687–688
Signals, 804, 813–814
Signed integers, 26–27
Simple snoop, 854
Single quote mark, 24, 194, 201, 231, 880, 1021
sizeof(), 41
Slab allocator, 909, 913
smb provider, 566, 572–573
Sniffing, 869–870, 875
SNMP Message Information Bases (MIBs), 404
SNMP MIB event count, 424, 434–435
snoop, 400
Snoop process execution, 48–49
snoop(1M), 890
Socket accepts by process name, 422, 427
Socket connections by process and user stack 

trace, 422, 428
Socket file system, 76
Socket flow diagram, 448
Socket read bytes by process name, 423, 433
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Socket read (write/send/recv) I/O count by process 
name, 423, 430

Socket read (write/send/recv) I/O count by system 
call, 422, 429

Socket reads (write/send/recv) I/O count by 
process and user stack trace, 423, 431

Socket reads (write/send/recv) I/O count by 
system call and process name, 423, 430

Socket scripts, 447
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

Socket system call error descriptions, 467–468
Socket write bytes by process name, 432
Socket write I/O size distribution by process 

name, 433
Solaris, 416–418, 420, 471–474, 1076

80-character maximum, 493
AF_INET values, 451
disk I/O on a Solaris Server, 176–177
I/O stack, 153
IDE driver reference, 251
iostat(1M), 125
kernel memory tools, 118
lower-level network stack, 533
netstat(1M), 125
performance analysis, 52
SAS driver reference, 260
SATA driver reference, 237
system tools, 55
TCP/IP stack, 401

Solaris Auditing, 870
Solaris Dynamic Tracing Guide, 19, 157
Solaris Internals, 66
Solaris Nevada, 298, 411, 470–471, 576–578, 592, 

1011, 1025, 1038, 1086
Solaris Performance and Tools, 52
sort, 992
Sort options, 37
specsize, 1007
Speculations, 41–42, 1006, 1019
SpiderMonkey, 706, 818
spin, 812, 934, 936, 1015, 1086
srp provider probes and arguments, 1035
ssh, 428, 455
SSH logins, 563, 569
SSH scripts

scpwatcher.d, 661–663
sshcipher.d, 649–655

sshconnect.d, 657–661
sshdactivity.d, 655–657

ssh vs. telnet, 462
sshd (SSH daemon), 132, 189, 291, 462, 569, 649, 

655–657, 661, 994–995
sshkeysnoop.d, 875–878
Stability, 275, 806, 1086
stack(), 40–41, 90, 92, 113, 551, 1008, 1017, 1071
Stack backtrace counts, 929
Stack reuse, 554–555
Stack traces, 155, 168–171, 280–283, 312–313
Stackdepth, 31, 698
stackframes, 44, 1008
stat() files, 300, 305
Stat tools, 56
State changes, tcp, 415
Static probes, 4, 1085, 1086
Statically Defined Tracing provider. see sdt 

provider
Statistics (Analytics), 977–984
stddev() function, 34
STDOUT, 662, 878–880, 1014, 1019, 1086
Stoll, Clifford, 884
Stream Control Transmission Protocol (sctp), 

412–413
Streaming workload, 578–579
STREAMS, 534, 944
strftime(), 688
String buffer, 44
String types, 27
String variables, 1008
stringof(), 39–40, 1067
strjoin(), 40, 178, 431, 1016
strlen(), 40, 618, 687–688, 999–1000, 1016
strsize, 44, 1008
strtok(), 618–619, 1016
Subroutines, 720–726, 729–730, 1014, 1087
Subversion, 190
sudo, 20
sum(), 34, 118
Sun Microsystems, 269n, 663, 973, 1079, 1083, 

1084, 1086
Sun Studio IDE, 966
Switch buffer, 1008, 1064, 1080, 1087
switchrate, 194, 992, 1003, 1008, 1065, 1087
sync-cache, 225–226, 246
Synchronous vs. asyncronous write workloads, 

241
Synchronous writes, 584–585, 595
Synchronous ZFS writes, 242, 254
SYS (system), 347, 942
syscall Entry and Return, 25
syscall provider, 60, 90–91, 126, 300–301, 404, 

422, 563, 794, 919
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syscall provider examples
frequency count stat() files, 305
http files opened by the httpd server, 568
reads by file system type, 306
socket accepts by process name, 427
socket connections by process and user stack 

trace, 428
socket read bytes by process name, 423, 433
socket read (write/send/recv) I/O count by 

process name, 423, 430
socket read (write/send/recv) I/O count by 

system call, 422, 429
socket reads (write/send/recv) I/O count by 

process and user stack trace, 423, 431
socket reads (write/send/recv) I/O count by 

system call and process name, 423, 430
socket write bytes by process name, 432
socket write I/O size distribution by process 

name, 433
SSH logins by UID and home directory, 569
trace file creat() calls with process name, 304
trace file opens with process name, 304
tracing cd, 306
writes by file system type, 307
writes by process name and file system type, 

307
Syscall provider scripts

fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

sysevent provider probes and arguments, 1036
sysinfo provider, 58, 87–88, 90–91, 920
syslog(), 664–666
systat(1), 55
System activity reporter, 55
System call counts for processes called httpd, 800
System call time reporter, 806
System calls, 994–995
System tools, 55
System view

CPU tracking
analysis, 60–85
checklist, 57–58
events, 87–94
interrupts, 85–88
one-liners, 58–60
providers, 58

disk and network I/O activity
analysis, 128–134
checklist, 125

disk I/O, 134–141
one-liners, 127–128
providers, 126–127
strategy, 125

memory monitoring
analysis, 98–101
checklist, 96
kernel memory, 118–124
one-liners, 97–98
providers, 96–97
strategy, 95
user process memory activity, 101–117

system methodology, 53–56
system tools, 54–56

Systemwide sniffing, 881

T
Tail-call optimization, 1003
$target, 32, 43, 788, 1070–1071
task queues, 939–941
Tcl (language), 774

code, 776
one-liner examples, 777–778
one-liners, 776–777
pronunciation, 774
script summary, 778
scripts

tcl_calls.d, 779–780
tcl_flowtime.d, 781
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_syscolors.d, 781
tcl_who.d, 778–779

TCP (Transmission Control Protocol), 481, 1087
TCP connections, 441, 446, 486–489
TCP event statistics, 424, 436
tcp fusion, 408
TCP handshake, 408, 482, 492–493, 514–515
TCP Large Send Offload, 553
tcp provider, 404, 425, 482–483
tcp provider examples

inbound TCP connections, 441
sent IP payload size distributions, 443
sent TCP bytes summary, 444
TCP events by type summary, 444
TCP received packets, 443

tcp provider probes and arguments, 1036
TCP scripts

fbt provider, 483–485
tcp provider, 482–483
tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
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tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 446, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516
tcpstat.d, 485–486
tcp1stbyte.d, 499

TCP window buffer, 552
tcpdump, 400
tcpinfo_t, 1042
tcpsinfo_t, 1042
telnet, 462
Ternary operators, 28, 178, 195
The Cuckoo’s Egg: Tracking a Spy Through the 

Maze of Computer Espionage, 884
this->, 30, 176, 182, 997, 1087
Thread life-cycle probes, 691
Thread-local variables, 997–998
Tick probe, 24–25, 1002
tid, 31
Time functions, 526
Time-share scheduling code, 420
Time stamps, 31, 807, 992–993, 995–996
timestamp vs. vtimestamp, 995–996
Timing a system call, 47–48
Tips and tricks

assumptions, 1000
drops and dynvardrops, 1003
frequency count, 991–992
grep, 991
known workloads, 987–989
performance issues, 1001–1002
Perl, 993–994
postprocessing, 993–994
profile probe, 996–997
script simplicity, 1001
strlen() and strcmp(), 999–1000
system calls, 994–995
tail-call optimization, 1003
target software, 989–991
timestamp variables, 992–993
timestamp vs. vtimestamp, 995–996
variables

clause-local variables, 30–31, 998
global and aggregation variables, 999
thread-local variables, 997–998

TLB, 798, 924–925, 937, 1087
TMPFS scripts

tmpgetpage.d, 386–387
tmpusers.d, 385–386

Tools, 947
Analytics

abstractions, 974
breakdowns, 979–980
controls, 983
datasets, 984
diagnostic cycle, 975
drill-downs, 981
heat maps, 979–980
hierarchical breakdowns, 979–980
load vs. architecture, 975
real time, 975
statistics, 977
visualizations, 975
worksheets, 983

Chime, 962–965
DLight, Oracle Solaris Studio 12.2, 966–971
DTrace GUI Plug-in for NetBeans and Sun 

Studio, 966
DTraceToolkit

installation, 949
script example: cpuwalk.d, 957–961

Man page, 959–960
script, 958–959

scripts, 949–957
versions, 949

Mac OS X Instruments, 971–972
top(1), 55
trace(), 37, 684–685, 799
Trace command calls showing command name, 

778
Trace errors, 170–171
Trace file creat() calls with process name, 

304–305
Trace file opens with process name, 304
Trace function calls, 710, 735, 742, 766
Trace function entry arguments, 687
Trace method calls showing class and method, 

754
Trace PHP errors, 736
Trace procedure calls showing procedure name, 

777
Trace program execution showing filename and 

line number, 709
Trace subroutine calls, 721
tracemem(), 39, 799, 1017
Tracing fork() and exec(), 45
Tracing open(2), 44–45
Transaction group, 179
Translation code, 162
Translation Lookaside Buffer (TLB). see TLB
Translators, 42, 1087
Transmission Control Protocol (RFC 793), 481
trunc(), 33–34, 36, 110, 131, 133, 581
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truss(1), 869
TS (time sharing), 420, 942–943
Tunable variables, 1005–1010
Type cast, 26, 1087
Types, 26–27

U
uberblock, 641, 1088
UDFS scripts, 378–379
udp, 404
UDP (User Datagram Protocol), 1088
UDP event statistics, 424, 437
udp provider, 404, 427, 517

examples, 445
probes and arguments, 1036

UDP scripts
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

UFS scripts, 351
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

UFS vs. ZFS synchronous writes, 242
uid, 31
uint64_t, 26
Unanchored probes, 1088
Unary arithmetic operators, 1022
Unary bitwise operators, 1023
Unary logical operators, 1022
Unary operators, 27
Uncached file system read, 331
Uncomment characters, 1088
Underscore, 793n
Unix File System. see UFS
unrolled loop, 232, 618
Unsigned integers, 26–27
unsigned long, 1021
unsigned long long, 27, 1021
Unstable, 1088
Unstable interface, 790
Unstable providers, 275–278
uregs[], 31, 677, 791, 1013
URLs accessed, 616
USB storage, 375
USDT, 1088
USDT example, Bourne shell provider, 1052–1061
User Datagram Protocol. see UDP
User-land, 1088
User-land C, 680
User-mode instructions, 801–803
User-mode level-two cache misses, 803–804

User process memory activity, 101–117
User stack trace profile at 101 hertz, 800–801
usermod(1M), 868
ustack(), 40–41, 90, 113, 165, 687, 872, 1008, 

1017, 1071
ustackframes, 44, 1008–1010
Utilities, 55

V
-v, 161
-V, 811
Variables, 9

associative arrays, 29
built-in, 31–32
clause local, 30–31
clause-local variables, 998
DTrace tunable, 1005–1010
external, 33
global and aggregation variables, 999
macro, 32
operators, 27–28
scalar, 28
structs and pointers, 29
thread local, 30
thread-local variables, 997–998
types, 26–27

Vertical tab (\v), 1021
vfs (virtual file system), 126
vfs provider, 298, 303
VFS scripts

dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
vfslife.d, 345
vfssnoop.d, 340–343

Video demonstration, 269–273
vim, 343–344
Virtual File System. see vfs
Virtual host controller interconnect, 221, 234–236
Virtual memory, 898
Virtual memory info provider (vminfo), 297
Virtual Network Computing (VNC), 824
VirtualBox simulator version, 973
VM life-cycle probes, 691
vmem, 120, 894, 913
vmem heap segment, 913
vminfo provider, 96–97, 302, 308, 920
vm_map_enter(), 105
vmstat, 909
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vmstat(1), 55–56
vm_stat(1), 55, 95, 99
vmstat(8), 55
vmstat(1M), 55, 388–389
vmstat(1M/8), 95
vmtop10.d script, 109–110
vnode interface statistics, 951
vnode_getattr(), 929
VNOP interface, 303, 338–339
Volume manager, 332, 357, 1088
VOP interface, 303, 340–343
VOP_READ_APV(), 170
vopstat, 951
VThread-local variables, 30, 997–998, 1085, 

1087
vtimestamp, 31, 995–996

W
-w, 43, 1007
Wait service time, 213–215
walltimestamp, 31
Web browsers, tracking, 573–574
Web server processes, 323–324
while getopts loop, 193
Whitespace, 887, 1008
Wi-Fi vs. Ethernet, 462
Wiki software, 735
Wildcards, 23–24, 305–307, 690, 991
Workload, 102, 254, 270, 987, 1088
Worksheets (Analytics), 983
Write canceling, 332
write DMA extended, 242
Writes by file system type, 307
Writes by process name and file system type, 307
Writing target software, 989–991

X
-x, 43, 843
xcalls (cross calls), 91
XDR (External Data Representation), 270, 1088

scripts, 447, 529–533
xpv provider probes and arguments, 1037
Xvnc case study

profile provider, 829–831
syscall provider, 824–829

Y
Youtube demonstration video, 269–273

Z
-Z, 316, 375–376, 626, 744, 756
zalloc(), 105, 916–917
ZFS, 221, 225, 241–242, 250

I/O pipeline (ZIO), 357, 361
ZFS ARC, 303, 312–313
ZFS function calls, 688
ZFS 8KB mirror reads

cross calls, 390–393
vmstat(1M), mpstat(1M), and iostat(1M), 

388–389
ZFS scripts

perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

zpool status, 221
Zprint, 909
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