

DTrace

This page intentionally left blank

DTrace
Dynamic Tracing in Oracle® Solaris,
Mac OS X, and FreeBSD

Brendan Gregg
Jim Mauro

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC Inter-
national, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

This document is provided for information purposes only and the contents hereof are subject to change with-
out notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions,
whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no con-
tractual obligations are formed either directly or indirectly by this document. This document may not be repro-
duced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior
written permission.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Gregg, Brendan.
Dynamic tracing in Oracle Solaris, Mac OS X, and FreeBSD / Brendan

Gregg, Jim Mauro.
 p. cm.

Includes index.
ISBN-13: 978-0-13-209151-0 (alk. paper)

 ISBN-10: 0-13-209151-8 (alk. paper)
1. Debugging in computer science. 2. Solaris (Computer file) 3. Mac
OS. 4. FreeBSD. I. Mauro, Jim. II. Title.
QA76.9.D43G74 2011
005.1'4—dc22

2010047609

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood Shores, CA 94065

Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For informa-
tion regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-209151-0
ISBN-10: 0-13-209151-8
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, March 2011

v

Contents

Foreword xxi

Preface xxv

Acknowledgments xxxi

About the Authors xxxv

Part I Introduction
Chapter 1 Introduction to DTrace 1

What Is DTrace? 1

Why Do You Need It? 1

Capabilities 2

Dynamic and Static Probes 4

DTrace Features 4

A First Look 6

Overview 8

Consumers 9

Probes 10

Providers 11

Predicates 13

vi Contents

Actions 13

Aggregations 13

D Language 14

Architecture 16

Summary 17

Chapter 2 D Language 19
D Language Components 20

Usage 20

Program Structure 21

Probe Format 21

Predicates 22

Actions 23

Probes 23

Wildcards 23

BEGIN and END 24

profile and tick 24

syscall Entry and Return 25

Variables 26

Types 26

Operators 27

Scalar 28

Associative Arrays 29

Structs and Pointers 29

Thread Local 30

Clause Local 30

Built-in 31

Macro 32

External 33

Aggregations 33

Types 34

quantize() 34

lquantize() 35

Contents vii

trunc() and clear() 36

normalize() 36

printa() 36

Actions 37

trace() 37

printf() 38

tracemem() 39

copyin() 39

stringof() and copyinstr() 39

strlen() and strjoin() 40

stack(), ustack(), and jstack() 40

sizeof() 41

exit() 41

Speculations 41

Translators 42

Others 42

Options 43

Example Programs 44

Hello World 44

Tracing Who Opened What 44

Tracing fork() and exec() 45

Counting System Calls by a Named Process 45

Showing Read Byte Distributions by Process 45

Profiling Process Names 46

Timing a System Call 47

Snoop Process Execution 48

Summary 49

Part II Using DTrace
Chapter 3 System View 51

Start at the Beginning 52

System Methodology 53

System Tools 54

viii Contents

Observing CPUs 56

CPU Strategy 56

CPUs and Interrupts 85

CPU Events 88

CPU Summary 94

Observing Memory 95

Memory Strategy 95

Memory Checklist 96

Memory Providers 96

Memory One-Liners 97

Memory Analysis 98

User Process Memory Activity 101

Kernel Memory 118

Memory Summary 124

Observing Disk and Network I/O 125

I/O Strategy 125

I/O Checklist 125

I/O Providers 126

I/O One-Liners 127

I/O Analysis 128

Disk I/O 134

Network I/O 141

Summary 148

Chapter 4 Disk I/O 151
Capabilities 152

Disk I/O Strategy 154

Checklist 155

Providers 156

io Provider 157

fbt Provider 163

One-Liners 165

One-Liner Examples 166

Contents ix

Scripts 172

io Provider Scripts 173

SCSI Scripts 211

SATA Scripts 236

IDE Scripts 250

SAS Scripts 259

Case Studies 269

Shouting in the Data Center: A Personal
Case Study (Brendan) 269

DTracing an Unfamiliar I/O Driver (SATA) 273

Conclusion 290

Summary 290

Chapter 5 File Systems 291
Capabilities 292

Logical vs. Physical I/O 295

Strategy 295

Checklist 296

Providers 297

fsinfo Provider 298

io Provider 300

One-Liners 300

One-Liners: syscall Provider Examples 304

One-Liners: vminfo Provider Examples 308

One-Liners: fsinfo Provider Examples 308

One-Liners: sdt Provider Examples 312

Scripts 313

Syscall Provider 315

fsinfo Scripts 327

VFS Scripts 335

UFS Scripts 351

ZFS Scripts 357

HFS+ Scripts 370

x Contents

PCFS Scripts 375

HSFS Scripts 376

UDFS Scripts 378

NFS Client Scripts 379

TMPFS Scripts 385

Case Study 387

ZFS 8KB Mirror Reads 387

Conclusion 397

Summary 397

Chapter 6 Network Lower-Level Protocols 399
Capabilities 400

Strategy 402

Checklist 403

Providers 404

mib Provider 405

ip Provider 408

Network Providers 411

fbt Provider 415

One-Liners 422

Scripts 445

Socket Scripts 447

IP Scripts 469

TCP Scripts 481

UDP Scripts 517

ICMP Scripts 521

XDR Scripts 529

Ethernet Scripts 533

Common Mistakes 548

Receive Context 548

Send Context 550

Packet Size 553

Stack Reuse 554

Summary 555

Contents xi

Chapter 7 Application-Level Protocols 557
Capabilities 558

Strategy 558

Checklist 559

Providers 560

fbt Provider 561

pid Provider 562

One-Liners 563

Scripts 574

NFSv3 Scripts 576

NFSv4 Scripts 592

CIFS Scripts 599

HTTP Scripts 609

DNS Scripts 621

FTP Scripts 625

iSCSI Scripts 633

Fibre Channel Scripts 646

SSH Scripts 649

NIS Scripts 663

LDAP Scripts 664

Multiscripts 666

Summary 668

Chapter 8 Languages 669
Capabilities 671

Strategy 672

Checklist 674

Providers 675

Languages 676

Assembly 677

C 679

User-Land C 680

Kernel C 681

Probes and Arguments 681

xii Contents

Struct Types 682

Includes and the Preprocessor 683

C One-Liners 684

C One-Liners Selected Examples 687

See Also 688

C Scripts 689

C++ 689

Function Names 690

Object Arguments 690

Java 691

Example Java Code 693

Java One-Liners 693

Java One-Liners Selected Examples 694

Java Scripts 696

See Also 705

JavaScript 705

Example JavaScript Code 707

JavaScript One-Liners 708

JavaScript One-Liners Selected Examples 709

JavaScript Scripts 712

See Also 718

Perl 719

Example Perl Code 720

Perl One-Liners 720

Perl One-Liners Selected Examples 721

Perl Scripts 722

PHP 731

Example PHP Code 733

PHP One-Liners 734

PHP One-Liners Selected Examples 735

PHP Scripts 736

Python 740

Example Python Code 741

Contents xiii

Python One-Liners 741

Python One-Liners Selected Examples 742

Python Scripts 744

Ruby 751

Example Ruby Code 752

Ruby One-Liners 753

Ruby One-Liners Selected Examples 753

Ruby Scripts 755

See Also 762

Shell 764

Example Shell Code 765

Shell One-Liners 765

Shell One-Liners Selected Examples 766

Shell Scripts 768

See Also 774

Tcl 774

Example Tcl Code 776

Tcl One-Liners 776

Tcl One-Liners Selected Examples 777

Tcl Scripts 778

Summary 782

Chapter 9 Applications 783
Capabilities 784

Strategy 784

Checklist 786

Providers 787

pid Provider 788

cpc Provider 791

See Also 793

One-Liners 793

One-Liner Selected Examples 798

xiv Contents

Scripts 804

procsnoop.d 804

procsystime 806

uoncpu.d 808

uoffcpu.d 809

plockstat 811

kill.d 813

sigdist.d 814

threaded.d 815

Case Studies 817

Firefox idle 817

Xvnc 824

Summary 832

Chapter 10 Databases 833
Capabilities 834

Strategy 835

Providers 836

MySQL 837

One-Liners 838

One-Liner Selected Examples 840

Scripts 841

See Also 850

PostgreSQL 851

One-Liners 853

One-Liner Selected Examples 854

Scripts 854

See Also 858

Oracle 858

Examples 858

Summary 865

Contents xv

Part III Additional User Topics
Chapter 11 Security 867

Privileges, Detection, and Debugging 867

DTrace Privileges 868

DTrace-Based Attacks 869

Sniffing 869

Security Audit Logs 870

HIDS 871

Policy Enforcement 871

Privilege Debugging 872

Reverse Engineering 874

Scripts 875

sshkeysnoop.d 875

shellsnoop 878

keylatency.d 882

cuckoo.d 884

watchexec.d 886

nosetuid.d 888

nosnoopforyou.d 890

networkwho.d 891

Summary 892

Chapter 12 Kernel 893
Capabilities 894

Strategy 896

Checklist 897

Providers 897

fbt Provider 898

Kernel Tracing 903

Kernel Memory Usage 908

Anonymous Tracing 917

One-Liners 918

One-Liner Selected Examples 925

xvi Contents

Scripts 932

intrstat 932

lockstat 934

koncpu.d 937

koffcpu.d 938

taskq.d 939

priclass.d 941

cswstat.d 943

putnexts.d 944

Summary 945

Chapter 13 Tools 947
The DTraceToolkit 948

Locations 948

Versions 949

Installation 949

Scripts 949

Script Example: cpuwalk.d 957

Chime 962

Locations 962

Examples 963

DTrace GUI Plug-in for NetBeans and Sun Studio 966

Location 966

Examples 966

DLight, Oracle Solaris Studio 12.2 966

Locations 969

Examples 969

Mac OS X Instruments 971

Locations 972

Examples 972

Analytics 973

The Problem 973

Solving the Problem 974

Contents xvii

Toward a Solution 975

Appliance Analytics 976

Summary 985

Chapter 14 Tips and Tricks 987
Tip 1: Known Workloads 987

Tip 2: Write Target Software 989

Tip 3: Use grep to Search for Probes 991

Tip 4: Frequency Count 991

Tip 5: Time Stamp Column, Postsort 992

Tip 6: Use Perl to Postprocess 993

Tip 7: Learn Syscalls 994

Tip 8: timestamp vs. vtimestamp 995

Tip 9: profile:::profile-997 and Profiling 996

Tip 10: Variable Scope and Use 997

Thread-Local Variables 997

Clause-Local Variables 998

Global and Aggregation Variables 999

Tip 11: strlen() and strcmp() 999

Tip 12: Check Assumptions 1000

Tip 13: Keep It Simple 1001

Tip 14: Consider Performance Impact 1001

Tip 15: drops and dynvardrops 1003

Tip 16: Tail-Call Optimization 1003

Further Reading 1003

Appendix A DTrace Tunable Variables 1005

Appendix B D Language Reference 1011

Appendix C Provider Arguments Reference 1025
Providers 1025

Arguments 1038

bufinfo_t 1038

xviii Contents

devinfo_t 1038

fileinfo_t 1038

cpuinfo_t 1039

lwpsinfo_t 1039

psinfo_t 1039

conninfo_t 1040

pktinfo_t 1040

csinfo_t 1040

ipinfo_t 1040

ifinfo_t 1041

ipv4info_t 1041

ipv6info_t 1041

tcpinfo_t 1042

tcpsinfo_t 1042

tcplsinfo_t 1043

Appendix D DTrace on FreeBSD 1045
Enabling DTrace on FreeBSD 7.1 and 8.0 1045

DTrace for FreeBSD: John Birrell 1047

Appendix E USDT Example 1051
USDT Bourne Shell Provider 1052

Compared to SDT 1052

Defining the Provider 1052

Adding a USDT Probe to Source 1053

Stability 1055

Case Study: Implementing a Bourne Shell Provider 1057

Where to Place the Probes 1059

Appendix F DTrace Error Messages 1063
Privileges 1063

Message 1063

Meaning 1063

Suggestions 1064

Contents xix

Drops 1064

Message 1064

Meaning 1064

Suggestions 1064

Aggregation Drops 1065

Message 1065

Meaning 1065

Suggestions 1065

Dynamic Variable Drops 1066

Message 1066

Meaning 1066

Suggestions 1066

Invalid Address 1066

Message 1066

Meaning 1066

Suggestions 1067

Maximum Program Size 1067

Message 1067

Meaning 1067

Suggestions 1067

Not Enough Space 1068

Message 1068

Meaning 1068

Suggestions 1068

Appendix G DTrace Cheat Sheet 1069
Synopsis 1069

Finding Probes 1069

Finding Probe Arguments 1070

Probes 1070

Vars 1070

Actions 1071

Switches 1071

xx Contents

Pragmas 1071

One-Liners 1072

Bibliography 1073
Suggested Reading 1073

Vendor Manuals 1075

FreeBSD 1075

Mac OS X 1075

Solaris 1076

Glossary 1077

Index 1089

xxi

Foreword

In early 2004, DTrace remained nascent; while Mike Shapiro, Adam Leventhal,
and I had completed our initial implementation in late 2003, it still had substan-
tial gaps (for example, we had not yet completed user-level instrumentation on
x86), many missing providers, and many features yet to be discovered. In part
because we were still finishing it, we had only just started to publicly describe
what we had done—and DTrace remained almost entirely unknown outside of
Sun. Around this time, I stumbled on an obscure little Solaris-based tool called
psio that used the operating system’s awkward pre-DTrace instrumentation facil-
ity, TNF, to determine the top I/O-inducing processes. It must be noted that TNF—
which arcanely stands for Trace Normal Form—is a baroque, brittle, pedantic
framework notable only for painfully yielding a modicum of system observability
where there was previously none; writing a tool to interpret TNF in this way is a
task of Herculean proportions. Seeing this TNF-based tool, I knew that its
author—an Australian named Brendan Gregg—must be a kindred spirit: gritty,
persistent, and hell-bent on shining a light into the inky black of the system’s
depths. Given that his TNF contortionist act would be reduced to nearly a one-
liner in DTrace, it was a Promethean pleasure to introduce Brendan to DTrace:

 From: Bryan Cantrill <bmc@eng.sun.com>
 To: Brendan Gregg <brendan.gregg@tpg.com.au>
 Subject: psio and DTrace
 Date: Fri, 9 Jan 2004 13:35:41 -0800 (PST)

xxii Foreword

 Brendan,

 A colleague brought your "psio" to my attention -- very interesting.
 Have you heard about DTrace, a new facility for dynamic instrumentation
 in Solaris 10? As you will quickly see, there's a _lot_ you can do with
 DTrace -- much more than one could ever do with TNF.
 ...

With Brendan’s cordial reply, it was clear that although he was very interested
in exploring DTrace, he (naturally) hadn’t had much of an opportunity to really
use it. And perhaps, dear reader, this describes you, too: someone who has seen
DTrace demonstrated or perhaps used it a bit and, while understanding its poten-
tial value, has perhaps never actually used it to solve a real problem. It should
come as no surprise that one’s disposition changes when DTrace is used not to make
some academic point about the system but rather to save one’s own bacon. After
this watershed moment—which we came to (rather inarticulately) call the DTrace-
just-saved-my-butt moment—DTrace is viewed not as merely interesting but as
essential, and one starts to reach for it ever earlier in the diagnostic process.

Given his aptitude and desire for understanding the system, it should come as
no surprise that when I heard back from Brendan again some two months later, he
was long past his moment, having already developed a DTrace dependency:

 From: Brendan Gregg <brendan.gregg@tpg.com.au>
 To: Bryan Cantrill <bmc@eng.sun.com>
 Subject: Re: psio and DTrace
 Date: Mon, 29 Mar 2004 00:43:27 +1000 (EST)

 G'Day Bryan,

 DTrace is a superb tool. I'm already somewhat dependent on using it.
 So far I've rewritten my "psio" tool to use DTrace (now it is more
 robust and can access more details) and an iosnoop.d tool.
 ...

Brendan went on to an exhaustive list of what he liked and didn’t like in
DTrace. As one of our first major users outside of Sun, this feedback was tremen-
dously valuable to us and very much shaped the evolution of DTrace.

And Brendan became not only one of the earliest users and foremost experts on
DTrace but also a key contributor: Brendan’s collection of scripts—the DTrace-
Toolkit—became an essential factor in DTrace’s adoption (and may well be how
you yourself came to learn about DTrace). Indeed, one of the DTraceToolkit scripts,
shellsnoop, remains a personal favorite of mine: It uses the syscall provider to

Foreword xxiii

display the contents of every read and write executed by a shell. In the early days
of DTrace, whenever anyone asked whether there were security implications to
running DTrace, I used to love to demo this bad boy; there’s nothing like seeing
someone else’s password come across in clear text to wake up an audience!

Given not only Brendan’s essential role in DTrace but also his gift for clearly
explaining complicated systems, it is entirely fitting that he is the author of the
volume now in your hands. And given the degree to which proficient use of DTrace
requires mastery not only of DTrace itself but of the larger system around it, it is
further appropriate that Brendan teamed up with Jim Mauro of Solaris Internals
(McDougall and Mauro, 2006) fame. Together, Brendan and Jim are bringing you
not just a book about DTrace but a book about using it in the wild, on real prob-
lems and actual systems. That is, this book isn’t about dazzling you with what
DTrace can do; it is about getting you closer to that moment when it is your butt
that DTrace saves. So, enjoy the book, and remember: DTrace is a workhorse, not a
show horse. Don’t just read this book; put it to work and use it!

—Bryan Cantrill
Piedmont, California

This page intentionally left blank

xxv

Preface

“[expletive deleted] it’s like they saw inside my head and gave me The One True Tool.”

—A Slashdotter, in a post referring to DTrace

“With DTrace, I can walk into a room of hardened technologists and
get them giggling.”

—Bryan Cantrill, father of DTrace

Welcome to Oracle Solaris Dynamic Tracing—DTrace! It’s been more than five
years since DTrace made its first appearance in Solaris 10 3/05, and it has been
just amazing to see how it has completely changed the rules of understanding sys-
tems and the applications they run. The DTrace technical community continues to
grow, embracing the technology, pushing DTrace in every possible direction, and
sharing new and innovative methods for using DTrace to diagnose myriad system
and application problems. Our personal experience with DTrace has been an
adventure in learning, helping customers solve problems faster, and improving our
internal engineering efforts to analyze systems and find ways to make our technol-
ogy better and faster.

The opening quotes illustrate just some of the reactions we have seen when
users experience how DTrace empowers them to observe, analyze, debug, and
understand their systems and workloads. The community acceptance and adop-
tion of DTrace has been enormously gratifying to watch and participate in. We
have seen DTrace ported to other operating systems: Mac OS X and FreeBSD both

xxvi Preface

ship with DTrace. We see tools emerging that leverage the power of DTrace, most
of which are being developed by community members. And of course feedback and
comments from users over the years have driven continued refinements and new
features in DTrace.

About This Book

This book is all about DTrace, with the emphasis on using DTrace to understand,
observe, and diagnose systems and applications. A deep understanding of the
details of how DTrace works is not necessary to using DTrace to diagnose and
solve problems; thus, the book covers using DTrace on systems and applications,
with command-line examples and a great many D scripts. Depending on your level
of experience, we intend the book’s organization to facilitate its use as a reference
guide, allowing you to refer to specific chapters when diagnosing a particular area
of the system or application.

This is not a generic performance and tools book. That is, many tools are avail-
able for doing performance analysis, observing the system and applications, debug-
ging, and tuning. These tools exist in various places—bundled with the operating
system, part of the application development environment, downloadable tools, and
so on. It is probable that other tools and utilities will be part of your efforts involv-
ing DTrace (for example, using system stat tools to get a big-picture view of sys-
tem resource utilization). Throughout this book, you’ll see examples of some of
these tools being used as they apply to the subject at hand and aid in highlighting
a specific point, and coverage of the utility will include only what is necessary for
clarity.

Our approach in writing this book was that DTrace is best learned by example.
This approach has several benefits. The volume of DTrace scripts and one-liners
included in the text gives readers a chance to begin making effective and practical
use of DTrace immediately. The examples and scripts in the book were inspired by
the DTraceToolkit scripts, originally created by Brendan Gregg to meet his own
needs and experiences analyzing system problems. The scripts in this book encap-
sulate those experiences but also introduce analysis of different topics in a focused
and easy-to-follow manner, to aid learning. They generate answers to real and use-
ful questions and serve as a starting point for building more complex scripts.
Rather than an arbitrary collection of programs intended to highlight a poten-
tially interesting feature of DTrace or the underlying system, the scripts and one-
liners are all based on practical requirements, providing insight about the system
under observation. Explanations are provided throughout that discuss the DTrace
used, as well as the output generated.

Preface xxvii

DTrace was first introduced in Oracle Solaris 10 3/05 (the first release of Solaris
10) in March 2005. It is available in all Solaris 10 releases, as well as OpenSolaris,
and has been ported to Mac OS X 10.5 (Leopard) and FreeBSD 7.1. Although much
of DTrace is operating system–agnostic, there are differences, such as newer DTrace
features that are not yet available everywhere.1 Using DTrace to trace operating
system–specific functions, especially unstable interfaces within the kernel, will of
course be very different across the different operating systems (although the same
methodologies will be applicable to all). These differences are discussed through-
out the book as appropriate. The focus of the book is Oracle Solaris, with key
DTrace scripts provided for Mac OS X and FreeBSD. Readers on those operating
systems are encouraged to examine the Solaris-specific examples, which demon-
strate principles of using DTrace and often only require minor changes to execute
elsewhere. Scripts that have been ported to these other operating systems will be
available on the DTrace book Web site, www.dtracebook.com.

How This Book Is Structured

This book is organized in three parts, each combining a logical group of chapters
related to a specific area of DTrace or subject matter.

Part I, Introduction, is introductory text, providing an overview of DTrace and
its features in Chapter 1, Introduction to DTrace, and a quick tour of the D Lan-
guage in Chapter 2, D Language. The information contained in these chapters is
intended to support the material in the remaining chapters but does not necessar-
ily replace the more detailed language reference available in the online, wiki-based
DTrace documentation (see “Supplemental Material and References”).

Part II, Using DTrace, gets you started using DTrace hands-on. Chapter 3, Sys-
tem View, provides an introduction to the general topic of system performance,
observability, and debugging—the art of system forensics. Old hands and those
who have read McDougall, Mauro, and Gregg (2006) may choose to pass over this
chapter, but a holistic view of system and software behavior is as necessary to
effective use of DTrace as knowledge of the language syntax. The next several
chapters deal with functional areas of the operating system in detail: the I/O
path—Chapter 4, Disk I/O, and Chapter 5, File Systems—is followed by Chapter 6,
Network Lower-Level Protocols, and Chapter 7, Application-Level Protocols, on the
network protocols. A change of direction occurs at Chapter 8, Languages, where
application-level concerns become the focus. Chapter 8 itself covers programming

1. This will improve after publication of this book, because other operating systems
include the newer features.

www.dtracebook.com

xxviii Preface

languages and DTrace’s role in the development process. Chapter 9, Applications,
deals with the analysis of applications. Databases are dealt with specifically in
Chapter 10, Databases.

Part III, Additional User Topics, continues the “using DTrace” theme, covering
using DTrace in a security context (Chapter 11, Security), analyzing the kernel
(Chapter 12, Kernel), tools built on top of DTrace (Chapter 13, Tools), and some
tips and tricks for all users (Chapter 14, Tips and Tricks).

Each chapter follows a broadly similar format of discussion, strategy sugges-
tions, checklists, and example programs. Functional diagrams are also included in
the book to guide the reader to use DTrace effectively and quickly.

For further sources of information, see the online “Supplemental Material and
References” section, as well as the annotated bibliography of textbook and online
material provided at the end of the book.

Intended Audience

DTrace was designed for use by technical staff across a variety of different roles,
skills, experience, and knowledge levels. That said, it is a software analysis and
debugging tool, and any substantial use requires writing scripts in D. D is a struc-
tured language very similar to C, and users of that language can quickly take
advantage of that familiarity. It is assumed that the reader will have some knowl-
edge of operating system and software concepts and some programming back-
ground in scripting languages (Perl, shell, and so on) and/or languages (C, C++,
and so on).

In addition, you should be familiar with the architecture of the platform you’re
using DTrace on. Textbooks on Solaris, FreeBSD, and Mac OS X are detailed in the
bibliography.

To minimize the level of programming skill required, we have provided many
DTrace scripts that you can use immediately without needing to write code. These
also help you learn how to write your own DTrace scripts, by providing example
solutions that are also starting points for customization. The DTraceToolkit2 is a
popular collection of such DTrace scripts that has been serving this role to date,
created and mostly written by the primary author of this book. Building upon that
success, we have created a book that is (we hope) the most comprehensive source
for DTrace script examples.3

2. This is linked on www.brendangregg.com/dtrace.html and www.dtracebook.com.

3. The DTraceToolkit now needs updating to catch up!

www.brendangregg.com/dtrace.html
www.dtracebook.com

Preface xxix

This book will serve as a valuable reference for anyone who has an interest in or
need to use DTrace, whether it is a necessary part of your day job, a student study-
ing operating systems, or a casual user interested in figuring out why the hard
drive on your personal computer is clattering away doing disk I/Os.

Specific audiences for this book include the following.

� Systems administrators, database administrators, performance ana-
lysts, and support staff responsible for the care and feeding of their pro-
duction systems can use this book as a guide to diagnose performance and
pathological behavior problems, understand capacity and resource usage, and
work with developers and software providers to troubleshoot application
issues and optimize system performance.

� Application developers can use DTrace for debugging applications and uti-
lizing DTrace’s User Statically Defined Tracing (USDT) for inserting DTrace
probes into their code.

� Kernel developers can use DTrace for debugging kernel modules.

� Students studying operating systems and application software can use
DTrace because the observability that it provides makes it a perfect tool to
supplement the learning process. Also, there’s the implementation of DTrace
itself. DTrace is among the most well-thought-out and well-designed soft-
ware systems ever created, incorporating brilliantly crafted solutions to the
extremely complex problems inherent in building a dynamic instrumentation
framework. Studying the DTrace design and source code serves as a world-
class example of software engineering and computer science.

Note that there is a minimum knowledge level assumed on the part of the
reader for the topics covered, allowing this book to focus on the application of
DTrace for those topics.

Supplemental Material and References

Readers are encouraged to visit the Web site for this book: www.dtracebook.com.
All the scripts contained in the book, as well as reader feedback and comments,

book errata, and subsequent material that didn’t make the publication deadline,
can be downloaded from the site.

Brendan Gregg’s DTraceToolkit is free to download and contains more than 200
scripts covering every everything from disks and networks to languages and the
kernel. Some of these are used in this text: http://hub.opensolaris.org/bin/view/
Community+Group+dtrace/dtracetoolkit.

www.dtracebook.com
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit

xxx Preface

The DTrace online documentation should be referenced as needed: http://
wikis.sun.com/display/DTrace/Documentation.

The OpenSolaris DTrace Community site contains links and information,
including projects and additional sources for scripts: http://hub.opensolaris.org/
bin/view/Community+Group+dtrace/.

The following texts (found in the bibliography) can be referenced to supplement
DTrace analysis and used as learning tools:

� McDougall and Mauro, 2006

� McDougall, Mauro, and Gregg, 2006

� Gove, 2007

� Singh, 2006

� Neville-Neil and McKusick, 2004

http://wikis.sun.com/display/DTrace/Documentation
http://wikis.sun.com/display/DTrace/Documentation
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/

xxxi

Acknowledgments

The authors owe a huge debt of gratitude to Deirdré Straughan for her dedication
and support. Deirdré spent countless hours reviewing and editing material, sub-
stantially improving the quality of the book. Deirdré has also dedicated much of
her time and energy to marketing and raising awareness of DTrace and this book
both inside and outside of Oracle.

Dominic Kay was tireless in his dedication to careful review of every chapter in
this book, providing detailed commentary and feedback that improved the final
text tremendously. Darryl Gove also provided extraordinary feedback, understand-
ing the material very well and providing numerous ideas for improving how topics
are explained. And Peter Memishian provided incredible feedback and expertise in
the short time available to pick through the longest chapter in the book, Chapter 6,
and greatly improve its accuracy.

Kim Wimpsett, our copy editor, worked through the manuscript with incredible
detail and in great time. With so many code examples, technical terms, and output
samples, this is a very difficult and tricky text to edit. Thanks so much for the hard
work and patience.

We are very grateful to everyone who provided feedback and content on some or
all of the chapters in the short time frame available for such a large book, notably,
Alan Hargreaves, Alan Maguire, Andrew Krasny, Andy Bowers, Ann Rice, Boyd
Adamson, Darren Moffatt, Glenn Brunette, Greg Price, Jarod Jenson, Jim Fiori,
Joel Buckley, Marty Itzkowitz, Nasser Nouri, Rich Burridge, Robert Watson, Rui
Paulo, and Vijay Tatkar.

xxxii Acknowledgments

A special thanks to Alan Hargreaves for his insights and comments and contrib-
uting his USDT example and case study in Appendix E.

Thanks to Chad Mynhier and Tariq Magdon-Ismail for their contributions.
Thanks to Richard McDougall for so many years of friendship and inspiration

and for the use of the RMCplex.
We’d like to thank the software engineers who made this all possible in the first

place, starting with team DTrace at Sun Microsystems (Bryan Cantrill, Mike Sha-
piro, and Adam Leventhal) for inventing DTrace and developing the code, and
team DTrace at Apple for their port of not only DTrace but many DTraceToolkit
scripts (Steve Peters, James McIlree, Terry Lambert, Tom Duffy, and Sean Calla-
nan); and we are grateful for the work that John Birrell performed to port DTrace
to FreeBSD. We’d also like to thank the software engineers, too numerous to men-
tion here, who created all the DTrace providers we have demonstrated throughout
the book.

Thanks to the worldwide community that has embraced DTrace and generated
a whirlwind of activity on the public forums, such as dtrace-discuss. These have
been the source of many great ideas, examples, use cases, questions, and answers
over the years that educate the community and drive improvements in DTrace.

And a special thanks to Greg Doench, senior editor at Pearson, for his help,
patience, and enthusiasm for this project and for working tirelessly once all the
material was (finally) delivered.

Personal Acknowledgments from Brendan

Working on this book has been an enormous privilege, providing me the opportu-
nity to take an amazing technology and to demonstrate its use in a variety of new
areas. This was something I enjoyed doing with the DTraceToolkit, and here was
an opportunity to go much further, demonstrating key uses of DTrace in more than
50 different topics. This was also an ambitious goal: Of the 230+ scripts in this
book, only 45 are from the DTraceToolkit; most of the rest had to be newly created
and are released here for the first time. Creating these new scripts required exten-
sive research, configuration of application environments and client workloads,
experimentation, and testing. It has been exhausting at times, but it is satisfying
to know that this should be a valuable resource for many.

A special thanks to Jim for creating the DTrace book project, encouraging me to
participate, and then working hard together to make sure it reached completion.
Jim is an inspiration to excellence; he co-authored Solaris Internals (McDougall
and Mauro, 2006) with Richard McDougall, which I studied from cover to cover
while I was learning DTrace. I was profoundly impressed by its comprehensive
coverage, detailed explanations, and technical depth. I was therefore honored to be

Acknowledgments xxxiii

invited to collaborate on this book and to work with someone who had the experi-
ence and desire to take on a similarly ambitious project. Jim has an amazing can-
do attitude and willingness to take on hard problems, which proved essential as we
worked through the numerous topics in this book. Jim, thanks; we somehow sur-
vived!

Thanks, of course, are also due to team DTrace; it’s been a privilege to work
with them and learn from them as part of the Fishworks team. Especially sitting
next to Bryan for four years: Learning from him, I’ve greatly improved my soft-
ware analysis skills and will never forget to separate problems of implementation
from problems of abstraction.

Thanks to the various Sun/Oracle teams I regularly work with, share problems
with, and learn from, including the Fishworks, Performance Availability Engineer-
ing (PAE), Independent Software Vendor (ISV) engineering, and ZFS teams.

Thanks to Claire, for the love, support, and patience during the many months
this was to take, and then the many months beyond which it actually took to com-
plete. These months included the birth of our child, Mitchell, making it especially
tough for her when I was working late nights and weekends on the book.

—Brendan Gregg
Walnut Creek, California (formerly Sydney, Australia)
September 2010

Personal Acknowledgments from Jim

Working on this book was extremely gratifying and, to a large degree, educational.
I entered the project completely confident in my knowledge of DTrace and its use
for observing complex systems. A few months into this project, I quickly realized I
had only scratched the surface. It’s been enormously rewarding to be able to
improve my knowledge and skills as I worked on this book, while at the same time
improving and adding more value to the quality of this text.

First and foremost, a huge thank you to Brendan. Brendan’s expertise and sheer
energy never ceased to amaze me. He consistently produced huge amounts of
material—DTrace scripts, one-liners, and examples—at a rate that I would have
never thought humanly possible. He continually supplied an endless stream of
ideas, constantly improving the quality of his work and mine. He is uncompromis-
ing in his standards for correctness and quality, and this work is a reflection of
Brendan’s commitment to excellence. Brendan’s enthusiasm is contagious—
throughout this project, Brendan’s desire to educate and demonstrate the power of
DTrace, and its use for solving problems and understanding software, was an

xxxiv Acknowledgments

inspiration. His expertise in developing complex scripts that illuminate the behav-
ior of a complex area of the kernel or an application is uncanny. Thanks, mate; it’s
been a heck of a ride. More than anything, this is your book.

Thanks to my manager, Fraser Gardiner, for his patience and support.
I want to thank the members of Fraser’s team who I have the opportunity to

work with and learn from every day: Andy Bowers, Matt Finch, Calum Mackay,
Tim Uglow, and Rick Weisner, all of whom rightfully belong in the “scary smart”
category.

Speaking of “scary smart,” a special thanks to my friend Jon Haslam for
answering a constant stream of DTrace questions and for his amazing contribu-
tions to DTrace.

Thanks to Chad Mynhier for his ideas, contributions, patience, and understanding.
Thanks to my friends Richard McDougall and Bob Sneed for all the support,

advice, and time spent keeping me going over the years. And a special thank-you
to Richard for use of the RMCplex.

Thanks to Donna, Frank, and Dominic for their love, patience, and support.
Thanks Lisa, for the love, support, and inspiration and for just being you.

—Jim Mauro
Green Brook, New Jersey
September 2010

xxxv

About the Authors

Brendan Gregg is a performance specialist at Joyent and is known worldwide in
the field of DTrace. Brendan created and developed the DTraceToolkit and is the
coauthor of Solaris Performance and Tools (McDougall, Mauro, and Gregg, 2006)
as well as numerous articles about DTrace. He was previously the performance
lead for the Sun/Oracle ZFS storage appliance and a software developer on the
Fishworks advanced development team at Sun, where he worked with the three
creators of DTrace. He has also worked as a system administrator, performance
consultant, and instructor, and he has taught DTrace worldwide including work-
shops that he authored. His software achievements include creating the DTrace IP,
TCP, and UDP providers; the DTrace JavaScript provider; and the ZFS L2ARC.
Many of Brendan’s DTrace scripts are shipped by default in Mac OS X.

Jim Mauro is a senior software engineer for Oracle Corporation. Jim works in the
Systems group, with a primary focus on systems performance. Jim’s work includes
internal performance-related projects, as well as working with Oracle customers
on diagnosing performance issues on production systems. Jim has 30 years of expe-
rience in the computer industry, including 19 years with Sun Microsystems prior
to the acquisition by Oracle. Jim has used DTrace extensively for his performance
work since it was first introduced in Solaris 10 and has taught Solaris perfor-
mance analysis and DTrace for many years.

Jim coauthored the first and second editions of Solaris Internals (McDougall
and Mauro, 2006) and Solaris Performance and Tools (McDougall, Mauro, and
Gregg, 2006) and has written numerous articles and white papers on various
aspects of Solaris performance and internals.

This page intentionally left blank

783

9
Applications

DTrace has the ability to follow the operation of applications from within the
application source code, through system libraries, through system calls, and into
the kernel. This visibility allows the root cause of issues (including performance
issues) to be found and quantified, even if it is internal to a kernel device driver or
something else outside the boundaries of the application code. Using DTrace, ques-
tions such as the following can be answered.

� What transactions are occurring? With what latency?

� What disk I/O is the application performing? What network I/O?

� Why is the application on-CPU?

As an example, the following one-liner frequency counts application stack traces
when the Apache Web server (httpd) performs the read() system call:

dtrace -n 'syscall::read:entry /execname == "httpd"/ { @[ustack()] = count(); }'
dtrace: description 'syscall::read:entry ' matched 1 probe
[...]

 libc.so.1`__read+0x7
 libapr-1.so.0.3.9`apr_socket_recv+0xb0
 libaprutil-1.so.0.3.9`socket_bucket_read+0x5b

 httpd`ap_core_input_filter+0x294
 mod_ssl.so`bio_filter_in_read+0xbc

 libcrypto.so.0.9.8`BIO_read+0xaf
 libssl.so.0.9.8`ssl3_get_record+0xb5

 libssl.so.0.9.8`ssl3_read_n+0x144
continues

784 Chapter 9 � Applications

The output has been truncated to show only the last stack trace. This stack
trace was responsible for calling read() 31 times and shows the application code
path through libssl (the Secure Sockets Layer library, because this was an HTTPS
read). Each of the functions shown by the stack trace can be traced separately
using DTrace, including function arguments, return value, and time.

The previous chapter focused on the programming languages of application soft-
ware, particularly for developers who have access to the source code. This chapter
focuses on application analysis for end users, regardless of language or layer in the
software stack.

Capabilities

DTrace is capable of tracing every layer of the software stack, including examin-
ing the interactions of the various layers (see Figure 9-1).

Strategy

To get started using DTrace to examine applications, follow these steps (the target
of each step is in bold):

1. Try the DTrace one-liners and scripts listed in the sections that follow and
from the other chapters in the “See Also” section (which includes disk, file
system, and network I/O).

2. In addition to those DTrace tools, familiarize yourself with any existing
application logs and statistics that are available and also by any add-ons.
(For example, before diving into Mozilla Firefox performance, try add-ons for
performance analysis.) The information that these retrieve can show what is
useful to investigate further with DTrace.

 libssl.so.0.9.8`ssl3_read_bytes+0x161
 libssl.so.0.9.8`ssl3_read_internal+0x66

 libssl.so.0.9.8`ssl3_read+0x16
 libssl.so.0.9.8`SSL_read+0x42
 mod_ssl.so`ssl_io_input_read+0xf0
 mod_ssl.so`ssl_io_filter_input+0xd0

 httpd`ap_rgetline_core+0x66
 httpd`ap_read_request+0x1d1
 httpd`ap_process_http_connection+0xe4
 httpd`ap_run_process_connection+0x28

 httpd`child_main+0x3d8
 httpd`make_child+0x86
 httpd`ap_mpm_run+0x410
 httpd`main+0x812
 httpd`_start+0x7d

 31

Strategy 785

3. Check whether any application USDT providers are available (for example,
the mozilla provider for Mozilla Firefox).

4. Examine application behavior using the syscall provider, especially if the
application has a high system CPU time. This is often an effective way to get
a high-level picture of what the application is doing by examining what it is
requesting the kernel to do. System call entry arguments and return errors
can be examined for troubleshooting issues, and system call latency can be
examined for performance analysis.

5. Examine application behavior in the context of system resources, such as
CPUs, disks, file systems, and network interfaces. Refer to the appropriate
chapter in this book.

6. Write tools to generate known workloads, such as performing a client
transaction. It can be extremely helpful to have a known workload to refer to
while developing DTrace scripts.

7. Familiarize yourself with application internals. Sources may include applica-
tion documentation and source code, if available. DTrace can also be used to
learn the internals of an application, such as by examining stack traces
whenever the application performs I/O (see the example at the start of this
chapter).

8. Use a language provider to trace application code execution, if one exists
and is available (for example, perl). See Chapter 8, Languages.

Figure 9-1 Software stack

786 Chapter 9 � Applications

9. Use the pid provider to trace the internals of the application software and
libraries it uses, referring to the source code if available. Write scripts to
examine higher-level details first (operation counts), and drill down deeper
into areas of interest.

Checklist

Consider Table 9-1 a checklist of application issue types that can be examined
using DTrace. This is similar to the checklist in Chapter 8 but is in terms of appli-
cations rather than the language.

Table 9-1 Applications Checklist

Issue Description

on-CPU time An application is hot on-CPU, showing high %CPU in top(1) or
prstat(1M). DTrace can identify the reason by sampling user stack traces
with the profile provider and by tracing application functions with vtime-
stamps. Reasons for high on-CPU time may include the following:

• Compression

• Encryption

• Dataset iteration (code path loops)

• Spin lock contention

• Memory I/O

The actual make-up of CPU time, whether it is cycles on core (for example,
for the Arithmetic Logic Unit) or cycles while stalled (for example, waiting
for memory bus I/O) can be investigated further using the DTrace cpc pro-
vider, if available.

off-CPU time Applications will spend time off-CPU while waiting for I/O, waiting for locks
(not spinning), and while waiting to be dispatched on a CPU after returning
to the ready to run state. These events can be examined and timed with
DTrace, such as by using the sched provider to look at thread events. Time
off-CPU during I/O, especially disk or network I/O, is a common cause of
performance issues (for example, an application performing file system reads
served by slow disks, or a DNS lookup during client login, waiting on net-
work I/O to the DNS server). When interpreting off-CPU time, it is impor-
tant to differentiate between time spent off-CPU because of the following:

• Waiting on I/O during an application transaction

• Waiting for work to do

Applications may spend most of their time waiting for work to do, which is
not typically a problem.

Providers 787

Providers

Table 9-2 shows providers of most interest when tracing applications.

Volume Applications may be calling a particular function or code path too fre-
quently; this is the simplest type of issue to DTrace: frequency count func-
tion calls. Examining function arguments may identify other inefficiencies,
such as performing I/O with small byte sizes when larger sizes should be
possible.

Locks Waiting on locks can occur both on-CPU (spin) and off-CPU (wait). Locks
are used for synchronization of multithreaded applications and, when
poorly used, can cause application latency and thread serialization. Use
DTrace to examine lock usage using the plockstat provider if available or
using pid or profile.

Memory
Allocation

Memory allocation can be examined in situations when applications con-
sume excessive amounts of memory. Calls to manage memory (such as
malloc()) can be traced, along with entry and return arguments.

Errors Applications can encounter errors in their own code and from system
libraries and system calls that they execute. Encountering errors is normal
for software, which should be written to handle them correctly. However, it
is possible that errors are being encountered but not handled correctly by
the application. DTrace can be used to examine whether errors are occur-
ring and, if so, their origin.

Table 9-2 Providers for Applications

Provider Description

proc Trace application process and thread creation and destruction and signals.

syscall Trace entry and return of operating system calls, arguments, and return values.

profile Sample application CPU activity at a custom rate.

sched Trace application thread scheduling events.

vminfo Virtual memory statistic probes, based on vmstat(1M) statistics.

sysinfo Kernel statistics probes, based on mpstat(1M) statistics.

plockstat Trace user-land lock events.

cpc CPU Performance Counters provider, for CPU cache hit/miss by function.

pid Trace internals of the application including calls to system libraries.

language Specific language provider: See Chapter 8.

Table 9-1 Applications Checklist (Continued)

Issue Description

788 Chapter 9 � Applications

You can find complete lists of provider probes and arguments in the DTrace
Guide.1

pid Provider

The Process ID (pid) provider instruments user-land function execution, providing
probes for function entry and return points and for every instruction in the func-
tion. It also provides access to function arguments, return codes, return instruc-
tion offsets, and register values. By tracing function entry and return, the elapsed
time and on-CPU time during function execution can also be measured. It is avail-
able on Solaris and Mac OS X and is currently being developed for FreeBSD.2

The pid provider is associated with a particular process ID, which is part of the
provider name: pid<PID>. The PID can be written literally, such as pid123, or
specified using the macro variable $target, which provides the PID when either
the -p PID or -c command option is used.

Listing pid provider function entry probes for the bash shell (running as PID
1122) yields the following:

1. This is currently at http://wikis.sun.com/display/DTrace/Documentation.

2. This is by Rui Paulo for the DTrace user-land project: http://freebsdfoundation.blogspot.com/
2010/06/dtrace-userland-project.html.

dtrace -ln 'pid$target:::entry' -p 1122
 ID PROVIDER MODULE FUNCTION NAME
12539 pid1122 bash _start entry
12540 pid1122 bash __fsr entry
12541 pid1122 bash main entry
12542 pid1122 bash parse_long_options entry
12543 pid1122 bash parse_shell_options entry
12544 pid1122 bash exit_shell entry
12545 pid1122 bash sh_exit entry
12546 pid1122 bash execute_env_file entry
12547 pid1122 bash run_startup_files entry
12548 pid1122 bash shell_is_restricted entry
12549 pid1122 bash maybe_make_restricted entry
12550 pid1122 bash uidget entry
12551 pid1122 bash disable_priv_mode entry
12552 pid1122 bash run_wordexp entry
12553 pid1122 bash run_one_command entry
[...]
15144 pid1122 libcurses.so.1 addstr entry
15145 pid1122 libcurses.so.1 attroff entry
15146 pid1122 libcurses.so.1 attron entry
15147 pid1122 libcurses.so.1 attrset entry
15148 pid1122 libcurses.so.1 beep entry
15149 pid1122 libcurses.so.1 bkgd entry
[...]
15704 pid1122 libsocket.so.1 endnetent entry
15705 pid1122 libsocket.so.1 getnetent_r entry
15706 pid1122 libsocket.so.1 str2netent entry
15707 pid1122 libsocket.so.1 getprotobyname entry

http://wikis.sun.com/display/DTrace/Documentation
http://freebsdfoundation.blogspot.com/2010/06/dtrace-userland-project.html
http://freebsdfoundation.blogspot.com/2010/06/dtrace-userland-project.html

Providers 789

There were 8,003 entry probes listed. The previous truncated output shows a
sample of the available probes from the bash code segment and three libraries: lib-
curses, libsocket, and libc. The probe module name is the segment name.

Listing all pid provider probes for the libc function fputc()yields the following:

The probes listed are the entry and return probes for the fputc() function, as well
as probes for each instruction offset in hexadecimal (0, 1, 3, 4, 7, c, d, and so on).

Be careful when using the pid provider, especially in production environments.
Application processes vary greatly in size, and many production applications have
large text segments with a large number of instrumentable functions, each with
tens to hundreds of instructions and with each instruction another potential probe
target for the pid provider. The invocation dtrace -n 'pid1234::::' will instruct
DTrace to instrument every function entry and return and to instrument every
instruction in process PID 1234. Here’s an example:

15708 pid1122 libsocket.so.1 getprotobynumber entry
15709 pid1122 libsocket.so.1 getprotoent entry
[...]
19019 pid1122 libc.so.1 fopen entry
19020 pid1122 libc.so.1 _freopen_null entry
19021 pid1122 libc.so.1 freopen entry
19022 pid1122 libc.so.1 fgetpos entry
19023 pid1122 libc.so.1 fsetpos entry
19024 pid1122 libc.so.1 fputc entry
[...]

dtrace -ln 'pid$target::fputc:' -p 1122
 ID PROVIDER MODULE FUNCTION NAME
19024 pid1122 libc.so.1 fputc entry
20542 pid1122 libc.so.1 fputc return
20543 pid1122 libc.so.1 fputc 0
20544 pid1122 libc.so.1 fputc 1
20545 pid1122 libc.so.1 fputc 3
20546 pid1122 libc.so.1 fputc 4
20547 pid1122 libc.so.1 fputc 7
20548 pid1122 libc.so.1 fputc c
20549 pid1122 libc.so.1 fputc d
20550 pid1122 libc.so.1 fputc 13
20551 pid1122 libc.so.1 fputc 16
20552 pid1122 libc.so.1 fputc 19
20553 pid1122 libc.so.1 fputc 1c
20554 pid1122 libc.so.1 fputc 21
20555 pid1122 libc.so.1 fputc 24
20556 pid1122 libc.so.1 fputc 25
20557 pid1122 libc.so.1 fputc 26

solaris# dtrace -n 'pid1471:::'
dtrace: invalid probe specifier pid1471:::: failed to create offset probes in
'__1cFStateM_sub_Op_ConI6MpknENode__v_': Not enough space

solaris# dtrace -n 'pid1471:::entry'
dtrace: description 'pid1471:::entry' matched 26847 probes

790 Chapter 9 � Applications

Process PID 1471 was a Java JVM process. The first DTrace command
attempted to insert a probe at every instruction location in the JVM but was
unable to complete. The Not enough space error means the default number of
250,000 pid provider probes was not enough to complete the instrumentation. The
second invocation in the example instruments the same process, but this time with
the entry string in the name component of the probe, instructing DTrace to insert
a probe at the entry point of every function in the process. In this case, DTrace
found 26,847 instrumentation points.

Once a process is instrumented with the pid provider, depending on the number
of probes and how busy the process is, using the pid provider will induce some
probe effect, meaning it can slow the execution speed of the target process, in some
cases dramatically.

Stability

The pid provider is considered an unstable interface, meaning that the provider
interface (which consists of the probe names and arguments) may be subject to
change between application software versions. This is because the interface is
dynamically constructed based on the thousands of compiled functions that make
up a software application. It is these functions that are subject to change, and
when they do, so does the pid provider. This means that any DTrace scripts or one-
liners based on the pid provider may be dependent on the application software ver-
sion they were written for.

Although application software can and is likely to change between versions,
many library interfaces are likely to remain unchanged, such as libc, libsocket, lib-
pthread, and many others, especially those exporting standard interfaces such as
POSIX. These can make good targets for tracing with the pid provider, because
one-liners and scripts will have a higher degree of stability than when tracing
application-specific software.

If a pid-based script has stopped working because of minor software changes,
then ideally the script can be repaired with equivalent minor changes to match the
newer software. If the software has changed significantly, then the pid-based script
may need to be rewritten entirely. Because of this instability, it is recommended to
use pid only when needed. If there are stable providers available that can serve a
similar role, they should be used instead, and the scripts that use them will not
need to be rewritten as the software changes.

Since pid is an unstable interface, the pid provider one-liners and scripts in this
book are not guaranteed to work or be supported by software vendors.

The pid provider scripts in this book serve not just as examples of using the pid
provider in D programs but also as example data that DTrace can make available and
why that can be useful. If these scripts stop working, you can try fixing them or check
for updated versions on the Web (try this book’s Web site, www.dtracebook.com).

www.dtracebook.com

Providers 791

Arguments and Return Value

The arguments and return value for functions can be inspected on the pid entry
and return probes.

� pid<PID>:::entry: The function arguments is (uint64_t) arg0 ...
argn.

� pid<PID>:::return: The program counter is (uint64_t) arg0; the return
value is (uint64_t) arg1.

The uregs[] array can also be accessed to examine individual user registers.

cpc Provider

The CPU Performance Counter (cpc) provider provides probes for profiling CPU
events, such as instructions, cache misses, and stall cycles. These CPU events are
based on the performance counters that the CPUs provide, which vary between
manufacturers, types, and sometimes versions of the same type of CPU. A generic
interface for the performance counters has been developed, the Performance Appli-
cation Programming Interface (PAPI),3 which is supported by the cpc provider in
addition to the platform-specific counters. The cpc provider is fully documented in
the cpc provider section of the DTrace Guide and is currently available only in
Solaris Nevada.4

The cpc provider probe names have the following format:

The event name may be a PAPI name or a platform-specific event name. On
Solaris, events for the current CPU type can be listed using cpustat(1M):

3. See http://icl.cs.utk.edu/papi.

4. This was integrated in snv_109, defined by PSARC 2008/480, and developed by Jon Haslam.
See his blog post about cpc, currently at http://blogs.sun.com/jonh/entry/finally_dtrace_
meets_the_cpu.

cpc:::<event name>-<mode>-<optional mask-><count>

solaris# cpustat -h
Usage:
 cpustat [-c events] [-p period] [-nstD] [-T d|u] [interval [count]]
[...]
 Generic Events:

continues

http://icl.cs.utk.edu/papi
http://blogs.sun.com/jonh/entry/finally_dtrace_meets_the_cpu
http://blogs.sun.com/jonh/entry/finally_dtrace_meets_the_cpu

792 Chapter 9 � Applications

The first group, Generic Events, is the PAPI events and is documented on
Solaris in the generic_events(3CPC) man page. The second group, Platform
Specific Events, is from the CPU manufacturer and is typically documented in
the CPU user guide referenced in the cpustat(1M) output.

The mode component of the probe name can be user for profiling user-mode,
kernel for kernel-mode, or all for both.

The optional mask component is sometimes used by platform-specific events, as
directed by the CPU user guide.

The final component of the probe name is the overflow count: Once this many of
the specified event has occurred on the CPU, the probe fires on that CPU. For fre-
quent events, such as cycle and instruction counts, this can be set to a high num-
ber to reduce the rate that the probe fires and therefore reduce the impact on
target application performance.

cpc provider probes have two arguments: arg0 is the kernel program counter or
0 if not executing in the kernel, and arg1 is the user-level program counter or 0 if
not executing in user-mode.

Depending on the CPU type, it may not be possible to enable more than one cpc
probe simultaneously. Subsequent enablings will encounter a Failed to enable
probe error. This behavior is similar to, and for the same reason as, the operating
system, allowing only one invocation of cpustat(1M) at a time. There is a finite
number of performance counter registers available for each CPU type.

The sections that follow have example cpc provider one-liners and output.

 event[0-3]: PAPI_br_ins PAPI_br_msp PAPI_br_tkn PAPI_fp_ops
 PAPI_fad_ins PAPI_fml_ins PAPI_fpu_idl PAPI_tot_cyc
 PAPI_tot_ins PAPI_l1_dca PAPI_l1_dcm PAPI_l1_ldm

 PAPI_l1_stm PAPI_l1_ica PAPI_l1_icm PAPI_l1_icr
 PAPI_l2_dch PAPI_l2_dcm PAPI_l2_dcr PAPI_l2_dcw
 PAPI_l2_ich PAPI_l2_icm PAPI_l2_ldm PAPI_l2_stm
 PAPI_res_stl PAPI_stl_icy PAPI_hw_int PAPI_tlb_dm

 PAPI_tlb_im PAPI_l3_dcr PAPI_l3_icr PAPI_l3_tcr
 PAPI_l3_stm PAPI_l3_ldm PAPI_l3_tcm

 See generic_events(3CPC) for descriptions of these events

Platform Specific Events:

 event[0-3]: FP_dispatched_fpu_ops FP_cycles_no_fpu_ops_retired
 FP_dispatched_fpu_ops_ff LS_seg_reg_load
 LS_uarch_resync_self_modify LS_uarch_resync_snoop
 LS_buffer_2_full LS_locked_operation LS_retired_cflush
LS_retired_cpuid DC_access DC_miss DC_refill_from_L2

 DC_refill_from_system DC_copyback DC_dtlb_L1_miss_L2_hit
 DC_dtlb_L1_miss_L2_miss DC_misaligned_data_ref

[...]
 See "BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
 Processors" (AMD publication 31116)

Providers 793

See Also

There are many topics relevant to application analysis, most of which are covered
fully in separate chapters of this book.

� Chapter 3: System View

� Chapter 4: Disk I/O

� Chapter 5: File Systems

� Chapter 6: Network Lower-Level Protocols

� Chapter 7: Application-Level Protocols

� Chapter 8: Languages

All of these can be considered part of this chapter. The one-liners and scripts
that follow summarize application analysis with DTrace and introduce some
remaining topics such as signals, thread scaling, and the cpc provider.

One-Liners

For many of these, a Web server with processes named httpd is used as the target
application. Modify httpd to be the name of the application process of interest.

proc provider

Trace new processes:

Trace new processes (current FreeBSD5):

New processes (with arguments):

dtrace -n 'proc:::exec-success { trace(execname); }'

dtrace -n 'proc:::exec_success { trace(execname); }'

5. FreeBSD 8.0; this will change to become exec-success (consistent with Solaris and Mac
OS X), now that support for hyphens in FreeBSD probe names is being developed.

dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'

794 Chapter 9 � Applications

New threads created, by process:

Successful signal details:

syscall provider

System call counts for processes named httpd:

System calls with non-zero errno (errors):

profile provider

User stack trace profile at 101 Hertz, showing process name and stack:

User stack trace profile at 101 Hertz, showing process name and top five stack
frames:

User stack trace profile at 101 Hertz, showing process name and stack, top ten
only:

dtrace -n 'proc:::lwp-create { @[pid, execname] = count(); }'

dtrace -n 'proc:::signal-send { printf("%s -%d %d", execname, args[2], args[1]->pr_pid); }'

dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'

dtrace -n 'syscall:::return /errno/ { @[probefunc, errno] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack()] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack(5)] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack()] = count(); } END { trunc(@, 10); }'

Providers 795

User stack trace profile at 101 Hertz for processes named httpd:

User function name profile at 101 Hertz for processes named httpd:

User module name profile at 101 Hertz for processes named httpd:

sched provider

Count user stack traces when processes named httpd leave CPU:

pid provider

The pid provider instruments functions from a particular software version; these
example one-liners may therefore require modifications to match the software ver-
sion you are running. They can be executed on an existing process by using -p PID
or by running a new process using -c command.

Count process segment function calls:

Count libc function calls:

Count libc string function calls:

dtrace -n 'profile-101 /execname == "httpd"/ { @[ustack()] = count(); }'

dtrace -n 'profile-101 /execname == "httpd"/ { @[ufunc(arg1)] = count(); }'

dtrace -n 'profile-101 /execname == "httpd"/ { @[umod(arg1)] = count(); }'

dtrace -n 'sched:::off-cpu /execname == "httpd"/ { @[ustack()] = count(); }'

dtrace -n 'pid$target:a.out::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'pid$target:libc::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'pid$target:libc:str*:entry { @[probefunc] = count(); }' -p PID

796 Chapter 9 � Applications

Trace libc fsync() calls showing file descriptor:

Trace libc fsync() calls showing file path name:

Count requested malloc() bytes by user stack trace:

Trace failed malloc() requests:

See the “C” section of Chapter 8 for more pid provider one-liners.

plockstat provider

As with the pid provider, these can also be run using the -c command.
Mutex blocks by user-level stack trace:

Mutex spin counts by user-level stack trace:

Reader/writer blocks by user-level stack trace:

dtrace -n 'pid$target:libc:fsync:entry { trace(arg0); }' -p PID

dtrace -n 'pid$target:libc:fsync:entry { trace(fds[arg0].fi_pathname); }' -p PID

dtrace -n 'pid$target::malloc:entry { @[ustack()] = sum(arg0); }' -p PID

dtrace -n 'pid$target::malloc:return /arg1 == NULL/ { ustack(); }' -p PID

dtrace -n 'plockstat$target:::mutex-block { @[ustack()] = count(); }' -p PID

dtrace -n 'plockstat$target:::mutex-acquire /arg2/ { @[ustack()] = sum(arg2); }' -p PID

dtrace -n 'plockstat$target:::rw-block { @[ustack()] = count(); }' -p PID

Providers 797

cpc provider

These cpc provider one-liners are dependent on the availability of both the cpc pro-
vider and the event probes (for Solaris, see cpustat(1M) to learn what events are
available on your system). The following overflow counts (200,000; 50,000; and
10,000) have been picked to balance between the rate of events and fired DTrace
probes.

User-mode instructions by process name:

User-mode instructions by process name and function name:

User-mode instructions for processes named httpd by function name:

User-mode CPU cycles by process name and function name:

User-mode level-one cache misses by process name and function name:

User-mode level-one instruction cache misses by process name and function
name:

User-mode level-one data cache misses by process name and function name:

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 /execname == "httpd"/ { @[ufunc(arg1)] =
count(); }'

dtrace -n 'cpc:::PAPI_tot_cyc-user-200000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_icm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_dcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

798 Chapter 9 � Applications

User-mode level-two cache misses by process name and function name:

User-mode level-three cache misses by process name and function name:

User-mode conditional branch misprediction by process name and function name:

User-mode resource stall cycles by process name and function name:

User-mode floating-point operations by process name and function name:

User-mode TLB misses by process name and function name:

One-Liner Selected Examples

There are additional examples of one-liners in the “Case Study” section.

New Processes (with Arguments)

New processes were traced on Solaris while the man ls command was executed:

dtrace -n 'cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l3_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_br_msp-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_res_stl-user-50000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_fp_ops-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_tlb_tl-user-10000 { @[execname, ufunc(arg1)] = count(); }'

solaris# dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
dtrace: description 'proc:::exec-success ' matched 1 probe
CPU ID FUNCTION:NAME
 0 13487 exec_common:exec-success man ls
 0 13487 exec_common:exec-success sh -c cd /usr/share/man; tbl /usr/share/
man/man1/ls.1 |neqn /usr/share/lib/pub/

Providers 799

The variety of programs that are executed to process man ls are visible, ending
with the more(1) command that shows the man page.

Mac OS X currently doesn’t provide the full argument list in pr_psargs, which
is noted in the comments of the curpsinfo translator:

And using pr_psargs in trace() on Mac OS X can trigger tracemem()
behavior, printing hex dumps from the address, which makes reading the output a
little difficult. It may be easier to just use the execname for this one-liner for now.
Here’s an example of tracing man ls on Mac OS X:

Note that the output is shuffled (the CPU ID change is a hint). For the correct
order, include a time stamp in the output and postsort.

 0 13487 exec_common:exec-success tbl /usr/share/man/man1/ls.1
 0 13487 exec_common:exec-success neqn /usr/share/lib/pub/eqnchar -
 0 13487 exec_common:exec-success nroff -u0 -Tlp -man -
 0 13487 exec_common:exec-success col -x
 0 13487 exec_common:exec-success sh -c trap '' 1 15; /usr/bin/mv -f /tmp/
mpcJaP5g /usr/share/man/cat1/ls.1 2> /d
 0 13487 exec_common:exec-success /usr/bin/mv -f /tmp/mpcJaP5g /usr/share/
man/cat1/ls.1
 0 13487 exec_common:exec-success sh -c more -s /tmp/mpcJaP5g
 0 13487 exec_common:exec-success more -s /tmp/mpcJaP5g
^C

macosx# grep pr_psargs /usr/lib/dtrace/darwin.d
 char pr_psargs[80]; /* initial characters of arg list */
 pr_psargs = P->p_comm; /* XXX omits command line arguments XXX */
 pr_psargs = xlate <psinfo_t> ((struct proc *)(T->task->bsd_info)).pr_psargs; /*

XXX omits command line arguments XXX */

macosx# dtrace -n 'proc:::exec-success { trace(execname); }'
dtrace: description 'proc:::exec-success ' matched 2 probes
CPU ID FUNCTION:NAME
 0 19374 posix_spawn:exec-success sh
 0 19374 posix_spawn:exec-success sh
 0 19368 __mac_execve:exec-success sh
 0 19368 __mac_execve:exec-success tbl
 0 19368 __mac_execve:exec-success sh
 0 19368 __mac_execve:exec-success grotty
 0 19368 __mac_execve:exec-success more
 1 19368 __mac_execve:exec-success man
 1 19368 __mac_execve:exec-success sh
 1 19368 __mac_execve:exec-success gzip
 1 19368 __mac_execve:exec-success gzip
 1 19374 posix_spawn:exec-success sh
 1 19368 __mac_execve:exec-success groff
 1 19368 __mac_execve:exec-success troff
 1 19368 __mac_execve:exec-success gzip
^C

800 Chapter 9 � Applications

System Call Counts for Processes Called httpd

The Apache Web server runs multiple httpd processes to serve Web traffic. This
can be a problem for traditional system call debuggers (such as truss(1)), which
can examine only one process at a time, usually by providing a process ID. DTrace
can examine all processes simultaneously, making it especially useful for multipro-
cess applications such as Apache.

This one-liner frequency counts system calls from all running Apache httpd
processes:

The most frequently called system call was lstat64(), called 245 times.

User Stack Trace Profile at 101 Hertz, Showing Process Name and
Top Five Stack Frames

This one-liner is a quick way to see not just who is on-CPU but what they are
doing:

solaris# dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 225 probes
^C

 accept 1
 getpid 1
 lwp_mutex_timedlock 1
 lwp_mutex_unlock 1
 shutdown 1
 brk 4
 gtime 5
 portfs 7
 mmap64 10
 waitsys 30
 munmap 33
 doorfs 39
 openat 49
 writev 51
 stat64 60
 close 61
 fcntl 73
 read 74
 lwp_sigmask 78
 getdents64 98
 pollsys 100
 fstat64 109
 open64 207
 lstat64 245

solaris# dtrace -n 'profile-101 { @[execname, ustack(5)] = count(); }'
dtrace: description 'profile-101 ' matched 1 probe
^C
[...]
 mpstat

 libc.so.1`p_online+0x7

Providers 801

No stack trace was shown for sched (the kernel), since this one-liner is examin-
ing user-mode stacks (ustack()), not kernel stacks (stack()). This could be elim-
inated from the output by adding the predicate /arg1/ (check that the user-mode
program counter is nonzero) to ensure that only user stacks are sampled.

User-Mode Instructions by Process Name

To introduce this one-liner, a couple of test applications were written and executed
called app1 and app2, each single-threaded and running a continuous loop of code.
Examining these applications using top(1) shows the following:

top(1) reports that each application is using 12.5 percent of the total CPU
capacity, which is a single core on this eight-core system. The Solaris prstat -mL
breaks down the CPU time into microstates and shows this in terms of a single
thread:

prstat(1M) shows that each thread is running at 100 percent user time (USR).
This is a little more information than simply %CPU from top(1), and it indicates
that these applications are both spending time executing their own code.

 mpstat`acquire_snapshot+0x131
 mpstat`main+0x27d
 mpstat`_start+0x7d

 13
 httpd

 libc.so.1`__forkx+0xb
 libc.so.1`fork+0x1d
 mod_php5.2.so`zif_proc_open+0x970
 mod_php5.2.so`execute_internal+0x45
 mod_php5.2.so`dtrace_execute_internal+0x59

 42
 sched
 541

last pid: 4378; load avg: 2.13, 2.00, 1.62; up 4+02:53:19 06:24:05
98 processes: 95 sleeping, 3 on cpu
CPU states: 73.9% idle, 25.2% user, 0.9% kernel, 0.0% iowait, 0.0% swap
Kernel: 866 ctxsw, 19 trap, 1884 intr, 2671 syscall
Memory: 32G phys mem, 1298M free mem, 4096M total swap, 4096M free swap

 PID USERNAME NLWP PRI NICE SIZE RES STATE TIME CPU COMMAND
 4319 root 1 10 0 1026M 513M cpu/3 10:50 12.50% app2
 4318 root 1 10 0 1580K 808K cpu/7 10:56 12.50% app1
[...]

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 4318 root 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 8 0 0 app1/1
 4319 root 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 8 0 0 app2/1
[...]

802 Chapter 9 � Applications

The cpc provider allows %CPU time to be understood in greater depth. This one-
liner uses the cpc provider to profile instructions by process name. The probe speci-
fied fires for every 200,000th user-level instruction, counting the current process
name at the time:

So, although the output from top(1) and prstat(1M) suggests that both
applications are very similar in terms of CPU usage, the cpc provider shows that
they are in fact very different. During the same interval, app1 executed roughly
300 times more CPU instructions than app2.

The other cpc one-liners can explain this further; app1 was written to continu-
ally execute fast register-based instructions, while app2 continually performs
much slower main memory I/O.

User-Mode Instructions for Processes Named httpd by Function Name

This one-liner matches processes named httpd and profiles instructions by func-
tion, counting on every 200,000th instruction:

solaris# dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-user-200000 ' matched 1 probe
^C

 sendmail 1
 dtrace 2
 mysqld 6
 sshd 7
 nscd 14
 httpd 16
 prstat 23
 mpstat 52
 app2 498
 app1 154801

solaris# dtrace -n 'cpc:::PAPI_tot_ins-user-200000 /execname == "httpd"/ {
@[ufunc(arg1)] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-user-200000 ' matched 1 probe
^C

 httpd`ap_invoke_handler 1
 httpd`pcre_exec 1
 libcrypto.so.0.9.8`SHA1_Update 1
[...]
 libcrypto.so.0.9.8`bn_sqr_comba8 39
 libz.so.1`crc32_little 41
 libcrypto.so.0.9.8`sha1_block_data_order 50
 libcrypto.so.0.9.8`_x86_AES_encrypt 88
 libz.so.1`compress_block 103
 libcrypto.so.0.9.8`bn_mul_add_words 117
 libcrypto.so.0.9.8`bn_mul_add_words 127
 libcrypto.so.0.9.8`bn_mul_add_words 133
 libcrypto.so.0.9.8`bn_mul_add_words 134

Providers 803

The functions executing the most instructions are in the libz library, which per-
forms compression.

User-Mode Level-Two Cache Misses by Process Name and Function Name

This example is included to suggest what to do when encountering this error:

This system does have the cpc provider; however, this probe is invalid. After
checking for typos, check whether the event name is supported on this system
using cpustat(1M) (Solaris):

This output shows that the PAPI_l2_tcm event (level-two cache miss) is not sup-
ported on this system. However, it also shows that PAPI_l2_dcm (level-two data
cache miss) and PAPI_l2_icm (level-two instruction cache miss) are supported.
Adjusting the one-liner for, say, data cache misses only is demonstrated by the fol-
lowing one-liner:

 libz.so.1`fill_window 222
 libz.so.1`deflate_slow 374
 libz.so.1`longest_match 1022

solaris# dtrace -n 'cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
dtrace: invalid probe specifier cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] =
 count(); }: probe description cpc:::PAPI_l2_tcm-user-10000 does not match any probes

solaris# cpustat -h
Usage:
 cpustat [-c events] [-p period] [-nstD] [-T d|u] [interval [count]]
[...]
 Generic Events:

 event[0-3]: PAPI_br_ins PAPI_br_msp PAPI_br_tkn PAPI_fp_ops
 PAPI_fad_ins PAPI_fml_ins PAPI_fpu_idl PAPI_tot_cyc
 PAPI_tot_ins PAPI_l1_dca PAPI_l1_dcm PAPI_l1_ldm
 PAPI_l1_stm PAPI_l1_ica PAPI_l1_icm PAPI_l1_icr
 PAPI_l2_dch PAPI_l2_dcm PAPI_l2_dcr PAPI_l2_dcw
 PAPI_l2_ich PAPI_l2_icm PAPI_l2_ldm PAPI_l2_stm
 PAPI_res_stl PAPI_stl_icy PAPI_hw_int PAPI_tlb_dm
 PAPI_tlb_im PAPI_l3_dcr PAPI_l3_icr PAPI_l3_tcr

 PAPI_l3_stm PAPI_l3_ldm PAPI_l3_tcm

 See generic_events(3CPC) for descriptions of these events

Platform Specific Events:

 event[0-3]: FP_dispatched_fpu_ops FP_cycles_no_fpu_ops_retired
[...]

804 Chapter 9 � Applications

This one-liner can then be run for instruction cache misses so that both types of
misses can be considered.

Should the generic PAPI events be unavailable or unsuitable, the platform-spe-
cific events (as listed by cpustat(1M)) may allow the event to be examined, albeit
in a way that is tied to the current CPU version.

Scripts

Table 9-3 summarizes the scripts that follow and the providers they use.

procsnoop.d

This is a script version of the “New Processes” one-liner shown earlier. Tracing the
execution of new processes provides important visibility for applications that call

solaris# dtrace -n 'cpc:::PAPI_l2_dcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
dtrace: description 'cpc:::PAPI_l2_dcm-user-10000 ' matched 1 probe
^C

 dtrace libproc.so.1`byaddr_cmp 1
 dtrace libproc.so.1`symtab_getsym 1
 dtrace libc.so.1`memset 1
 mysqld mysqld`srv_lock_timeout_and_monitor_thread 1
 mysqld mysqld`sync_array_print_long_waits 1
 dtrace libproc.so.1`byaddr_cmp_common 2
 dtrace libc.so.1`qsort 2
 dtrace libproc.so.1`optimize_symtab 3
 dtrace libproc.so.1`byname_cmp 6
 dtrace libc.so.1`strcmp 17
 app2 app2`main 399

Table 9-3 Application Script Summary

Script Description Provider

procsnoop Snoop process execution proc

procsystime System call time statistics by process syscall

uoncpu.d Profile application on-CPU user stacks profile

uoffcpu.d Count application off-CPU user stacks by time sched

plockstat User-level mutex and read/write lock statistics plockstat

kill.d Snoop process signals syscall

sigdist.d Signal distribution by source and destination processes syscall

threaded.d Sample multithreaded CPU usage profile

Scripts 805

the command line; some applications can call shell commands so frequently that it
becomes a performance issue—one that is difficult to spot in traditional tools (such
as prstat(1M) and top(1)) because the processes are so short-lived.

Script

Example

The following shows the Oracle Solaris commands executed as a consequence of
restarting the cron daemon via svcadm(1M):

The TIME(ms) column is printed so that the output can be postsorted if desired
(DTrace may shuffle the output slightly because it collects buffers from multiple
CPUs).

See Also: execsnoop

A program called execsnoop exists from the DTraceToolkit, which has similar
functionality to that of procsnoop. It was written originally for Oracle Solaris and
is now shipped on Mac OS X by default. execsnoop wraps the D script in the shell
so that command-line options are available:

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4 #pragma D option switchrate=10hz
5
6 dtrace:::BEGIN
7 {
8 printf("%-8s %5s %6s %6s %s\n", "TIME(ms)", "UID", "PID", "PPID",
9 "COMMAND");
10 start = timestamp;
11 }
12
13 proc:::exec-success
14 {
15 printf("%-8d %5d %6d %6d %s\n", (timestamp - start) / 1000000,
16 uid, pid, ppid, curpsinfo->pr_psargs);
17 }

Script procsnoop.d

solaris# procsnoop.d
TIME(ms) UID PID PPID COMMAND
3227 0 13273 12224 svcadm restart cron
3709 0 13274 106 /sbin/sh -c exec /lib/svc/method/svc-cron
3763 0 13274 106 /sbin/sh /lib/svc/method/svc-cron
3773 0 13275 13274 /usr/bin/rm -f /var/run/cron_fifo
3782 0 13276 13274 /usr/sbin/cron

806 Chapter 9 � Applications

execsnoop traces process execution by tracing the exec() system call (and
variants), which do differ slightly between operating systems. Unfortunately, sys-
tem calls are not a stable interface, even across different versions of the same oper-
ating system. Small changes to execsnoop have been necessary to keep it working
across different versions of Oracle Solaris, because of subtle changes with the names
of the exec() system calls. The lesson here is to always prefer the stable provid-
ers, such as the proc provider (which is stable) instead of syscall (which isn’t).

procsystime

procsystime is a generic system call time reporter. It can count the execution of
system calls, their elapsed time, and on-CPU time and can produce a report show-
ing the system call type and process details. It is from the DTraceToolkit and
shipped on Mac OS X by default in /usr/bin.

Script

The essence of the script is explained here; the actual script is too long and too
uninteresting (mostly dealing with command-line options) to list; see the DTrace-
Toolkit for the full listing.

macosx# execsnoop -h
USAGE: execsnoop [-a|-A|-ehjsvZ] [-c command]
 execsnoop # default output
 -a # print all data
 -A # dump all data, space delimited
 -e # safe output, parseable
 -j # print project ID
 -s # print start time, us
 -v # print start time, string
 -Z # print zonename

-c command # command name to snoop
 eg,
 execsnoop -v # human readable timestamps
 execsnoop –Z # print zonename
 execsnoop -c ls # snoop ls commands only

1 syscall:::entry
2 /self->ok/
3 {
4 @Counts[probefunc] = count();
5 self->start = timestamp;
6 self->vstart = vtimestamp;
7 }
8
9 syscall:::return
10 /self->start/
11 {
12 this->elapsed = timestamp - self->start;
13 this->oncpu = vtimestamp - self->vstart;

Scripts 807

A self->ok variable is set beforehand to true if the current process is sup-
posed to be traced. The code is then straightforward: Time stamps are set on the
entry to syscalls so that deltas can be calculated on the return.

Examples

Examples include usage and file system archive.

Usage

Command-line options can be listed using -h:

File System Archive

The tar(1) command was used to archive a file system, with procsystime tracing
elapsed times (which is the default) for processes named tar:

14 @Elapsed[probefunc] = sum(this->elapsed);
15 @CPU[probefunc] = sum(this->cpu);
16 self->start = 0;
17 self->vstart = 0;
18 }

solaris# procsystime -h
lox# ./procsystime -h
USAGE: procsystime [-aceho] [-p PID | -n name | command]
 -p PID # examine this PID
 -n name # examine this process name
 -a # print all details
 -e # print elapsed times
 -c # print syscall counts
 -o # print CPU times
 -T # print totals
 eg,
 procsystime -p 1871 # examine PID 1871
 procsystime -n tar # examine processes called "tar"
 procsystime -aTn bash # print all details for bash
 procsystime df -h # run and examine "df -h"

solaris# procsystime -n tar
Tracing... Hit Ctrl-C to end...
^C

Elapsed Times for processes tar,

 SYSCALL TIME (ns)
 fcntl 58138
 fstat64 96490
 openat 280246
 chdir 1444153
 write 8922505
 open64 15294117

continues

808 Chapter 9 � Applications

Most of the elapsed time for the tar(1) command was in the read() syscall,
which is expected because tar(1) is reading files from disk (which is slow I/O).
The total time spent waiting for read() syscalls during the procsystime trace was
1.55 seconds.

uoncpu.d

This is a script version of the DTrace one-liner to profile the user stack trace of a
given application process name. As one of the most useful one-liners, it may save
typing to provide it as a script, where it can also be more easily enhanced.

Script

Example

Here the uoncpu.d script is used to frequency count the user stack trace of all cur-
rently running Perl programs. Note perl is passed as a command-line argument,
evaluated in the predicate (line 4):

 openat64 16804949
 close 17855422
 getdents64 46679462
 fstatat64 98011589
 read 1551039139

1 #!/usr/sbin/dtrace -s
2
3 profile:::profile-1001
4 /execname == $$1/
5 {
6 @["\n on-cpu (count @1001hz):", ustack()] = count();
7 }

Script uoncpu.d

uoncpu.d perl
dtrace: script 'uoncpu.d' matched 1 probe
^C
[...output truncated...]

 on-cpu (count @1001hz):
 libperl.so.1`Perl_sv_setnv+0xc8
 libperl.so.1`Perl_pp_multiply+0x3fe
 libperl.so.1`Perl_runops_standard+0x3b

 libperl.so.1`S_run_body+0xfa
 libperl.so.1`perl_run+0x1eb

 perl`main+0x8a
 perl`_start+0x7d

 105

Scripts 809

The hottest stacks identified include the Perl_pp_multiply() function, sug-
gesting that Perl is spending most of its time doing multiplications. Further analy-
sis of those functions and using the perl provider, if available (see Chapter 8),
could confirm.

uoffcpu.d

As a companion to uoncpu.d, the uoffcpu.d script measures the time spent off-
CPU by user stack trace. This time includes device I/O, lock wait, and dispatcher
queue latency.

Script

Example

Here the uoffcpu.d script was used to trace CPU time of bash shell processes:

 on-cpu (count @1001hz):
 libperl.so.1`Perl_pp_multiply+0x3f7
 libperl.so.1`Perl_runops_standard+0x3b

 libperl.so.1`S_run_body+0xfa
 libperl.so.1`perl_run+0x1eb

 perl`main+0x8a
 perl`_start+0x7d

 111

1 #!/usr/sbin/dtrace -s
2
3 sched:::off-cpu
4 /execname == $$1/
5 {
6 self->start = timestamp;
7 }
8
9 sched:::on-cpu
10 /self->start/
11 {
12 this->delta = (timestamp - self->start) / 1000;
13 @["off-cpu (us):", ustack()] = quantize(this->delta);
14 self->start = 0;
15 }

Script uoffcpu.d

uoffcpu.d bash
dtrace: script 'uoffcpu.d' matched 6 probes
^C
[...]

continues

810 Chapter 9 � Applications

While tracing, in another bash shell, the command sleep 1 was typed and exe-
cuted. The previous output shows the keystroke latency (mostly 65 ms to 131 ms) of
the read commands, as well as the time spent waiting for the sleep(1) command
to complete (in the 524 to 1048 ms range, which matches expectation: 1000 ms).

Note the user stack frame generated by the ustack() function contains a mix
of symbol names and hex values (for example, bash`0x806dff4) in the output.
This can happen for one of several reasons whenever ustack() is used. DTrace
actually collects and stores the stack frames has hex values. User addresses are
resolved to symbol names as a postprocessing step before the output is generated.
It is possible DTrace will not be able to resolve a user address to a symbol name if
any of the following is true:

� The user process being traced has exited before the processing can be done.

 off-cpu (us):
 libc.so.1`__waitid+0x7
 libc.so.1`waitpid+0x65

 bash`0x8090627
 bash`wait_for+0x1a4
 bash`execute_command_internal+0x6f1

 bash`execute_command+0x5b
 bash`reader_loop+0x1bf

 bash`main+0x7df
 bash`_start+0x7d

 value ------------- Distribution ------------- count
 262144 | 0
 524288 |@@ 1
 1048576 | 0

 off-cpu (us):
 libc.so.1`__read+0x7
 bash`rl_getc+0x47
 bash`rl_read_key+0xeb
 bash`readline_internal_char+0x99

 bash`0x80d945a
 bash`0x80d9481
 bash`readline+0x55

 bash`0x806e11f
 bash`0x806dff4
 bash`0x806ed06
 bash`0x806f9b4
 bash`0x806f3a4
 bash`yyparse+0x4b9
 bash`parse_command+0x80
 bash`read_command+0xd9
 bash`reader_loop+0x147

 bash`main+0x7df
 bash`_start+0x7d

 value ------------- Distribution ------------- count
 32768 | 0
 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5
 131072 |@@@@@@@@@@@ 2
 262144 | 0

Scripts 811

� The symbol table has been stripped, either from the user process binary or
from the shared object libraries it has linked.

� We are executing user code out of data via jump tables.6

plockstat

plockstat(1M) is a powerful tool to examine user-level lock events, providing
details on contention and hold time. It uses the DTrace plockstat provider, which is
available for developing custom user-land lock analysis scripts. The plockstat pro-
vider (and the plockstat(1M) tool) is available on Solaris and Mac OS X and is
currently being developed for FreeBSD.

Script

plockstat(1M) is a binary executable that dynamically produces a D script that
is sent to libdtrace (instead of a static D script sent to libdtrace via dtrace(1M)).
If it is of interest, this D script can be examined using the -V option:

Example

Here the plockstat(1M) command traced all lock events (-A for both hold and
contention) on the Name Service Cache Daemon (nscd) for 60 seconds:

6. See www.opensolaris.org/jive/thread.jspa?messageID=436419񪣃.

solaris# plockstat -V -p 12219
plockstat: vvvv D program vvvv
plockstat$target:::rw-block
{
 self->rwblock[arg0] = timestamp;
}
plockstat$target:::mutex-block
{
 self->mtxblock[arg0] = timestamp;
}
plockstat$target:::mutex-spin
{
 self->mtxspin[arg0] = timestamp;
}
plockstat$target:::rw-blocked
/self->rwblock[arg0] && arg1 == 1 && arg2 != 0/
{
 @rw_w_block[arg0, ustack(5)] =

sum(timestamp - self->rwblock[arg0]);
 @rw_w_block_count[arg0, ustack(5)] = count();
 self->rwblock[arg0] = 0;

rw_w_block_found = 1;
}
[...output truncated...]

www.opensolaris.org/jive/thread.jspa?messageID=436419񪣃

812 Chapter 9 � Applications

While tracing, there were very few contention events and many hold events.
Hold events are normal for software execution and are ideally as short as possible,
while contention events can cause performance issues as threads are waiting for
locks.

The output has caught a spin event for the lock at address 0x8089ab8 (no sym-
bol name) from the code path location nscd`_nscd_restart_if_cfgfile_
changed+0x3e, which was for 38 us. This means a thread span on-CPU for 38 us

solaris# plockstat -A -e 60 -p `pgrep nscd`
Mutex hold

Count nsec Lock Caller

 30 1302583 0x814c08c libnsl.so.1`rpc_fd_unlock+0x4d
 326 15687 0x8089ab8 nscd`_nscd_restart_if_cfgfile_changed+0x6c
 7 709342 libumem.so.1`umem_cache_lock libumem.so.1`umem_cache_applyall+0x5e
 112 16702 0x80b67b8 nscd`lookup_int+0x611
 3 570898 0x81a0548 libscf.so.1`scf_handle_bind+0x231
 60 24592 0x80b20e8 nscd`_nscd_mutex_unlock+0x8d
 50 24306 0x80b2868 nscd`_nscd_mutex_unlock+0x8d
 30 19839 libnsl.so.1`_ti_userlock libnsl.so.1`sig_mutex_unlock+0x1e
 7 83100 libumem.so.1`umem_update_lock libumem.so.1`umem_update_thread+0x129
[...output truncated...]

R/W reader hold

Count nsec Lock Caller

 30 95341 0x80c0e14 nscd`_nscd_get+0xb8
 120 15586 nscd`nscd_nsw_state_base_lock nscd`_get_nsw_state_int+0x19c
 60 20256 0x80e0a7c nscd`_nscd_get+0xb8
 120 9806 nscd`addrDB_rwlock nscd`_nscd_is_int_addr+0xd1
 30 39155 0x8145944 nscd`_nscd_get+0xb8
[...output truncated...]

R/W writer hold

Count nsec Lock Caller

 30 16293 nscd`addrDB_rwlock nscd`_nscd_del_int_addr+0xeb
 30 15440 nscd`addrDB_rwlock nscd`_nscd_add_int_addr+0x9c
 3 14279 nscd`nscd_smf_service_state_lock nscd`query_smf_state+0x17b

Mutex block

Count nsec Lock Caller

 2 119957 0x8089ab8 nscd`_nscd_restart_if_cfgfile_changed+0x3e

Mutex spin

Count nsec Lock Caller

 1 37959 0x8089ab8 nscd`_nscd_restart_if_cfgfile_changed+0x3e

Mutex unsuccessful spin

Count nsec Lock Caller

 2 42988 0x8089ab8 nscd`_nscd_restart_if_cfgfile_changed+0x3e

Scripts 813

before being able to grab the lock. On two other occasions, the thread gave up spin-
ning after an average of 43 us (unsuccessful spin) and was blocked for 120 us
(block), both also shown in the output.

kill.d

The kill.d script prints details of process signals as they are sent, such as the
PID source and destination, signal number, and result. It’s named kill.d after
the kill() system call that it traces, which is used by processes to send signals.

Script

This is based on the kill.d script from the DTraceToolkit, which uses the syscall
provider to trace the kill() syscall. The proc provider could also be used via the
signal-* probes, which will match other signals other than via kill() (see
sigdist.d next).

Note that the target PID is cast as a signed integer on line 13; this is because
the kill() syscall can also send signals to process groups by providing the pro-
cess group ID as a negative number, instead of the PID. By casting it, it will be cor-
rectly printed as a signed integer on line 19.

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 dtrace:::BEGIN
6 {
7 printf("%-6s %12s %6s %-8s %s\n",
8 "FROM", "COMMAND", "SIG", "TO", "RESULT");
9 }
10
11 syscall::kill:entry
12 {
13 self->target = (int)arg0;
14 self->signal = arg1;
15 }
16
17 syscall::kill:return
18 {
19 printf("%-6d %12s %6d %-8d %d\n",
20 pid, execname, self->signal, self->target, (int)arg0);
21 self->target = 0;
22 self->signal = 0;
23 }

Script kill.d

814 Chapter 9 � Applications

Example

Here the kill.d script has traced the bash shell sending signal 9 (SIGKILL) to
PID 12838 and sending signal 2 (SIGINT) to itself, which was a Ctrl-C. kill.d
has also traced utmpd sending a 0 signal (the null signal) to various processes:
This signal is used to check that PIDs are still valid, without signaling them to do
anything (see kill(2)).

sigdist.d

The sigdist.d script shows which processes are sending which signals to other
processes, including the process names. This traces all signals: the kill() system
call as well as kernel-based signals (for example, alarms).

Script

This script is based on /usr/demo/dtrace/sig.d from Oracle Solaris and uses
the proc provider signal-send probe.

kill.d
FROM COMMAND SIG TO RESULT
12224 bash 9 12838 0
3728 utmpd 0 4174 0
3728 utmpd 0 3949 0
3728 utmpd 0 10621 0
3728 utmpd 0 12221 0
12224 bash 2 12224 0

1 #!/usr/sbin/dtrace -s
[...]
45 #pragma D option quiet
46
47 dtrace:::BEGIN
48 {
49 printf("Tracing... Hit Ctrl-C to end.\n");
50 }
51
52 proc:::signal-send
53 {
54 @Count[execname, stringof(args[1]->pr_fname), args[2]] = count();
55 }
56
57 dtrace:::END
58 {
59 printf("%16s %16s %6s %6s\n", "SENDER", "RECIPIENT", "SIG", "COUNT");
60 printa("%16s %16s %6d %6@d\n", @Count);
61 }

Script sigdist.d

Scripts 815

Example

The sigdist.d script has traced the bash shell sending signal 9 (SIGKILL) to a
sleep process and also signal 2 (SIGINT, Ctrl-C) to itself. It’s also picked up sshd
sending bash the SIGINT, which happened via a syscall write() of the Ctrl-C to the
ptm (STREAMS pseudo-tty master driver) device for bash, not via the kill() syscall.

threaded.d

The threaded.d script provides data for quantifying how well multithreaded
applications are performing, in terms of parallel execution across CPUs. If an
application has sufficient CPU bound work and is running on a system with multi-
ple CPUs, then ideally the application would have multiple threads running on
those CPUs to process the work in parallel.

Script

This is based on the threaded.d script from the DTraceToolkit.

sigdist.d
Tracing... Hit Ctrl-C to end.
^C
 SENDER RECIPIENT SIG COUNT
 bash bash 2 1
 bash sleep 9 1
 sshd bash 2 1
 sshd dtrace 2 1
 sched bash 18 2
 bash bash 20 3
 sched sendmail 14 3
 sched sendmail 18 3
 sched proftpd 14 7
 sched in.mpathd 14 10

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 profile:::profile-101
6 /pid != 0/
7 {
8 @sample[pid, execname] = lquantize(tid, 0, 128, 1);
9 }
10
11 profile:::tick-1sec
12 {
13 printf("%Y,\n", walltimestamp);
14 printa("\n @101hz PID: %-8d CMD: %s\n%@d", @sample);
15 printf("\n");
16 trunc(@sample);
17 }

Script threaded.d

816 Chapter 9 � Applications

Example

To demonstrate threaded.d, two programs were written (called test0 and test1)
that perform work on multiple threads in parallel. One of the programs was coded
with a lock “serialization” issue, where only the thread holding the lock can really
make forward progress. See whether you can tell which one:

threaded.d prints output every second, which shows a distribution plot where
value is the thread ID and count is the number of samples during that second.
By glancing at the output, both programs had every thread sampled on-CPU dur-
ing the one second, so the issue may not be clear. The clue is in the counts:
threaded.d is sampling at 101 Hertz (101 times per second), and the sample
counts for test0 only add up to 118 (a little over one second worth of samples on
one CPU), whereas test1 adds up to 691. The program with the issue is test0,
which is using a fraction of the CPU cycles that test1 is able to consume in the
same interval.

This was a simple way to analyze the CPU execution of a multithreaded applica-
tion. A more sophisticated approach would be to trace kernel scheduling events
(the sched provider) as the application threads stepped on- and off-CPU.

threaded.d
2010 Jul 4 05:17:09,

 @101hz PID: 12974 CMD: test0

 value ------------- Distribution ------------- count
 1 | 0
 2 |@@@@@@@@@ 28
 3 |@@ 6
 4 |@@@@@@@@@@@ 32
 5 |@@@@@ 14
 6 |@@@@@ 15
 7 |@@@ 8
 8 |@@ 5
 9 |@@@ 10
 10 | 0

 @101hz PID: 12977 CMD: test1

 value ------------- Distribution ------------- count
 1 | 0
 2 |@@@@ 77
 3 |@@@@@@ 97
 4 |@@@@ 77
 5 |@@@@@ 87
 6 |@@@@ 76
 7 |@@@@@@ 101
 8 |@@@@ 76
 9 |@@@@@@ 100
 10 | 0

[...]

Case Studies 817

Case Studies

In this section, we apply the scripts and methods discussed in this chapter to
observe and measure applications with DTrace.

Firefox idle

This case study examines the Mozilla Firefox Web browser version 3, running on
Oracle Solaris.

The Problem

Firefox is 8.9 percent on-CPU yet has not been used for hours. What is costing 8.9
percent CPU?

Profiling User Stacks

The uoncpu.d script (from the “Scripts” section) was run for ten seconds:

prstat
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 27060 brendan 856M 668M sleep 59 0 7:30:44 8.9% firefox-bin/17
 27035 brendan 150M 136M sleep 59 0 0:20:51 0.4% opera/3
 18722 brendan 164M 38M sleep 59 0 0:57:53 0.1% java/18
 1748 brendan 6396K 4936K sleep 59 0 0:03:13 0.1% screen-4.0.2/1
 17303 brendan 305M 247M sleep 59 0 34:16:57 0.1% Xorg/1
 27754 brendan 9564K 3772K sleep 59 0 0:00:00 0.0% sshd/1
 19998 brendan 68M 7008K sleep 59 0 2:41:34 0.0% gnome-netstatus/1
 27871 root 3360K 2792K cpu0 49 0 0:00:00 0.0% prstat/1
 29805 brendan 54M 46M sleep 59 0 1:53:23 0.0% elinks/1
[...]

uoncpu.d firefox-bin
dtrace: script 'uoncpu.d' matched 1 probe
^C
[...output truncated...]

 on-cpu (count @1001hz):
 libmozjs.so`js_FlushPropertyCacheForScript+0xe6

 libmozjs.so`js_DestroyScript+0xc1
 libmozjs.so`JS_EvaluateUCScriptForPrincipals+0x87

 libxul.so`__1cLnsJSContextOEvaluateString6MrknSnsAString_internal_pvpnMn
sIPrincip8
 libxul.so`__1cOnsGlobalWindowKRunTimeout6MpnJnsTimeout__v_+0x59c
 libxul.so`__1cOnsGlobalWindowNTimerCallback6FpnInsITimer_pv_v_+0x2e

 libxul.so`__1cLnsTimerImplEFire6M_v_+0x144
 libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
continues

818 Chapter 9 � Applications

The output was many pages long and includes C++ signatures as function
names (they can be passed through c++filt to improve readability). The hottest
stack is in libmozjs, which is SpiderMonkey—the Firefox JavaScript engine. How-
ever, the count for this hot stack is only 42, which, when the other counts from the
numerous truncated pages are tallied, is likely to represent only a fraction of the
CPU cycles. (uoncpu.d can be enhanced to print a total sample count and the end
to make this ratio calculation easy to do.)

Profiling User Modules

Perhaps an easier way to find the origin of the CPU usage is to not aggregate on
the entire user stack track but just the top-level user module. This won’t be as
accurate—a user module may be consuming CPU by calling functions from a
generic library such as libc—but it is worth a try:

The hottest module was libxul, which is the core Firefox library. The next was
libmozjs (JavaScript) and then libc (generic system library). It is possible that lib-
mozjs is responsible for the CPU time in both libc and libxul, by calling functions
from them. We’ll investigate libmozjs (JavaScript) first; if this turns out to be a
dead end, we’ll return to libxul.

 libxul.so`__1cMnsAppStartupDRun6M_I_+0x34
 libxul.so`XRE_main+0x35e3
 firefox-bin`main+0x223
 firefox-bin`_start+0x7d

 42

dtrace -n 'profile-1001 /execname == "firefox-bin"/ { @[umod(arg1)] = count(); }
tick-60sec { exit(0); }'
dtrace: description 'profile-1001 ' matched 2 probes
CPU ID FUNCTION:NAME
 1 63284 :tick-60sec

 libsqlite3.so 1
 0xf0800000 2
 libplds4.so 2
 libORBit-2.so.0.0.0 5
 0xf1600000 8
 libgthread-2.0.so.0.1400.4 10
 libgdk-x11-2.0.so.0.1200.3 14
 libplc4.so 16
 libm.so.2 19
 libX11.so.4 50
 libnspr4.so 314
 libglib-2.0.so.0.1400.4 527
 0x0 533
 libflashplayer.so 1143
 libc.so.1 1444
 libmozjs.so 2671
 libxul.so 4143

Case Studies 819

Function Counts and Stacks

To investigate JavaScript, the DTrace JavaScript provider can be used (see Chap-
ter 8). For the purposes of this case study, let’s assume that such a convenient pro-
vider is not available. To understand what the libmosjs library is doing, we’ll first
frequency count function calls:

The most frequent function called was JS_CallTracer(), which was called
almost two million times during the ten seconds that this one-liner was tracing. To
see what it does, the source code could be examined; but before we do that, we can
get more information from DTrace including frequency counting the user stack
trace to see who is calling this function:

dtrace -n 'pid$target:libmozjs::entry { @[probefunc] = count(); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target:libmozjs::entry ' matched 1617 probes
^C

 CloseNativeIterators 1
 DestroyGCArenas 1
 JS_CompareValues 1
 JS_DefineElement 1
 JS_FloorLog2 1
 JS_GC 1
[...]
 JS_free 90312
 js_IsAboutToBeFinalized 92414
 js_GetToken 99666
 JS_DHashTableOperate 102908
 GetChar 109323
 fun_trace 132924
 JS_GetPrivate 197322
 js_TraceObject 213983
 JS_TraceChildren 228323
 js_SearchScope 267826
 js_TraceScopeProperty 505450
 JS_CallTracer 1923784

dtrace -n 'pid$target:libmozjs:JS_CallTracer:entry { @[ustack()] =
count(); }' -p `pgrep firefox-bin`
[...]

 libmozjs.so`JS_CallTracer
 libmozjs.so`js_TraceScopeProperty+0x54

 libmozjs.so`js_TraceObject+0xd5
 libmozjs.so`JS_TraceChildren+0x351

 libxul.so`__1cLnsXPConnectITraverse6MpvrnbInsCycleCollectionTraversalCal
lback__I_+0xc7
 libxul.so`__1cQnsCycleCollectorJMarkRoots6MrnOGCGraphBuilder__v_+0x96

libxul.so`__1cQnsCycleCollectorPBeginCollection6M_i_+0xf1
libxul.so`__1cbGnsCycleCollector_beginCollection6F_i_+0x26

 libxul.so`__1cZXPCCycleCollectGCCallback6FpnJJSContext_nKJSGCStatus__i_+0xd8
 libmozjs.so`js_GC+0x5ef

continues

820 Chapter 9 � Applications

The stack trace here has been truncated (increase the ustackframes tunable
to see all); however, enough has been seen for this and the truncated stack traces
to see that they originate from JS_GC()—a quick look at the code confirms that
this is JavaScript Garbage Collect.

Function CPU Time

Given the name of the garbage collect function, a script can be quickly written to
check the CPU time spent in it (named jsgc.d):

This specifically measures the elapsed CPU time (vtimestamp) for JS_GC().
(Another approach would be to use the profile provider and count stack traces that
included JS_GC().)

Here we execute jsgc.d:

 libmozjs.so`JS_GC+0x4e
 libxul.so`__1cLnsXPConnectHCollect6M_i_+0xaf
 libxul.so`__1cQnsCycleCollectorHCollect6MI_I_+0xee
 libxul.so`__1cYnsCycleCollector_collect6F_I_+0x28
libxul.so`__1cLnsJSContextGNotify6MpnInsITimer__I_+0x375

 libxul.so`__1cLnsTimerImplEFire6M_v_+0x12d
 libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
 libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
 40190

1 #!/usr/sbin/dtrace -s
2
3 #pragma D option quiet
4
5 pid$target::JS_GC:entry
6 {
7 self->vstart = vtimestamp;
8 }
9
10 pid$target::JS_GC:return
11 /self->vstart/
12 {
13 this->oncpu = (vtimestamp - self->vstart) / 1000000;
14 printf("%Y GC: %d CPU ms\n", walltimestamp, this->oncpu);
15 self->vstart = 0;
16 }

Script jsgc.d

jsgc.d -p `pgrep firefox-bin`
2010 Jul 4 01:06:57 GC: 331 CPU ms
2010 Jul 4 01:07:38 GC: 316 CPU ms
2010 Jul 4 01:08:18 GC: 315 CPU ms
^C

Case Studies 821

So, although GC is on-CPU for a significant time, more than 300 ms per call, it’s
not happening frequently enough to explain the 9 percent CPU average of Firefox.
This may be a problem, but it’s not the problem. (This is included here for com-
pleteness; this is the exact approach used to study this issue.)

Another frequently called function was js_SearchScope(). Checking its stack
trace is also worth a look:

This time, the function is being called by js_Execute(), the entry point for
JavaScript code execution (and itself was called by JS_EvaluateUCScriptFor-
Principals()). Here we are modifying the earlier script to examine on-CPU time
(now jsexecute.d):

dtrace -n 'pid$target:libmozjs:js_SearchScope:entry { @[ustack()] =
count(); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target:libmozjs:js_SearchScope:entry ' matched 1 probe
^C
[...output truncated...]

 libmozjs.so`js_SearchScope
 libmozjs.so`js_DefineNativeProperty+0x2f1

 libmozjs.so`call_resolve+0x1e7
 libmozjs.so`js_LookupProperty+0x3d3
 libmozjs.so`js_PutCallObject+0x164

 libmozjs.so`js_Interpret+0x9cd4
 libmozjs.so`js_Execute+0x3b4

 libmozjs.so`JS_EvaluateUCScriptForPrincipals+0x58
 libxul.so`__1cLnsJSContextOEvaluateString6MrknSnsAString_internal_pvpnMn
sIPrincipal_pkcIIp1pi_I_+0x2e8
 libxul.so`__1cOnsGlobalWindowKRunTimeout6MpnJnsTimeout__v_+0x59c
 libxul.so`__1cOnsGlobalWindowNTimerCallback6FpnInsITimer_pv_v_+0x2e

 libxul.so`__1cLnsTimerImplEFire6M_v_+0x144
 libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
 libxul.so`__1cMnsAppStartupDRun6M_I_+0x34

 libxul.so`XRE_main+0x35e3
 firefox-bin`main+0x223
 firefox-bin`_start+0x7d

 9287

1 #!/usr/sbin/dtrace -s
2
3 pid$target::js_Execute:entry
4 {
5 self->vstart = vtimestamp;
6 }
7
8 pid$target::js_Execute:return
9 /self->vstart/
10 {
11 this->oncpu = vtimestamp - self->vstart;
12 @["js_Execute Total(ns):"] = sum(this->oncpu);
13 self->vstart = 0;
14 }

Script jsexecute.d

822 Chapter 9 � Applications

Here we run it for ten seconds:

This shows 428 ms of time in js_Execute() during those ten seconds, and so
this CPU cost can explain about half of the Firefox CPU time (this is a single-CPU
system; therefore, there is 10,000 ms of available CPU time every 10 seconds, so
this is about 4.3 percent of CPU).

The JavaScript functions could be further examined with DTrace to find out
why this JavaScript program is hot on-CPU, in other words, what exactly it is
doing (the DTrace JavaScript provider would help here, or a Firefox add-on could
be tried).

Fetching Context

Here we will find what is being executed: preferably the URL. Examining the ear-
lier stack trace along with the Firefox source (which is publically available) showed
the JavaScript filename is the sixth argument to the JS_EvaluateUCScriptFor-
Principals() function. Here we are pulling this in and frequency counting:

The name of the URL has been modified in this output (to avoid embarrassing
anyone); it pointed to a site that I didn’t think I was using, yet their script was get-
ting executed more than 700 times per second anyway, which is consuming (wast-
ing!) at least 4 percent of the CPU on this system.

The Fix

An add-on was already available that could help at this point: SaveMemory, which
allows browser tabs to be paused. The DTrace one-liner was modified to print con-
tinual one-second summaries, while all tabs were paused as an experiment:

jsexecute.d -p `pgrep firefox-bin` -n 'tick-10sec { exit(0); }'
dtrace: script 'jsexecute.d' matched 2 probes
dtrace: description 'tick-10sec ' matched 1 probe
CPU ID FUNCTION:NAME
 0 64907 :tick-10sec

 js_Execute Total(ns): 427936779

dtrace -n 'pid$target::*EvaluateUCScriptForPrincipals*:entry { @[copyinstr(arg5)] =
 count(); } tick-10sec { exit(0); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target::*EvaluateUCScriptForPrincipals*:entry ' matched 2 probes
CPU ID FUNCTION:NAME
 1 64907 :tick-10sec

 http://www.example.com/js/st188.js 7056

Case Studies 823

The execution count for the JavaScript program begins at around 700 execu-
tions per second and then vanishes when pausing all tabs. (The output has also
caught the execution of greasemonkey.js, executed as the add-on was used.)

prstat(1M) shows the CPU problem is no longer there (shown after waiting a
few minutes for the %CPU decayed average to settle):

Next, the browser tabs were unpaused one by one to identify the culprit, while
still running the DTrace one-liner to track JavaScript execution by file. This
showed that there were seven tabs open on the same Web site that was running
the JavaScript program—each of them executing it about 100 times per second.
The Web site is a popular blogging platform, and the JavaScript was being exe-
cuted by what appears to be an inert icon that links to a different Web site (but as
we found out—it is not inert).7 The exact operation of that JavaScript program can
now be investigated using the DTrace JavaScript provider or a Firefox add-on
debugger.

Conclusion

A large component of this issue turned out to be a rogue JavaScript program, an
issue that could also have been identified with Firefox add-ons. The advantage of

dtrace -n 'pid$target::*EvaluateUCScriptForPrincipals*:entry { @[copyinstr(arg5)] =
 count(); } tick-1sec { printa(@); trunc(@); }' -p `pgrep firefox-bin`
[...]
 1 63140 :tick-1sec
 http://www.example.com/js/st188.js 697

 1 63140 :tick-1sec
 http://www.example.com/js/st188.js 703

 1 63140 :tick-1sec
file:///export/home/brendan/.mozilla/firefox/3c8k4kh0.default/extensions/%7Be4a8a97b-f
2ed-450b-b12d-ee082ba24781%7D/components/greasemonkey.js 1
 http://www.example.com/js/st188.js 126

 1 63140 :tick-1sec

 1 63140 :tick-1sec

prstat
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 27035 brendan 150M 136M sleep 49 0 0:27:15 0.2% opera/4
 27060 brendan 407M 304M sleep 59 0 7:35:12 0.1% firefox-bin/17
 28424 root 3392K 2824K cpu1 49 0 0:00:00 0.0% prstat/1
[...]

7. An e-mail was sent to the administrators of the blogging platform to let them know.

824 Chapter 9 � Applications

using DTrace is that if there is an issue, the root cause can be identified—no mat-
ter where it lives in the software stack. As an example of this,8 about a year ago a
performance issue was identified in Firefox and investigated in the same way—
and found to be a bug in a kernel frame buffer driver (video driver); this would be
extremely difficult to have identified from the application layer alone.

Xvnc

Xvnc is a Virtual Network Computing (VNC) server that allows remote access to
X server–based desktops. This case study represents examining an Xvnc process
that is CPU-bound and demonstrates using the syscall and profile providers.

When performing a routine check of running processes on a Solaris system by
using prstat(1), it was discovered that an Xvnc process was the top CPU con-
sumer. Looking just at that process yields the following:

We can see the Xvnc process is spending most of its time executing in user mode
(USR, 86 percent) and some of its time in the kernel (SYS, 14 percent). Also worth
noting is it is executing about 200,000 system calls per second (SCL value of .2M).

syscall Provider

Let’s start by checking what those system calls are. This one-liner uses the syscall
provider to frequency count system calls for this process and prints a summary
every second:

8. I’d include this as a case study here, if I had thought to save the DTrace output at the time.

solaris# prstat -c -Lmp 5459
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
 5459 nobody 86 14 0.0 0.0 0.0 0.0 0.0 0.0 0 36 .2M 166 Xvnc/1

solaris# dtrace -qn 'syscall:::entry /pid == 5459/ { @[probefunc] =
count(); } tick-1sec { printa(@); trunc(@); }'

 read 4
 lwp_sigmask 34
 setcontext 34
 setitimer 68
 accept 48439
 gtime 48439
 pollsys 48440
 write 97382

continues

Case Studies 825

Because the rate of system calls was relatively high, as reported by
prstat(1M), we opted to display per-second rates with DTrace. The output shows
more than 97,000 write() system calls per second and just more than 48,000
accept(), poll(), and gtime() calls.

Let’s take a look at the target of all the writes and the requested number of
bytes to write:

The vast majority of the writes are to a file, /var/adm/X2msgs. The number of
bytes to write was 82 bytes and 35 bytes for the most part (more than 361,000
times each). Checking that file yields the following:

Looking at the file Xvnc is writing to, we can see it is getting very large (more
than 2GB), and the messages themselves appear to be error messages. We will
explore that more closely in just a minute.

Given the rate of 97,000 writes per second, we can already extrapolate that each
write is taking much less than 1 ms (1/97000 = 0.000010), so we know the data is
probably being written to main memory (since the file resides on a file system and

 read 4
 lwp_sigmask 33
 setcontext 33
 setitimer 66
 gtime 48307
 pollsys 48307
 accept 48308
 write 97117

solaris# dtrace -qn 'syscall::write:entry /pid == 5459/ { @[fds[arg0].fi_pathname,
arg2] = count(); }'
^C

 /var/adm/X2msgs 26 8
 /devices/pseudo/mm@0:null 8192 3752
 /var/adm/X2msgs 82 361594
 /var/adm/X2msgs 35 361595

solaris# ls -l /var/adm/X2msgs
-rw-r--r-- 1 root nobody 2147483647 Aug 13 15:05 /var/adm/X2msgs
solaris# tail /var/adm/X2msgs

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)

826 Chapter 9 � Applications

the writes are not synchronous, they are being satisfied by the in-memory file sys-
tem cache). We can of course time these writes with DTrace:

Before measuring the write time, we wanted to be sure we knew the target file
system type of the file being written, which was ZFS. We used that in the predi-
cate in the w.d script to measure write system calls for this process (along with the
process PID test). The output of w.d is a quantize aggregation that displays wall
clock time for all the write calls executed to a ZFS file system from that process
during the sampling period. We see that most of the writes fall in the 512-nanosec-
ond to 1024-nanosecond range, so these are most certainly writes to memory.

We can determine the user code path leading up to the writes by aggregating on
the user stack when the write system call is called:

solaris# dtrace -qn 'syscall::write:entry /pid == 5459/
{ @[fds[arg0].fi_fs] = count(); }'
^C
 specfs 2766
 zfs 533090

solaris# cat -n w.d
1 #!/usr/sbin/dtrace -qs
2
3 syscall::write:entry
4 /pid == 5459 && fds[arg0].fi_fs == "zfs"/
5 {
6 self->st = timestamp;
7 }
8 syscall::write:return
9 /self->st/
10 {
11 @ = quantize(timestamp - self->st);
12 self->st = 0;
13 }

solaris# ./w.d
^C

 value ------------- Distribution ------------- count
 256 | 0
 512 |@@ 1477349
 1024 | 2312
 2048 | 3100
 4096 | 250
 8192 | 233
 16384 | 145
 32768 | 90
 65536 | 0

solaris# dtrace -qn 'syscall::write:entry /pid == 5459 && fds[arg0].fi_fs ==
"zfs"/ { @[ustack()] = count(); }'
^C
[...]

Case Studies 827

We see two very similar stack frames, indicating a log event is causing the Xvnc
process to write to its log file.

We can even use DTrace to observe what is being written to the file, by examin-
ing the contents of the buffer pointer from the write(2) system call. It is passed
to the copyinstr() function, both to copy the data from user-land into the kernel
address space and to treat it as a string:

 libc.so.1`_write+0x7
 libc.so.1`_ndoprnt+0x2816
 libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1a5
 Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
 Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
 Xvnc`vncWakeupHandler+0x3d
 Xvnc`WakeupHandler+0x36
 Xvnc`WaitForSomething+0x28d
 Xvnc`Dispatch+0x76

 Xvnc`main+0x3e5
 Xvnc`_start+0x80

 430879

 libc.so.1`_write+0x7
 libc.so.1`_ndoprnt+0x2816
 libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1eb
 Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
 Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
 Xvnc`vncWakeupHandler+0x3d
 Xvnc`WakeupHandler+0x36
 Xvnc`WaitForSomething+0x28d
 Xvnc`Dispatch+0x76

 Xvnc`main+0x3e5
 Xvnc`_start+0x80

 430879

solaris# dtrace -n 'syscall::write:entry /pid == 5459/ { @[copyinstr(arg1)] =
count(); }'
dtrace: description 'syscall::write:entry ' matched 1 probe
^C

Sun Aug 22 00:09:05 2010
ent (22)
keupHandler: unable to accept new
 st!
Ltd.
See http://www.realvnc.com for information on VNC.
 1

Sun Aug 22 00:09:06 2010
ent (22)
keupHandler: unable to accept new
 st!
 2
[...]
upHandler: unable to accept new connection: Invalid argument (22)XserverDesktop::wakeu
pHandler: unable to accept new connection: Invalid argument (22)XserverDesktop::wakeup
Handler: unable to accept new connection: Invalid argument (22)XserverDesktop::wake

828 Chapter 9 � Applications

This shows the text being written to the log file, which largely contains errors
describing invalid arguments used for new connections. Remember that our initial
one-liner discovered more than 48,000 accept() system calls per-second—it
would appear that these are failing because of invalid arguments, which is being
written as an error message to the /var/adm/X2msgs log.

DTrace can confirm that the accept() system calls are failing in this way, by
examining the error number (errno) on syscall return:

All the accept() system calls are returning with errno 22, EINVAL (Invalid
argument). The reason for this can be investigated by examining the arguments to
the accept() system call.

We see the first argument to accept is 3, which is the file descriptor for the
socket. The second two arguments are both NULL, which may be the cause of the
EINVAL error return from accept. It is possible it is valid to call accept with the
second and third arguments as NULL values,9 in which case the Xvnc code is not
handling the error return properly. In either case, the next step would be to look at
the Xvnc source code and find the problem. The code is burning a lot of CPU with
calls to accept(2) that are returning an error and each time generating a log file
write.

 59
valid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: I
nvalid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: In
valid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: In
 59

solaris# dtrace -n 'syscall::accept:return /pid == 5459/ { @[errno] = count(); }'
dtrace: description 'syscall::accept:return ' matched 1 probe
^C

 22 566135

solaris# grep 22 /usr/include/sys/errno.h
#define EINVAL 22 /* Invalid argument */

solaris# dtrace -n 'syscall::accept:entry /execname == "Xvnc"/ { @[arg0, arg1,
arg2] = count(); }'
dtrace: description 'syscall::accept:entry ' matched 1 probe
^C

 3 0 0 150059

9. Stevens (1998) indicates that it is.

Case Studies 829

While still using the syscall provider, the user code path for another of the other
hot system calls can be examined:

This shows that calls to gtime(2) are part of the log file writes in the applica-
tion, based on the user function names we see in the stack frames.

profile Provider

To further understand the performance of this process, we will sample the on-CPU
code at a certain frequency, using the profile provider.

This one-liner shows which user functions were on-CPU most frequently. It tests
for user mode (arg1) and the process of interest and uses the ufunc() function to
convert the user-mode on-CPU program counter (arg1) into the user function
name. The most frequent is a libc function, _ndoprnt(), followed by several func-
tions from the standard C++ library.

For a detailed look of the user-land code path that is responsible for consuming
CPU cycles, aggregate on the user stack:

solaris# dtrace -n 'syscall::gtime:entry /pid == 5459/ { @[ustack()] = count(); }'
dtrace: description 'syscall::gtime:entry ' matched 1 probe
^C

 libc.so.1`__time+0x7
 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0xce

 Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
 Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
 Xvnc`vncWakeupHandler+0x3d
 Xvnc`WakeupHandler+0x36
 Xvnc`WaitForSomething+0x28d
 Xvnc`Dispatch+0x76

 Xvnc`main+0x3e5
 Xvnc`_start+0x80

 370156

solaris# dtrace -n 'profile-997hz /arg1 && pid == 5459/ { @[ufunc(arg1)] = count(); }'
dtrace: description 'profile-997hz ' matched 1 probe
^C
[...]
 libc.so.1`memcpy 905
 Xvnc`_ZN14XserverDesktop12blockHandlerEP6fd_set 957
 libgcc_s.so.1`uw_update_context_1 1155
 Xvnc`_ZN3rdr15SystemExceptionC2EPKci 1205
 libgcc_s.so.1`execute_cfa_program 1278
 libc.so.1`strncat 1418
 libc.so.1`pselect 1686
 libstdc++.so.6.0.3`_Z12read_uleb128PKhPj 1700
 libstdc++.so.6.0.3`_Z28read_encoded_value_with_basehjPKhPj 2198
 libstdc++.so.6.0.3`__gxx_personality_v0 2445
 libc.so.1`_ndoprnt 3918

830 Chapter 9 � Applications

Note that only the two most frequent stack frames are shown here. We see the
event loop in the Xvnc code and visually decoding the mangled function names; we
can see a function with network TCPListener accept in the function name.
This makes sense for an application like Xvnc, which would be listening on a net-
work socket for incoming requests and data. And we know that there’s an issue
with the issued accept(2) calls inducing a lot of looping around with the error
returns.

We can also take a look at the kernel component of the CPU cycles consumed by
this process, again using the profile provider and aggregating on kernel stacks:

solaris# dtrace -n 'profile-997hz /arg1 && pid == 5459/ { @[ustack()] =
count(); } tick-10sec { trunc(@, 20); exit(0); }'
^c
[...]

 libstdc++.so.6.0.3`__gxx_personality_v0+0x29f
 libgcc_s.so.1`_Unwind_RaiseException+0x88
 libstdc++.so.6.0.3`__cxa_throw+0x64
 Xvnc`_ZN7network11TcpListener6acceptEv+0xb3
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

 Xvnc`vncWakeupHandler+0x3d
 Xvnc`WakeupHandler+0x36
 Xvnc`WaitForSomething+0x28d
 Xvnc`Dispatch+0x76

 Xvnc`main+0x3e5
 Xvnc`_start+0x80

 125

 libc.so.1`memset+0x10c
 libgcc_s.so.1`_Unwind_RaiseException+0xb7
 libstdc++.so.6.0.3`__cxa_throw+0x64
 Xvnc`_ZN7network11TcpListener6acceptEv+0xb3
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

 Xvnc`vncWakeupHandler+0x3d
 Xvnc`WakeupHandler+0x36
 Xvnc`WaitForSomething+0x28d
 Xvnc`Dispatch+0x76

 Xvnc`main+0x3e5
 Xvnc`_start+0x80

 213

solaris# dtrace -n 'profile-997hz /pid == 5459 && arg0/ { @[stack()] = count(); }'
^c
[...]

 unix`mutex_enter+0x10
 genunix`pcache_poll+0x1a5
 genunix`poll_common+0x27f
 genunix`pollsys+0xbe
 unix`sys_syscall32+0x101

 31

 unix`tsc_read+0x3
 genunix`gethrtime+0xa
 unix`pc_gethrestime+0x31
 genunix`gethrestime+0xa
 unix`gethrestime_sec+0x11
 genunix`gtime+0x9

Case Studies 831

The kernel stack is consistent with previously observed data. We see system call
processing (remember, this process is doing 200,000 system calls per second), we
see the gtime system call stack in the kernel, as well as the poll system call kernel
stack. We could measure this to get more detail, but the process profile was only 14
percent kernel time, and given the rate and type of system calls being executed by
this process, there is minimal additional value in terms of understanding the CPU
consumption by this process in measuring kernel functions.

For a more connected view, we can trace code flow from user mode through the
kernel by aggregating on both stacks:

 unix`sys_syscall32+0x101
 41

 unix`tsc_read+0x3
 genunix`gethrtime_unscaled+0xa
 genunix`syscall_mstate+0x4f
 unix`sys_syscall32+0x11d

 111

 unix`lock_try+0x8
 genunix`post_syscall+0x3b6
 genunix`syscall_exit+0x59
 unix`sys_syscall32+0x1a0

 229

solaris# dtrace -n 'profile-997hz /pid == 5459/ { @[stack(), ustack()] =
count(); } tick-10sec { trunc(@, 2); exit(0); }'
dtrace: description 'profile-997hz ' matched 2 probes
CPU ID FUNCTION:NAME
 1 122538 :tick-10sec

 unix`lock_try+0x8
 genunix`post_syscall+0x3b6
 genunix`syscall_exit+0x59
 unix`sys_syscall32+0x1a0

 libc.so.1`_write+0x7
 libc.so.1`_ndoprnt+0x2816
 libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1eb
 Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
 Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
 Xvnc`vncWakeupHandler+0x3d
 Xvnc`WakeupHandler+0x36
 Xvnc`WaitForSomething+0x28d
 Xvnc`Dispatch+0x76

 Xvnc`main+0x3e5
 Xvnc`_start+0x80

 211

 unix`lock_try+0x8
 genunix`post_syscall+0x3b6
 genunix`syscall_exit+0x59
 unix`sys_syscall32+0x1a0

continues

832 Chapter 9 � Applications

Here we see the event loop calling into the accept(3S) interface in libc and
entering the system call entry point in the kernel. The second set of stack frames
shows the log write path. One of the stacks has also caught _ndoprnt, which we
know from earlier to be the hottest on-CPU function, calling write() as part of
Xvnc logging.

Conclusions

The initial analysis with standard operating system tools showed that the single-
threaded Xvnc process was CPU bound, spending most of its CPU cycles in user-
mode and performing more than 200,000 system calls per second. DTrace was used
to discover that the application was continually encountering new connection fail-
ures because of invalid arguments (accept(2)) and was writing this message to a
log file, thousands of times per second.

Summary

With DTrace, applications can be studied like never before: following the flow of
code from the application source, through libraries, through system calls, and
through the kernel. This chapter completed the topics for application analysis; see
other chapters in this book for related topics, including the analysis of program-
ming languages, disk, file system, and network I/O.

 libc.so.1`_so_accept+0x7
 Xvnc`_ZN7network11TcpListener6acceptEv+0x18
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

 Xvnc`vncWakeupHandler+0x3d
 Xvnc`WakeupHandler+0x36
 Xvnc`WaitForSomething+0x28d
 Xvnc`Dispatch+0x76

 Xvnc`main+0x3e5
 Xvnc`_start+0x80

 493

1089

Index

Symbols
!, 1022–1023
!=, 28
", 880, 1021
%, 27
%=, 1023
&, 28, 1022–1023
&&, 22, 28, 1022–1023
&=, 1023
(), 1023–1024
*, 27
*=, 1023
+, 27, 1023
++, 1022
+=, 1023
=, 1023
==, 28
??, 160, 203
@, 14, 33
[], 1023–1024
^, 1022–1023
^=, 1023–1024
^^, 1022–1023
|=, 1023–1024
$1..$N, 32
$$1..$$N, 32
| (or), 28, 491, 1022–1024
| | (OR), 28, 458
~ (tilde), 1022–1023

^^ (XOR), 28
^ (xor), 28
:, 23, 200, 545
?:, 1024
, (comma operator), 1024
-=, 1023
/=, 1023
/ (division), 27
- (subtraction), 27
--, 1022
` (backquote) character, 33, 64, 78, 231
%@ format code, 36
* (asterisk) pattern-matching character, 69–70,

133
' single quote, 24, 194, 201, 231, 880, 1021
>, 28
>=, 28
>>, 28
<, 28
<=, 28
<<, 28

A
-a, 917, 1007
-A, 917
@a, 36, 527
accept(), 427, 445, 453, 468, 828
accept-established, 482

1090 Index

Access control list (ACL), 925
Actions, 13, 23

copyin(), 39, 1014
copyinstr(), 39–40, 1014
exit(), 41, 1014
jstack(), 40–41, 1017
printf(), 38, 1017
sizeof(), 41
speculations, 41–42
stack(), 40–41, 1017, 1071
stringof(), 39–40
strjoin(), 40, 1016
strlen(), 40, 687–688, 1000, 1016
trace(), 37, 684–685
tracemem(), 39, 1017
translators, 42
ustack(), 40–41, 1008, 1017, 1071

Active (TCP term), 482
Active service time, 213
Adaptive-block, 920–921
Adaptive mutex, 1015, 1077
Address family, 449–454, 1015
Administrator privileges, 868–869
Advanced Host Controller Interface (AHCI), 237, 289
AES_encrypt() function, 651–654
AF_INET, AF_INET6, 449–452
aggrate, 1006, 1016–1017
Aggregation drops (error), 1065
Aggregations, 13–14, 1077

buffers, 1006, 1065, 1077
functions, 33-34, 1017-1018

lquantize(), 35
normalize(), 36
printa(), 36–37
quantize(), 34–35
trunc() and clear(), 36

types, 34
variables, 999, 1017

aggsize, 1006, 1065, 1077
aggsortkey, 37
aggsortkeypos, 37
aggsortpos, 37, 459
aggsortrev, 37
ahci, 237, 289
aio_read(), 306
Alert (\a), 1021
Analytics

abstractions, 974
breakdown statistics, 979
control bar, 983
control descriptions, 983
controls, 983
datasets, 984

diagnostic cycle, 975
drill-downs, 981–983
heat maps, 979–981
hierarchical breakdowns, 979–980
load vs. architecture, 975
real time, 975
shouting in the data center, 269–273
statistics, 977
visualizations, 975
worksheets, 983

Anchored probes, 1077
Anonymous memory segment, 103
Anonymous state, 1007
Anonymous tracing, 917–918
Apache, 610–611
Apache Web server, 560, 732, 783–784, 800
Appends output, 43, 1071
Apple, 370, 620, 949, 972

see also Mac OS X
Application-level protocols

capabilities, 400–401
checklist, 559–560
providers

fbt provider, 561
iSCSI scripts, 634–638
one-liners

fc provider, 568
http provider, 567
http provider examples, 573
iscsi provider, 567
nfsv3 provider, 563
nfsv4 provider, 564–566
NFSv3 provider examples, 569–571
NFSv4 provider examples, 571–572
smb provider, 566
smb provider examples, 572–573
syscall provider, 563
syscall provider examples, 568–569

pid provider, 562
scripts

CIFS scripts
cifserrors.d, 605–607
cifsfbtnofile.d, 607–609
cifsfileio.d, 603
cifsops.d, 602–603
cifsrwsnoop.d, 600–601
cifsrwtime.d, 604

DNS scripts
dnsgetname.d, 623–625
getaddrinfo.d, 622–623

Fibre Channel scripts
fcerror.d, 647–649
fcwho.d, 647

Index 1091

FTP scripts
ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

HTTP scripts
httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

iSCSI scripts
iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers, 634–638

LDAP scripts
ldapsyslog.d, 664–666

multiscripts, 666–668
network script summary, 574–576
NFSv3 scripts

nfsv3commit.d, 585–587
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

NIS scripts, 663–664
SSH scripts

scpwatcher.d, 661–663
sshcipher.d, 649–655
sshconnect.d, 657–661
sshdactivity.d, 655–657

strategy, 558–559
Applications

capabilities, 784
case studies

Firefox idle, 817–824
Xvnc, 824–832

checklist, 786–787
providers

cpc provider, 791–792
one-liner examples

new processes (with arguments), 798–799
system call counts, 800
user-mode instructions, 801–803
user-mode level-two cache misses,

803–804
user stack trace profile at 101 hertz,

800–801
one-liners

cpc provider, 797–798
pid provider, 795–796
plockstat provider, 796
proc provider, 793–794
profile provider, 794–795
sched provider, 795
syscall provider, 794

pid provider, 788–791
script summary, 804
scripts

execsnoop, 805–806
kill.d, 813–814
plockstat, 811–813
procsnoop.d, 804–806
procsystime, 806–808
sigdist.d, 814–815
threaded.d, 815–816
uoffcpu.d, 809–811
uoncpu.d, 808–809

strategy, 784–786
Arc_get_data_buf(), 901
Architecture, 16–17
arg0, 31, 61, 174–175
arg1, 61
Args[], 31
Arguments

bufinfo_t, 1038
conninfo_t, 1040
cpuinfo_t, 1039
csinfo_t, 1040
devinfo_t, 1038
fileinfo_t, 1038
ifinfo_t, 1041
ipinfo_t, 1040
ipv4info_t, 1041
ipv6info_t, 1041
lwpsinfo_t, 1039
pktinfo_t, 1040
psinfo_t, 1039
tcpinfo_t, 1042
tcplsinfo_t, 1043
tcpsinfo_t, 1042

1092 Index

Arguments and return value
kernel functions, 901–903
pid provider, 791

Arithmetic operators, 27, 1021–1022
Array operators, 545
Assembly language, 677–679
Assignment operators, 27
Associative arrays, 29, 81, 200, 240, 285–286, 1078
Assumptions, 1000
Asynchronous writes, 332, 584
Asyncronous write workloads, 241
AT attachment disk driver, 251
ata, 251
Automatic drilldown analysis, 964
avg() function, 34, 81
awk, 20

B
-b flag, 1003, 1006
Backquote (`) character, 33, 64, 78, 231
Backslash (\\), 1021
Backspace (\b), 491, 1021
Bart, 206–207
basename(), 736
B_ASYNC, 159
B_DONE, 159
B_ERROR, 159
b_flags, 157–159, 178
B_PAGEIO, 159
B_PHYS, 159
B_READ, 159
B_WRITE, 159
BEGIN, 44
BEGIN and END, 24
Berkeley Internet Name Daemon (BIND), 575,

623–624
Binary arithmetic operators, 1021
Binary assignment operators, 1023
Binary bitwise operators, 1022
Binary logical operators, 1022
Binary relational operators, 1022
Birrell, John, 1047
Bitwise operators, 28, 1022–1023
Blank fields, 24
Blowfish, 651, 654
Boolean operators, 28
Boot processes, 917–918
Bourne shell, 764–774
Bourne shell provider, 1052–1061
Breakdowns, 979
broken.php, 733, 736
bsdtar(1) command, 164, 210
Buckley, Joel, 229

buffer-read-done, 852
buffer-read-start, 852
Buffer resizing, 1006
buffer-sync-start, 852
buffer-sync-written, 852
bufinfo_t, 157–159, 1026, 1038
bufpolicy, 1006, 1078
bufresize, 1006
Bufsize, 1006
bufsize, 43, 1064, 1071, 1084
Built-in functions, 1014–1019
Built-in variables, 31–32, 1011–1013
Bus adapter driver, 234
Bytes read by filename, 302, 309–310
Bytes written by filename, 302, 310

C
-c, 43, 528, 788, 795–796, 1006
-C, 231, 478, 683–684
C (language)

includes and the preprocessor, 683
kernel C, 681
one-liner examples

count kernel function calls, 688
function entry arguments, 687
user stack trace, 687–688

one-liners
fbt provider, 685–686
pid provider, 684–685
profile provider, 686–687

probes and arguments, 681–682
script summary, 689
scripts, 689
struct types, 682–683
user-land C, 680

C++ language, 689–691
Cache allocations, 909–911, 922
Cache file system read, 331–332
Cache misses, 923–924
Cantrill, Bryan, 269, 661, 973, 1003
Carriage return (\r), 1021
Case studies

Bourne shell provider, 1057–1061
disk I/O, 269–290
file systems, 387–398
Firefox idle, 817–824
Xvnc, 824–832

cd(1), 301
CD-ROMs, 376–378
c++filt, 432, 690
char, 26
Character escape sequences, 1021
chdir(), 569

Index 1093

Cheat sheet, 1069–1072
Chime (tool), 962–965
CIFS, 1078

count of operations by client address, 572
count of operations by file path name, 573
frequency of operations by type, 572
read I/O size distribution, 573

CIFS scripts
cifserrors.d, 575, 605–607
cifsfbtnofile.d, 575, 607–609
cifsfileio.d, 575, 603
cifsops.d, 575, 602–603
cifsrwsnoop.d, 575, 600–601
cifsrwtime.d, 575, 604

cipher, 649–655
cipher_crypt(), 653
Class-loading probes, 691
Clause, 9, 21
Clause-local variables, 30–31, 998
cleanrate, 1006
clear(), 34, 36
CLI queries, 842–843
Client initiator, 636
Client-server components, 835
close(), 445
cmdk, 251
cnwrite(), 885
Command-line aliases, 1005
Command-line hints, 161–162
Comment / uncomment characters, 1078, 1088
Common Internet File System. see CIFS
Compact C Type Format (CTF), 682, 1079
Compression, 652
COMSTAR, 634, 638–640
Conditional branch misprediction, 798, 924
Conditional statements, 22
Connection latency, 414
connection-start/connection-done, 838
connections, 399
conninfo_t, 1040
Contention. see Locks and lock contention
Context switch time, 943
Controls, 983
Cool Stack, 731
copyin(), 39, 624, 1002, 1014, 1067
copyinstr(), 39–40, 304, 622–624, 679, 687, 1002,

1014, 1067
count(), 34
Count file systems calls, 302–303
Count function calls, 710–711, 735, 742, 767
Count interrupts, 921
Count kernel function calls, 688
Count line execution by filename and line

number, 754, 767

Count method calls by filename, 754
Count of operations, 563, 570
Count subroutine calls by file, 721–722, 741
Count system calls, 45, 824, 925
cpc provider, 787, 791–792, 797–798, 923–925
CPU cross calls by kernel stack trace, 928
CPU events, 791–792
CPU Performance Counter (cpc). see cpc

provider
cpuinfo_t, 1039
CPUms, 846–847, 856
CPUs, tracking

analysis, 60–85
checklist, 57–58
events, 87–94
interrupts, 85–88
one-liners, 58–60
providers, 58

cpustat(1M), 791–792, 803
CR (Change Request), 1079
Cross calls, 390–393, 897, 928
crypt functions, 650
csinfo_t, 409, 1040
curpsinfo, 31
curthread, 31

D
-D (dtrace(1M)), 199, 231
D language, 14–16

actions
copyin(), 39
copyinstr(), 39–40
exit(), 41
jstack(), 40–41
list of, 1014–1019
printf(), 38
sizeof(), 41
speculations, 41–42
stack(), 40–41
stringof(), 39–40
strjoin(), 40
strlen(), 40
trace(), 37
tracemem(), 39
translators, 42
ustack(), 40–41

aggregations
lquantize(), 35
normalize(), 36
printa(), 36–37
quantize(), 34–35
trunc() and clear(), 36
types, 34

1094 Index

D language (continued)
components

actions, 23
predicates, 22
probe format, 21–22
program structure, 21
usage, 20–21

example programs
counting system calls by a named process,

45
Hello World, 44
profiling process names, 46–47
showing read byte distributions by process,

45–46
snoop process execution, 48–49
timing a system call, 47–48
tracing fork() and exec(), 45

options, 43–44
probes

BEGIN and END, 24
profile and tick, 24–25
syscall entry and return, 25
wildcards, 23–24

variables
associative arrays, 29
built-in, 31–32
clause local, 30–31
external, 33
macro, 32
operators, 27–28
scalar, 28
structs and pointers, 29
thread local, 30
types, 26–27

dad (driver), 251
Data cache misses by function name, 931
Data corruption, 242
Data recording actions, 1016–1017
Databases

capabilities, 834–835
client-server components, 835
MySQL

one-liner examples, 840–841
one-liners, 838–840
script summary, 841
scripts, 841–851

libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

Oracle, 858–865
PostgreSQL

one-liner examples, 854–858

one-liners, 853–854
pid provider, 854
postgresql provider, 853

script summary, 855
scripts, 854–858

providers, 836–837
strategy, 835–836

Datasets, 984
dcmd (d-command, mdb(1))), 99
Debuggers/debugging, 2–3, 261, 671, 682, 800,

898, 1005
Decryption, 871
Default cipher, 650
defaultargs, 43, 334, 360, 373, 656, 1007, 1071
DES_encrypt3(), 650
destructive, 43, 886–890, 1007, 1018–1019
Device drivers, 537–543, 917–918
Device insertion, 242–243
devinfo_t, 160, 1038
DFCI, 534
Diagnostic cycle, 975
DIF (DTrace Intermediate Format), 1079
Direct Memory Access, 242
Directory Name Lookup Cache (dnlc), 314, 346,

952
Dirty data, 310, 332, 347, 349, 369
Disk and network I/O activity

analysis, 128–134
checklist, 125
disk I/O, 134–141
one-liners, 127–128
providers, 126–127
strategy, 125

Disk I/O
capabilities, 152–154
case studies, 269–290
checklist, 155–156
IDE scripts, 250

ideerr.d, 173, 257
idelatency.d, 173, 252–254
iderw.d, 173, 255–257

io provider scripts
bitesize.d, 181–183
disklatency.d, 172, 175–177
geomiosnoop.d, 172, 209–210
iolatency.d, 172–175
iopattern, 172, 207–209
iosnoop, 172, 187–203
iotop, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

providers
fbt provider, 163–166

Index 1095

io provider, 157–163, 165
one-liner examples, 166–171
one-liners, 165–166

SAS scripts
mptevents.d, 173, 264–267
mptlatency.d, 173, 267–269
mptsassscsi.d, 173, 263–267

SATA scripts
satacmds.d, 172, 237–243
satalatency.d, 173, 248–250
satareasons.d, 173, 246–248
satarw.d, 172, 243–246
scsi.d, 172, 236

SCSI scripts
SCSI probes, 212–213
scsicmds.d, 172, 218–221
scsi.d, 229–236
scsilatency.d, 172, 221–223
scsireasons.d, 172, 227–229
scsirw.d, 172, 223–226
sdqueue.d, 172, 213–215
sdretry.d, 172, 215–218

size aggregation, 167
size by process ID, 166–167
size distribution, 840–841
strategy, 154–155

Disk queueing, 201–202
Disk reads and writes, 232–233
Disk reads with multipathing, 234
Disk time, 205–206
Dispatcher queue, 529, 938, 950, 1079
Displays (Chime), 963–964
Distribution plots, 13–14, 34, 45, 98, 165,

310–312, 433, 841, 855
DLight, Oracle Solaris Studio 12.2, 966–971
DLPI, 534
dmake, 308
dnlcps.d, 314, 346–347, 952
DNS scripts, 621

dnsgetname.d, 623–625
getaddrinfo.d, 622–623

do_copy_fault_nta(), 931
DOF (Dtrace Object Format), 1079
done probe, 157
doorfs(), 658
Double quote, 880, 1021
Downloading and installing

Chime, 962–963
DTrace GUI plug-in, 966
DTraceToolkit, 948–949
Mac OS X Instruments, 971–972

Drill-downs, 964–965, 981–983
Driver interface, 542
Driver internals, 538

Drops, 699, 870, 935, 1003, 1064–1066
DTrace GUI Plug-in for NetBeans and Sun

Studio, 966
DTrace Guide. See Solaris Dynamic Tracing Guide
dtrace provider, 11
dtrace(7d), 1080
dtrace_kernel, 868, 872, 1064
dtrace(1M), 19, 1080
dtrace_proc, 868, 1064
DTraceToolkit

downloading and installing, 948–949
man page, 959–960
script example: cpuwalk.d, 957–961
script summary, 949–957
scripts, 949–957
versions, 949

dtrace_user, 868, 1064
DVDs, 378–379
Dynamic probes, 4, 1080
dynvardrops, 343, 1003, 1066, 1079–1080
dynvarsize, 43, 1003, 1007, 1066

E
egrep(1), 539
Elevator seeking, 199
Encrypted sessions, 871
enqueue probe (sched provider), 84
Entropy stat, 709, 711–712
Entry (syscall), 25
Erickson, Tom, 962
er_kernel (kernel profiler tool), 966
errno, 25, 31, 794, 1080
Error(s)

cifserrors.d, 605–606
codes, 467–468
disk I/O, 156
error messages

aggregation drops, 1065
drops, 1064–1065
dynamic variable drops, 1066
invalid address, 1066–1067
maximum program size, 1067
not enough space, 1067
privileges, 1063–1064

file system I/O, 297
fserrors.d, 326–327
httperrors.d, 614
network I/O, 404
network I/O checklist, 404
nfsv3errors.d, 588
nfsv4errors.d, 595
number, 170–171
PHP, 736

1096 Index

Error(s) (continued)
socket system call errors, 467–468
soerrors.d, 465
translation table, 595–597

Ethernet scripts
device driver tracing, 537–543
Mac tracing with fbt, 534
macops.d, 534–537
ngelink.d, 546–547
ngesnoop.d, 544–546

Ethernet vs. Wi-Fi, 462
Example programs

counting system calls, 45
Hello World, 44
profiling process names, 46–47
showing read byte distributions by process,

45–46
snoop process execution, 48–49
timing a system call, 47–48
tracing fork() and exec(), 45
tracing open(2), 44–45

Exclusive time, 703, 718, 730, 750, 762
execname, 31, 110, 1080
exec_simple_query(), 854
execsnoop, 805–806
exit(), 41, 1002, 1014
ExtendedDTraceProbes, 692, 694, 696
External Data Representation. see XDR
External variables, 33

F
-F (dtrace(1M)), 438, 1007
Failed to enable probe (error), 792
Fast File System (FFS), 351
fasttrap, 868, 1064, 1068
fbt, 12, 155–156, 163–166, 170, 298, 352, 405
fbt-based script maintenance, 418
fc provider, 568, 646
fc provider probes and arguments, 1025–1026
FC (Fibre Channel) scripts, 646

fcerror.d, 647–649
fcwho.d, 647

fds[], 68, 131, 145, 300, 429, 1080
fds[].fi_fs variable, 91
fdsp[.fi_dirname variable, 161
File System Archive, 807
File systems

capabilities, 292–295
case study, 387–398
checklist, 296–297
functional diagram, 293
providers

fsinfo provider, 298–300

one-liners
fbt provider, 303
fsinfo provider, 302
sdt provider, 303
syscall provider, 300–301
vfs provider, 303
vminfo provider, 302

one-liners: fsinfo provider examples
bytes read by filename, 309–310
bytes written by filename, 310
calls by fs operation, 308–309
calls by mountpoint, 309
read/write I/O size distribution,

310–312
one-liners: sdt provider examples, 312–313
one-liners: syscall provider examples

frequency count stat() files, 305
reads by file system type, 306–307
trace file creat() calls with process

name, 304–305
trace file opens with process name, 304
tracing cd, 306
writes by file system type, 307
writes by process name and file system

type, 307
one-liners: vminfo provider examples, 308

scripts
fsinfo scripts

fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

HFS+ scripts
hfsfileread.d, 374–375
hfsslower.d, 372–374
hfssnoop.d, 371–372

HSFS scripts, 376–378
NFS client scripts

nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

PCFS scripts, 375–376
syscall provider

fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

TMPFS scripts
tmpgetpage.d, 386–387
tmpusers.d, 385–386

UDFS scripts, 378–379

Index 1097

UFS scripts
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

VFS scripts
dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
vfslife.d, 345
vfssnoop.d, 340–343

ZFS scripts
perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

strategy, 295–296
write operation, 295

Filebench, 296, 559, 989
fileinfo_t, 160–161, 1038
filesort (probes), 838
filesort-start/filesort-done, 838
fill buffer, 1080, 1084
Find vs. Bart, 206–207
Firefox case study

fetching context, 822
function counts and stacks, 819
function CPU time, 820
profiling user modules, 818
profiling user stacks, 817

First-byte latency, 460–461, 499
Floating-point data types, 1020
Floating-point suffixes, 1021
Floating-point types, 27
flowindent, 43, 104, 438, 684, 685, 896, 903–906, 1007
flush write-cache, 241–242
fop interface, 303, 336, 349
Formfeed (\f), 1021
FreeBSD, 164, 949, 1075, 1080

AF_INET values, 451
hyphens in probe names, 793n
iostat(8), 125
kmem layer, 123
netstat(8), 125
stack trace, 170, 421
system tools, 55

FreeBSD 7.1 and 8.0
installing DTrace, 1045–1046

Frequency count, 991–992
Frequency count fbt, 166, 278–279
Frequency count functions, 166, 171
Frequency count sdt, 276–277
fsinfo, 126, 132
fsinfo provider, 298–300, 302
fsinfo provider examples, 308–312
fsinfo provider probes and arguments, 1026
fsinfo scripts

fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

FTP Analytics, 625
FTP scripts

ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

Function arguments, 283–285
Function Boundary Tracing. see fbt
Function counts and stacks, 819
Function CPU time, 820
function-entry, 752
Function execution, 672–673
Function names, 690, 1014–1019
function-return, 752

G
Garbage collection, 691, 751, 753, 759, 820
gc++filt, 432, 690
GEOM, 164, 172, 209–210
Gerhard, Chris, 229
GET, 616
gld, 405
GLDv3, 534, 1081
Global and aggregation variables, 33, 350,

997–999
Global zone, 870–872

H
-h (dtrace1M)), 807
Hardware address translation (HAT), 928
Hargreaves, Alan, 1051
Haslam, Jon, 350
HC (High Capacity), 407
Header files, 683
Heat maps, 979–981
Hertz rates, 24–25, 61
HFS+, 370, 929

1098 Index

HFS+ scripts
hfsslower.d, 372–374
hfssnoop.d, 371–372

hfs_file_is_compressed(), 929
HIDS (Host-based Intrusion Detection Systems),

871
Hierarchal File System. see HFS+
Hierarchical breakdowns, 979–980
High Sierra File System (HSFS), 376
Hold events, 812
Horizontal tab (\t), 1021
Host name lookup latency, 660
Hot code paths, 897, 944, 990, 996
hotkernel, 64
hotspot, 675, 691, 694
HotSpot VM, 691
hotuser, 64
HSFS scripts, 376–378
HTTP

flow diagram, 610
scripts

httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

summarize user agents, 573
HTTP files opened by the httpd server, 563, 568
http provider, 567
http provider examples, 573
httpd, 563, 568, 783–784, 795, 802–803
Hyphens in probe names, 793n

I
%I, 488
IA (interactive scheduling class), 942
ICMP, 1081
ICMP event by kernel stack trace, 424, 439
ICMP event trace, 424, 437
ICMP scripts

icmpsnoop.d, 447, 522–525
icmpstat.d, 447, 521
superping.d, 447, 526–529

IDE driver reference, 251
IDE scripts

ideerr.d, 257–259
idelatency.d, 252–254
iderw.d, 255–257

ifinfo_t, 410, 1041
Inbound TCP connections, 441, 446, 486–487, 489
Inclusive time, 703, 718, 730, 750, 762, 908
inet*() functions, 590, 608
inet_ntoa(), 455, 502

inet_ntoa6(), 455, 502
inet_ntop(), 451
Instruction cache misses by function name,

931–932
Instruments (Mac OS X tool), 971–972
Integer data types, 1020
Integer suffixes, 1021
Integer type aliases, 1020
Integer variable types, 26–27
Internet Control Message Protocol (ICMP). see

ICMP
Internet Small Computer System Interface

(iSCSI). see iSCSI
Interrupt load, 58
Interrupt start count, 921
Interrupts, 85–88, 932, 962
intrstat(1M), 16, 85, 932-934
Intrusion detection, 871, 886
Invalid address (error), 1066–1067
Invasion of privacy issues, 875–877
I/O

analysis, 130
checklist, 127
one-liners, 129
providers, 128
strategy, 127

io probes, 157–158
io provider, 165, 637–638, 840

bufinfo_t, 158–159
command-line hints, 161–162
devinfo_t, 160
fileinfo_t, 160–161
probes and arguments, 1026

io provider scripts
bitesize.d, 172, 181–183
disklatency.d, 172, 175–177
geomiosnoop.d, 209–210
iolatency.d, 172–175, 270
iopattern, 207–209
iosnoop, 187–203
iotop, 172, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

iostat(8), 55, 125
iostat(1M), 55, 125, 134, 288, 863
iotop, 204–207
IP event statistics, 424, 435
IP-layer network traffic, 126
ip probe arguments, 408
ip provider, 404, 425

csinfo_t, 409
ifinfo_t, 410
ipinfo_t, 409

Index 1099

ipv4info_t, 410
ipv6info_t, 410
pktinfo_t, 409

ip provider development, 473
ip provider examples, 440
ip provider probes, 408
ip provider probes and arguments, 1027
IP scripts

fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477
ipproto.d, 477–478
ipstat.d, 474–475

ipfbtsnoop.d, 446, 478–481
ipIfStatsHCInOctets (probe), 407
ipIfStatsHCOutOctets (probe), 407
ipinfo_t, 409, 1040
ip_input(), 481, 555
ipio.d, 446, 475–477
ip_output(), 419, 555
ipproto.d, 446, 477–478
ipstat.d, 446, 474–475
ipv4info_t, 410
ipv4info_t, 1041
ipv6info_t, 410
ipv6info_t, 1041
iSCSI

client initiator, 636
functional diagram, 634
provider, 567, 635
target server, 635

iscsi provider probes and arguments, 1027
iSCSI scripts

iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers

fbt provider, 635–637
io provider, 637–638
iscsi provider, 635

iscsi_iodone(), 637
iscsit_op_scsi_cmd(), 636
iscsit_xfer_scsi_data(), 636

J
Java

code, 693
one-liner examples, 694–696
one-liners, 693–694
script summary, 696
scripts

j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

Java virtual machine (JVM), 691
JavaScript (language)

code, 707–708
one-liner examples

count function calls by function filename,
710–711

object entropy stat, 711–712
trace function calls, 710
trace program execution showing filename

and line number, 709
one-liners, 708–709
script summary, 712
scripts

js_calls.d, 712–713
js_calltime.d, 715–718
js_flowinfo.d, 670, 713–715, 952
js_stat.d, 718

JavaScript Garbage Collect, 820
JBODs, 269–273
JNI functions, 692
Joyent, 751
jstack(), 40–41, 108, 743, 1017
jstackframes, 1007, 1017
jstackstrsize, 44, 1007, 1017

K
kalloc(), 916–917
Kernel

capabilities, 894–895
checklist, 897–898
clock interrupt, 61
destructive actions, 1018
functional diagram, 895
ktrace.d, 903–906
lock events, 934–935
memory

allocation, 122, 914–915, 922
Mac OS X, 122–124
tools, 118–120

memory allocations, 915–916
profiler tool, 966
profiling, 64–70, 72
providers

anonymous tracing, 917–918
fbt provider

arguments and return value, 901–903
module name, 900–901
probe count, 899–900
stability, 898–899

1100 Index

Kernel, providers (continued)
kernel memory usage, 908–917
kernel tracing, 903–908
one-liner examples

count system calls by type, 925
CPU cross calls by kernel stack trace,

928
kernel function call counts for functions

beginning with hfs_ by module, 929
kernel-mode instructions by function

name, 930
kernel-mode instructions by module

name, 930–931
kernel-mode level-one data cache misses

by function name, 931
kernel-mode level-one instruction cache

misses by function name, 931–932
kernel module name profile at 1001

hertz, 927
kernel stack backtrace counts for calls

to function foo(), 929
kernel stack trace profile at 1001 hertz,

925–927
kernel thread name profile at 1001

hertz (freebsd):, 928
one-liners

cpc provider, 923–925
fbt provider, 921–923
lockstat provider, 920–921
profile provider, 919
sched provider, 920
sdt provider, 921
syscall provider, 919
sysinfo provider, 920
vminfo provider, 920

script summary, 932
scripts

cswstat.d, 932, 943–944
intrstat, 932–934
koffcpu.d, 932, 938–939
koncpu.d, 932, 937–938
lockstat, 934–937
priclass.d, 932, 941–943
putnexts.d, 932, 944–945
taskq.d, 932, 939–941

stacks, 168–170
statistics, 896
strategy, 896–897

Kernel file system flush thread, 347
kernel_memory_allocate(), 122–123, 914–915, 922
keycache (probes), 838
Keys, 15, 33, 36, 1082
Keystroke captures, 875–876
Keywords, table of, 1019

KILL signal, 888, 890
kmem, 119

kmem_alloc(), 911–912, 916
kmem_cache_alloc(), 909–910
kmem_cache_free(), 910
kmem_free(), 916

kstat(1M), 55,118, 896, 983

L
-l (dtrace(1M)), 1071
Languages

Assembly, 677–679
C

includes and the preprocessor, 683
kernel C, 681
one-liner examples

count kernel function calls, 688
show user stack trace, 687–688
trace function entry arguments, 687

one-liners
fbt provider, 685–686
pid provider, 684–685
profile provider, 686–687

probes and arguments, 681–682
scripts, 689
struct types, 682–683
user-land C, 680

C++, 690–691
capabilities, 671–672
checklist, 674
Java

code, 693
one-liner examples, 694–696
one-liners, 693–694
scripts

j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

JavaScript
code, 707–708
js_stat.d, 718
one-liner examples

count function calls by function
filename, 710–711

object entropy stat, 711–712
trace function calls showing function

name, 710
trace program execution showing

filename and line number, 709
one-liners, 708–709
scripts

js_calls.d, 712–713

Index 1101

js_calltime.d, 715–718
js_flowinfo.d, 713–715

Perl
code, 720
one-liner examples, 721–722
one-liners, 720–721
scripts

pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

PHP
code, 733
one-liner examples

count function calls by filename, 735
trace function calls showing function

name, 735
trace PHP errors, 736

one-liners, 734–735
script summary, 736
scripts

php_calls.d, 736
php_flowinfo.d, 738

providers, 675–679
Python

code, 741
one-liner examples

count function calls by file, 742
profile stack traces, 743–744
trace function calls, 742

one-liners, 741
scripts

py_calls.d, 745–746
py_calltime.d, 748–751
py_flowinfo.d, 746–748
py_who.d, 744–745

Ruby
code, 752
one-liner examples

count line execution by filename and
line number, 754

count method calls by filename, 754
trace method calls showing class and

method, 754
one-liners, 753
scripts

rb_calls.d, 756–757
rb_calltime.d, 759–762
rb_flowinfo.d, 757–759
rb_who.d, 755–756

scripting, 669
Shell

code, 765
one-liner examples

count function calls by filename, 767
count line execution by filename and

line number, 767
trace function calls showing function

name, 766
one-liners, 765–766
scripts

sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_who.d, 768–769

strategy, 672–673
Tcl

code, 776
one-liner examples, 777–778
one-liners, 776–777
scripts

tcl_calls.d, 779–780
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_who.d, 778–779

Latency, 156
disk I/O, 285–287, 269-273
by driver instance, 234–236
file system I/O, 296
heat maps, 980
network I/O checklist, 403
TCP connection, 414

latency.d, 288
LDAP scripts, 664–666
Leventhal, Adam, 1, 1003
libc, 105, 680, 684, 789, 829
libc fsync() calls, 796
libc function calls, 795
libcurses, 788–789
libdtrace(3LIB), 1082
Libmysql_snoop.d, 849–850
libsocket, 789–790
libssl (Secure Sockets Layer library), 784
Local ports, 442
Locks and lock contention, 58, 87–88, 674, 787,

811–813, 816, 897, 935
lockstat(1M), 12, 16, 62, 87, 811–813, 920-921,

934-937
Logical operators, 1022
Loopback traffic, 408, 493, 525
lquantize(), 34, 35, 270, 630
lwpid, 81–82
lwpsinfo_t, 1039

M
Mac OS X

AF_INET values, 451
disk I/O, 177

1102 Index

Mac OS X (continued)
ether_frameout(), 418
fbt provider, 418, 421, 474
iostat(8), 125
kernel memory allocation, 122
netstat(8), 125
system tools, 55

Mac OS X Instruments, 971–972
Mac OS X Internals, 296, 370
Mac OS X Interprocess Communication (IPC) and

IO Kit path, 915
Mac OS X tracing with fbt, 534
mach_kernel, 900
Macro variables, 32
MacRuby, 751
Maguire, Alan, 500
malloc(), 674, 676, 763, 787, 796, 922
Man(ual) pages for scripts, 948
Matteson, Ryan, 610
max() function, 34, 81
Maximum program size (error), 1067
mdb(1), 2, 261, 677, 902, 909
mdb(1) kmastat dcmd, 118
MediaWiki, 735, 737–738, 842–843
Memory allocation, 787
Memory Management Unit (MMU), 1082, 1087
Memory monitoring

analysis, 98–101
checklist, 96
kernel memory, 118–124
one-liners, 97–98
providers, 96–97
strategy, 95
user process memory activity, 101–117

Memory usage, 908–917
memstat dcmd (d-command), 99
Method compilation probes, 691
MIB (Message Information Base), 126, 404, 1082
mib probes, 407
mib provider, 404–408, 423
mib provider examples

ICMP event by kernel stack trace, 439
ICMP event trace, 437
IP event statistics, 435
SNMP MIB event count, 434–435
TCP event statistics, 436
UDP event statistics, 437

Microsoft FAT16, 375
Microsoft FAT32, 375
Millisecond to nanosecond conversion, 846
min() function, 34, 81
Minor faults, 920, 952
modinfo(1M), 918
Monitor probes, 691

Mountpoint, 302, 309–312
Mozilla Firefox, 45–46, 109, 428, 706, 769
mpstat(1M), 2, 55–57, 72–73, 88, 91, 388
mpt, 260–262, 1082
Multipathing, 234
Multiple aggregations, 37
Multithreaded applications, 815, 957, 967
Mutex blocks, 796
Mutex lock, 87
Mutex spin counts, 796
mutex_enter(), 66–67, 86–87, 931–932
MySQL

C API, 849–850
DTrace probes, 838
one-liner examples, 840–841
one-liners, 838–840
Reference Manual, 850
references, 850–851
script summary, 841
scripts

libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

N
-n, 43, 322, 1071
Namecache, 210, 340–341, 345–346
NetBeans IDE, 962, 966–967
netstat(1M), 55, 125, 402, 406, 455
network (probes), 838
Network Address Translation (NAT), 555
Network device driver tracing with fbt, 537–543
Network file system. see NFS
Network I/O, 141–148
Network I/O checklist, 403, 559–560
Network I/O providers, 560–561
Network Information Service, 1083
Network Intrusion Detection Systems (NIDS),

871
Network lower-level protocols

capabilities, 400–402
checklist, 403–404
common mistakes

packet size, 553
receive context, 548–550
send context, 550–553
stack reuse, 554–555

providers
fbt provider

receive, 419–422
send, 416–419

Index 1103

ip provider
csinfo_t, 409
ifinfo_t, 410
ipinfo_t, 409
ipv4info_t, 410
ipv6info_t, 410
pktinfo_t, 409

mib provider, 405–408
network providers, 411–415
one-liners

ip provider, 425
ip provider examples, 440
mib provider, 423
mib provider examples, 434–439
syscall provider, 422
syscall provider examples, 427–434
tcp provider, 425
tcp provider examples, 441–445
udp provider, 427
udp provider examples, 445

planned network provider argument types,
412

planned network provider arguments, 412
planned network providers, 412

scripts
Ethernet scripts

Mac tracing with fbt, 534
macops.d, 534–537
network device driver tracing with fbt,

537–543
ngelink.d, 546–547
ngesnoop.d, 544–546

ICMP scripts
icmpsnoop.d, 522–525
icmpstat.d, 521
superping.d, 526–529

IP scripts
fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477, 476
ipproto.d, 477–478
ipstat.d, 474–475

socket scripts
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

TCP scripts
fbt provider, 483–485
tcp provider, 482–483

tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516
tcpstat.d, 485–486
tcp1stbyte.d, 499

UDP scripts
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

XDR scripts, 529–533
strategy, 402–403

Network packet sniffer, 890
Network providers, 411–415
Network script summary, 445–447, 574–576
Network-sniffing tools, 400
Network statistic tools, 402
New Processes (with Arguments), 798–799
Newline (\n), 1021
NFS client back-end I/O, 157
NFS client scripts

nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

NFS I/O, 162–163
nfsstat, 588
nfsv3 probes, 577
nfsv3 provider, 563
NFSv3 provider examples, 569–571
nfsv3 provider probes and arguments, 1028–1030
NFSv3 scripts

nfsv3commit.d, 585–587
nfsv3disk.d, 666–668
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594

1104 Index

NFSv4 scripts (continued)
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

nfsv4 provider, 564–566
NFSv4 provider examples, 571–572
nfsv4 provider probes and arguments, 1030–1034
nge driver (Nvidia Gigabit Ethernet), 537
NIDS, 871
NIS (Network Information Service), 1083
NIS scripts, 663–664
nmap port scan, 453
Nonglobal (local) zone, 870–872
normalize(), 34, 36, 143
Not enough space (error), 1067
Nouri, Nasser, 966
nscd (Name Service Cache Daemon), 452, 461,

660, 811
nspec, 1007
ntohs(), 451, 502, 508
NULL character (\0), 1021
Nvidia, 237
nv_sata, 237, 275

O
-o, 43, 727, 935, 1071
Object arguments, C++, 690–691
Object entropy stat, 709, 711–712
Octal value (\0oo), 1021
Off-CPU sched provider probe, 674, 786, 897, 932
On-CPU sched provider probe, 58–61, 674, 786,

897, 932
One-liners

C, 684–687
cheat sheet, 1072
cpu, 58–60
disk I/O, 165–166
file systems, 300–303
I/O, 127–128
Java, 693–694
JavaScript, 708–709
kernel, 918
memory, 97–98
MySQL, 838
network, 411, 422–427
Perl, 720–721
PHP, 734
PostgreSQL, 853
provider, 563–568, 793
Python, 741
Ruby, 753

Shell, 765
Tcl, 776

OpenSolaris, xxx, 1, 336, 411, 451, 949, 1083
OpenSolaris security group site, 873
OpenSolaris Web site, 962
OpenSSH, 649, 876
Operator(s)

arithmetic, 27, 1021–1022
assignment, 27
associativity, 1023–1024
binary arithmetic, 1021
binary bitwise, 1022
binary logical, 1022
binary relational, 1022
boolean, 28
precedence, 1023–1024
relational, 28, 1022
ternary, 28, 178, 195
unary arithmetic, 1022
unary bitwise, 1023
unary logical, 1022

@ops aggregation, 602
Options, 43–44
or (|), 28, 491, 1022–1024
OR (| |), 28, 458
Oracle, 858–865
Oracle Solaris, xxv

DTrace privileges, 868
Studio 12, 672
Studio IDE, 966
see also Solaris

Oracle Sun Web Stack, 731, 733
Oracle Sun ZFS Storage Appliance, 599, 625
OSI model, 400
Outbound TCP connections, 489

P
-p, 664, 849
-p PID, 43, 684, 788, 795
%P, 488
Pacheco, David, 610
Packet sniffers, 525, 890
Packets (network), 553, 483
Page-ins, 95–97, 111–113, 297, 308, 1083
Page-outs, 95–97, 297, 1083
pagefault, 96, 114–115, 119, 1083
panic(), 42, 1007, 1018
Passive (TCP term), 482
Passive FTP transfers, 629
Password sniffing, 869
pause(), 923
PCFS scripts, 375–376

Index 1105

Performance Application Programming Interface
(PAPI), 791–792, 803

Perl language, 993–994
bug #73630, 720
code, 720
one-liner examples, 721–722
one-liners, 720–721
provider, 719
script summary, 722
scripts

pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

Perturbations, 269–273
pgrep(1), 629–631, 849
PHP

code, 733
one-liner examples

count function calls by filename, 735
trace errors, 736
trace function calls showing function name,

735
one-liners, 734–735
script summary, 736
scripts

php_calls.d, 736
php_flowinfo.d, 736, 738
php_flowtime.d, 739
php_syscolors.d, 739

pid (process ID), 31, 33, 97–98, 165, 167–168, 788,
790-791

pid provider, 98, 562, 788–791, 795–796, 839–840,
854

ping, 447, 462, 522, 525–529, 1081
Pipe (|) character, 28, 491, 1022–1024
pktinfo_t, 409, 1040
Platform Specific Events, 792
plockstat, 58, 96–97, 689, 787, 811–813
plockstat provider, 796
Policy enforcement, 871–872
Population functions, 1077
Port closed, 493, 510–511
Port number, 455
Port scan, 453, 496
POSIX, 622, 790, 1084
PostgreSQL

documentation, 858
one-liner examples, 854–858
one-liners, 853–854
probes, 851–852
script summary, 855
scripts, 854–858

PostgreSQL-DTrace-Toolkit, The, 858

postgresql provider, 853
Postprocessing, 993–994
ppid, 31
ppriv(1), 872, 868
Predicates, 9, 12, 22, 63, 1084
Prefetch, 313, 329
Prefetch requests, 313
Prefetch Technologies, 610
Preprocessor, 683
Principal buffer, 43, 1001, 1003, 1006, 1064–1065,

1080, 1084
printa(), 34, 36–37, 519
printf(), 38, 520, 1017
priv-err, 872, 874
priv-ok, 872, 874
Privacy violations, 875–877
Privilege debugging, 872–874
Privileges, 868, 1063–1064
Privileges, detection, and debugging

HIDS, 871
policy enforcement, 871–872
privilege debugging, 872–874
reverse engineering, 874–875
security audit logs, 870
sniffing, 869

probefunc, 31, 71, 91, 110, 132
probemod, 31, 71
probename, 31, 110
probeprov, 31
proc provider, 11, 793–794
proc provider probes and arguments, 1034
Process destructive actions, 1019
Process ID (pid) provider. see pid provider
Process name, 307
Process watching, 881
Processes paging in from the file system, 308
Processors. see CPUs
procstat(1), 55
procsystime, 806–808
Production queries, 843
profile, 24–25, 46, 61, 996–997, 1084
profile provider, 11, 58–59, 63, 794–795, 919
Profile Python Stack Traces, 743–744
Profiling process names, 46–47
Profiling user modules, 818
Profiling user stacks, 817
Program counter (PC), 61
Program execution flow, 673
Programming language providers, 675
Promiscuous mode, 525, 544, 875, 890–891
Provider, 11, 1084
Provider arguments reference

arguments
bufinfo_t, 1038

1106 Index

Provider arguments reference, arguments (continued)
conninfo_t, 1040
cpuinfo_t, 1039
csinfo_t, 1040
devinfo_t, 1038
fileinfo_t, 1038
ifinfo_t, 1041
ipinfo_t, 1040
ipv4info_t, 1041
ipv6info_t, 1041
lwpsinfo_t, 1039
pktinfo_t, 1040
psinfo_t, 1039
tcpinfo_t, 1042
tcplsinfo_t, 1043
tcpsinfo_t, 1042

fc provider probes and arguments, 1025–1026
fsinfo provider probes and arguments, 1026
io provider probes and arguments, 1026
ip provider probes and arguments, 1027
iscsi provider probes and arguments, 1027
nfsv3 provider probes and arguments,

1028–1030
nfsv4 provider probes and arguments,

1030–1034
proc provider probes and arguments, 1034
sched provider probes and arguments, 1035
srp provider probes and arguments, 1035
sysevent provider probes and arguments, 1036
tcp provider probes and arguments, 1036
udp provider probes and arguments, 1036
xpv provider probes and arguments, 1037

Providers for Various Shells Web site, 764–765
prstat(1), 73–74, 77–78, 82, 100
prstat(1M), 55, 60, 73, 74, 801
ps(1), 62, 100
PSARC, 764, 1084
psinfo_t, 1039
Python language

code, 741
one-liner examples, 742–744
one-liners, 741
patches and bugs, 740
script summary, 744
scripts

py_calldist.d, 750
py_calls.d, 744–746
py_calltime.d, 744, 748–751
py_cpudist.d, 750
py_cputime.d, 750
py_flowinfo.d, 746–748
py_flowtime.d, 748
py_syscolors.d, 748
py_who.d, 744–745

Q
-q, 43–44, 69, 880–881, 885, 1007
quantize(), 34–35, 138, 148, 270, 571
Query (probes), 838
Query cache hit rate, 841, 844–845
Query count summary, 840
Query execution (probes), 838
Query parsing (probes), 838
Query processing, database, 836
Query time distribution plots, 841, 848–849
Question mark, 160, 203, 1021
Quiet mode, 43–44, 69, 880–881, 885, 1007, 1071
Quote marks

backquote, 33, 64, 78, 231
double, 880, 1021
single, 24, 194, 201, 231, 880, 1021

R
raise(), 872, 888–891, 1007, 1019
Random I/O, 202, 208–209
Random reads, 579
Random workload, 185–186
Read-aheads, 197, 298, 314, 354–355, 377, 989
Read I/O size distribution, 571
Read workload, 220
Reader/writer locks, 9, 796, 1085
read_nocancel(), 306
Reads by file system type, 306–307
Receive (network), 408, 419–422
Receive context, 548–550
Relational operators, 28, 1022
Remote host latency, 661
Remote hosts, 442–443
Return (syscall), 25
Reusable kernel objects, 909
Reverse engineering, 874–875
RFC, 473, 481, 517, 1015, 1085
Ring buffer, 1084–1085
RIP protocol, 562
Root privileges, 20
Root user privileges, 868–869
Round-trip time (RTT), 477
RT (real time), 942
ruby-dtrace, 751
Ruby language

code, 752
one-liner examples, 753–755
one-liners, 753
provider, 751
script summary, 755
scripts

rb_calls.d, 756–757
rb_calltime.d, 759–762

Index 1107

rb_flowinfo.d, 757–759
rb_who.d, 755–756

S
-s file, 43
sar(1), 55
SAS driver reference, 260
SAS scripts

mptevents.d, 264–267
mptlatency.d, 267–269
mptsassscsi.d, 263–267

sata, 275
SATA command, 279–290
SATA driver reference, 237
SATA DTracing

documentation, 274
frequency count fbt, 278–279
frequency count sdt, 276–277
function arguments, 283–285
latency, 285–287
stable providers, 275
stack backtraces, 280–283
testing, 288
unstable providers: fbt, 277–278
unstable providers: sdt, 275–276

SATA scripts
satacmds.d, 172, 237–243
satalatency.d, 248–250
satareasons.d, 246–248
satarw.d, 243–246

SATA stack, 274
Scalar globals, 31–32
Scalar variables, 28
sched, 405
Sched (scheduler), 202–203
sched provider, 60, 97, 405, 795, 920
sched provider probes and arguments, 1035
Scheduling class, 57, 347, 420, 932, 941–942, 952
scp, 308, 649–651, 654
Script summaries

application, 804
C, 689
disk I/O, 172–173
DTraceToolkit, 949–957
file systems, 313–315
Java, 696
JavaScript, 712
kernel, 932
MySQL, 841
network, 445–447, 574–576
Perl, 722
PHP, 736
PostgreSQL, 855

Python, 744
Ruby, 755
security, 875
shell, 768
Tcl, 778

Scripting languages, 669
Scripts

applications scripts, 804
execsnoop, 805–806
kill.d, 813–814
plockstat, 811–813
procsnoop.d, 804–806
procsystime, 806–808
sigdist.d, 814–815
threaded.d, 815–816
uoffcpu.d, 809–811
uoncpu.d, 808–809

C language, 689
CIFS scripts, 599

cifserrors.d, 605–607
cifsfbtnofile.d, 607–609
cifsfileio.d, 603
cifsops.d, 602–603
cifsrwsnoop.d, 600–601
cifsrwtime.d, 604

DNS scripts, 621
dnsgetname.d, 623–625
getaddrinfo.d, 622–623

DTrace Toolkit scripts list, 949–961
ethernet scripts, 533

Mac tracing with fbt, 534
macops.d, 534–537
network device driver tracing, 537–543
ngelink.d, 546–547
ngesnoop.d, 544–546

Fibre Channel scripts, 646
fcerror.d, 647–649
fcwho.d, 647

fsinfo scripts, 327
fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

FTP scripts, 625
ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

HFS+ scripts, 370
hfsfileread.d, 374–375
hfsslower.d, 372–374
hfssnoop.d, 371–372

1108 Index

Scripts (continued)
HSFS scripts, 376

cdrom.d, 377–378
HTTP scripts, 609

httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

ICMP scripts, 521
icmpsnoop.d, 522–525
icmpstat.d, 521
superping.d, 526–529

IDE scripts, 250
ideerr.d, 257
idelatency.d, 252–254
iderw.d, 255–257

io provider scripts, 172
bitesize.d, 181–183
disklatency.d, 175–177
geomiosnoop.d, 209–210
iolatency.d, 172–175
iopattern, 207–209
iosnoop, 187–203
iotop, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

IP scripts, 469
fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477, 476
ipproto.d, 477–478
ipstat.d, 474–475

iSCSI scripts, 633
iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers, 634–638

Java, 696
j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

JavaScript, 712
js_calls.d, 712–713
js_calltime.d, 715–718
js_flowinfo.d, 713–715

kernel, 932
cswstat.d, 932, 943–944
intrstat, 932–934
koffcpu.d, 932, 938–939

koncpu.d, 932, 937–938
lockstat, 934–937
priclass.d, 932, 941–943
putnexts.d, 932, 944–945
taskq.d, 932, 939–941

LDAP scripts, 664
ldapsyslog.d, 664–666

multiscripts, 666
nfsv3disk.d, 666–668

MySQL, 841
libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

NFS client scripts, 379
nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

NFSv3 scripts, 576
nfsv3commit.d, 585–587
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts, 592
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

NIS scripts, 663
nismatch.d, 663–664

PCFS scripts, 375
pcfsrw.d, 375–376

Perl, 722
pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

PHP, 736
php_calls.d, 736
php_flowinfo.d, 738

PostgreSQL, 854
pg_pid_qtime.d, 856–858
pg_qslower.d, 855–856

Python, 744
py_calls.d, 745–746

Index 1109

py_calltime.d, 748–751
py_flowinfo.d, 746–748
py_who.d, 744–745

Ruby, 755
rb_calls.d, 756–757
rb_calltime.d, 759–762
rb_flowinfo.d, 757–759
rb_who.d, 755–756

SAS scripts, 259
mptevents.d, 264–267
mptlatency.d, 267–269
mptsassscsi.d, 263–267

SATA scripts, 236
satacmds.d, 237–243
satalatency.d, 248–250
satareasons.d, 246–248
satarw.d, 243–246

SCSI scripts, 211
SCSI probes, 212–213
scsicmds.d, 218–221
scsi.d, 229–236
scsilatency.d, 221–223
scsireasons.d, 227–229
scsirw.d, 223–226
sdqueue.d, 213–215
sdretry.d, 215–218

security scripts, 875
cuckoo.d, 884–886
keylatency.d, 882–884
networkwho.d, 891–892
nosetuid.d, 888–889
nosnoopforyou.d, 890–891
script summary, 875
shellsnoop, 878–882
sshkeysnoop.d, 875–878
watchexec.d, 886–888

Shell, 768
sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_who.d, 768–769

socket scripts, 447
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

SSH scripts, 649
scpwatcher.d, 661–663
sshcipher.d, 649–655
sshconnect.d, 657–661
sshdactivity.d, 655–657

syscall provider, 315
fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

Tcl, 778
tcl_calls.d, 779–780
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_who.d, 778–779

TCP scripts, 481
fbt provider, 483–485
tcp provider, 482–483
tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516

script: fbt-based, 505–515
script: tcp-based, 515–516

tcpstat.d, 485–486
tcp1stbyte.d, 499

TMPFS scripts, 385
tmpgetpage.d, 386–387
tmpusers.d, 385–386

UDFS scripts, 378
dvd.d, 378

UDP scripts, 517
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

UFS scripts, 351
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

VFS scripts, 335
dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338

1110 Index

Scripts, VFS scripts (continued)
vfslife.d, 345
vfssnoop.d, 340–343

XDR scripts, 529
xdrshow.d, 529–533

ZFS scripts, 357
perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

scrwtop10.d script, 132–133
SCSI probes, 212–213
SCSI scripts, 211

SCSI probes, 212–213
scsicmds.d, 218–221
scsi.d, 229–236
scsilatency.d, 221–223
scsireasons.d, 227–229
scsirw.d, 223–226
sdqueue.d, 213–215
sdretry.d, 215–218

SCSI virtual host controller interconnect, 221,
234–236

sctp, 412–413
sdt (statically defined tracing), 156, 275–276
sdt provider, 303, 921
sdt provider examples, 312–313
Secure Shell. see SSH
Security, 867

audit logs, 870
privileges, detection, and debugging, 867

HIDS, 871
malicious acts, 869
policy enforcement, 871–872
privilege debugging, 872–874
privileges, 868
reverse engineering, 874–875
security logging, 870
sniffing, 869–870

script summary, 875
scripts

cuckoo.d, 884–886
keylatency.d, 882–884
networkwho.d, 891–892
nosetuid.d, 888–889
nosnoopforyou.d, 890–891
shellsnoop, 878–882
sshkeysnoop.d, 875–878
watchexec.d, 886–888

sed, 240
segkmem, 121

Segment driver, 121
select-start / select-done, 838
self->, 30, 41, 143, 228, 660, 997, 1085
Semaphore system call, 93
Semicolons, 23
Send, 408, 416–419
Send context, 550–553
Sequential I/O, 208
Sequential Workload, 185
Server Message Block (SMB). see CIFS
Server query status trace (simple snoop), 854
Service time, disk I/O, 155
setuid(), 875
Shapiro, Mike, 1, 1003
Shared memory, 100–101
Shell (language), 764, 1085

code, 765
one-liner examples

count function calls by filename, 767
count line execution by filename and line

number, 767
trace function calls showing function name,

766
one-liners, 765–766
script summary, 768
scripts

sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_flowtime.d, 774
sh_syscolors.d, 774
sh_who.d, 768–769

shellsnoop, 878–882
short, 26
Shouting in the data center, 269–273
Show user stack trace on function call, 687–688
Signals, 804, 813–814
Signed integers, 26–27
Simple snoop, 854
Single quote mark, 24, 194, 201, 231, 880, 1021
sizeof(), 41
Slab allocator, 909, 913
smb provider, 566, 572–573
Sniffing, 869–870, 875
SNMP Message Information Bases (MIBs), 404
SNMP MIB event count, 424, 434–435
snoop, 400
Snoop process execution, 48–49
snoop(1M), 890
Socket accepts by process name, 422, 427
Socket connections by process and user stack

trace, 422, 428
Socket file system, 76
Socket flow diagram, 448
Socket read bytes by process name, 423, 433

Index 1111

Socket read (write/send/recv) I/O count by process
name, 423, 430

Socket read (write/send/recv) I/O count by system
call, 422, 429

Socket reads (write/send/recv) I/O count by
process and user stack trace, 423, 431

Socket reads (write/send/recv) I/O count by
system call and process name, 423, 430

Socket scripts, 447
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

Socket system call error descriptions, 467–468
Socket write bytes by process name, 432
Socket write I/O size distribution by process

name, 433
Solaris, 416–418, 420, 471–474, 1076

80-character maximum, 493
AF_INET values, 451
disk I/O on a Solaris Server, 176–177
I/O stack, 153
IDE driver reference, 251
iostat(1M), 125
kernel memory tools, 118
lower-level network stack, 533
netstat(1M), 125
performance analysis, 52
SAS driver reference, 260
SATA driver reference, 237
system tools, 55
TCP/IP stack, 401

Solaris Auditing, 870
Solaris Dynamic Tracing Guide, 19, 157
Solaris Internals, 66
Solaris Nevada, 298, 411, 470–471, 576–578, 592,

1011, 1025, 1038, 1086
Solaris Performance and Tools, 52
sort, 992
Sort options, 37
specsize, 1007
Speculations, 41–42, 1006, 1019
SpiderMonkey, 706, 818
spin, 812, 934, 936, 1015, 1086
srp provider probes and arguments, 1035
ssh, 428, 455
SSH logins, 563, 569
SSH scripts

scpwatcher.d, 661–663
sshcipher.d, 649–655

sshconnect.d, 657–661
sshdactivity.d, 655–657

ssh vs. telnet, 462
sshd (SSH daemon), 132, 189, 291, 462, 569, 649,

655–657, 661, 994–995
sshkeysnoop.d, 875–878
Stability, 275, 806, 1086
stack(), 40–41, 90, 92, 113, 551, 1008, 1017, 1071
Stack backtrace counts, 929
Stack reuse, 554–555
Stack traces, 155, 168–171, 280–283, 312–313
Stackdepth, 31, 698
stackframes, 44, 1008
stat() files, 300, 305
Stat tools, 56
State changes, tcp, 415
Static probes, 4, 1085, 1086
Statically Defined Tracing provider. see sdt

provider
Statistics (Analytics), 977–984
stddev() function, 34
STDOUT, 662, 878–880, 1014, 1019, 1086
Stoll, Clifford, 884
Stream Control Transmission Protocol (sctp),

412–413
Streaming workload, 578–579
STREAMS, 534, 944
strftime(), 688
String buffer, 44
String types, 27
String variables, 1008
stringof(), 39–40, 1067
strjoin(), 40, 178, 431, 1016
strlen(), 40, 618, 687–688, 999–1000, 1016
strsize, 44, 1008
strtok(), 618–619, 1016
Subroutines, 720–726, 729–730, 1014, 1087
Subversion, 190
sudo, 20
sum(), 34, 118
Sun Microsystems, 269n, 663, 973, 1079, 1083,

1084, 1086
Sun Studio IDE, 966
Switch buffer, 1008, 1064, 1080, 1087
switchrate, 194, 992, 1003, 1008, 1065, 1087
sync-cache, 225–226, 246
Synchronous vs. asyncronous write workloads,

241
Synchronous writes, 584–585, 595
Synchronous ZFS writes, 242, 254
SYS (system), 347, 942
syscall Entry and Return, 25
syscall provider, 60, 90–91, 126, 300–301, 404,

422, 563, 794, 919

1112 Index

syscall provider examples
frequency count stat() files, 305
http files opened by the httpd server, 568
reads by file system type, 306
socket accepts by process name, 427
socket connections by process and user stack

trace, 428
socket read bytes by process name, 423, 433
socket read (write/send/recv) I/O count by

process name, 423, 430
socket read (write/send/recv) I/O count by

system call, 422, 429
socket reads (write/send/recv) I/O count by

process and user stack trace, 423, 431
socket reads (write/send/recv) I/O count by

system call and process name, 423, 430
socket write bytes by process name, 432
socket write I/O size distribution by process

name, 433
SSH logins by UID and home directory, 569
trace file creat() calls with process name, 304
trace file opens with process name, 304
tracing cd, 306
writes by file system type, 307
writes by process name and file system type,

307
Syscall provider scripts

fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

sysevent provider probes and arguments, 1036
sysinfo provider, 58, 87–88, 90–91, 920
syslog(), 664–666
systat(1), 55
System activity reporter, 55
System call counts for processes called httpd, 800
System call time reporter, 806
System calls, 994–995
System tools, 55
System view

CPU tracking
analysis, 60–85
checklist, 57–58
events, 87–94
interrupts, 85–88
one-liners, 58–60
providers, 58

disk and network I/O activity
analysis, 128–134
checklist, 125

disk I/O, 134–141
one-liners, 127–128
providers, 126–127
strategy, 125

memory monitoring
analysis, 98–101
checklist, 96
kernel memory, 118–124
one-liners, 97–98
providers, 96–97
strategy, 95
user process memory activity, 101–117

system methodology, 53–56
system tools, 54–56

Systemwide sniffing, 881

T
Tail-call optimization, 1003
$target, 32, 43, 788, 1070–1071
task queues, 939–941
Tcl (language), 774

code, 776
one-liner examples, 777–778
one-liners, 776–777
pronunciation, 774
script summary, 778
scripts

tcl_calls.d, 779–780
tcl_flowtime.d, 781
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_syscolors.d, 781
tcl_who.d, 778–779

TCP (Transmission Control Protocol), 481, 1087
TCP connections, 441, 446, 486–489
TCP event statistics, 424, 436
tcp fusion, 408
TCP handshake, 408, 482, 492–493, 514–515
TCP Large Send Offload, 553
tcp provider, 404, 425, 482–483
tcp provider examples

inbound TCP connections, 441
sent IP payload size distributions, 443
sent TCP bytes summary, 444
TCP events by type summary, 444
TCP received packets, 443

tcp provider probes and arguments, 1036
TCP scripts

fbt provider, 483–485
tcp provider, 482–483
tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494

Index 1113

tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 446, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516
tcpstat.d, 485–486
tcp1stbyte.d, 499

TCP window buffer, 552
tcpdump, 400
tcpinfo_t, 1042
tcpsinfo_t, 1042
telnet, 462
Ternary operators, 28, 178, 195
The Cuckoo’s Egg: Tracking a Spy Through the

Maze of Computer Espionage, 884
this->, 30, 176, 182, 997, 1087
Thread life-cycle probes, 691
Thread-local variables, 997–998
Tick probe, 24–25, 1002
tid, 31
Time functions, 526
Time-share scheduling code, 420
Time stamps, 31, 807, 992–993, 995–996
timestamp vs. vtimestamp, 995–996
Timing a system call, 47–48
Tips and tricks

assumptions, 1000
drops and dynvardrops, 1003
frequency count, 991–992
grep, 991
known workloads, 987–989
performance issues, 1001–1002
Perl, 993–994
postprocessing, 993–994
profile probe, 996–997
script simplicity, 1001
strlen() and strcmp(), 999–1000
system calls, 994–995
tail-call optimization, 1003
target software, 989–991
timestamp variables, 992–993
timestamp vs. vtimestamp, 995–996
variables

clause-local variables, 30–31, 998
global and aggregation variables, 999
thread-local variables, 997–998

TLB, 798, 924–925, 937, 1087
TMPFS scripts

tmpgetpage.d, 386–387
tmpusers.d, 385–386

Tools, 947
Analytics

abstractions, 974
breakdowns, 979–980
controls, 983
datasets, 984
diagnostic cycle, 975
drill-downs, 981
heat maps, 979–980
hierarchical breakdowns, 979–980
load vs. architecture, 975
real time, 975
statistics, 977
visualizations, 975
worksheets, 983

Chime, 962–965
DLight, Oracle Solaris Studio 12.2, 966–971
DTrace GUI Plug-in for NetBeans and Sun

Studio, 966
DTraceToolkit

installation, 949
script example: cpuwalk.d, 957–961

Man page, 959–960
script, 958–959

scripts, 949–957
versions, 949

Mac OS X Instruments, 971–972
top(1), 55
trace(), 37, 684–685, 799
Trace command calls showing command name,

778
Trace errors, 170–171
Trace file creat() calls with process name,

304–305
Trace file opens with process name, 304
Trace function calls, 710, 735, 742, 766
Trace function entry arguments, 687
Trace method calls showing class and method,

754
Trace PHP errors, 736
Trace procedure calls showing procedure name,

777
Trace program execution showing filename and

line number, 709
Trace subroutine calls, 721
tracemem(), 39, 799, 1017
Tracing fork() and exec(), 45
Tracing open(2), 44–45
Transaction group, 179
Translation code, 162
Translation Lookaside Buffer (TLB). see TLB
Translators, 42, 1087
Transmission Control Protocol (RFC 793), 481
trunc(), 33–34, 36, 110, 131, 133, 581

1114 Index

truss(1), 869
TS (time sharing), 420, 942–943
Tunable variables, 1005–1010
Type cast, 26, 1087
Types, 26–27

U
uberblock, 641, 1088
UDFS scripts, 378–379
udp, 404
UDP (User Datagram Protocol), 1088
UDP event statistics, 424, 437
udp provider, 404, 427, 517

examples, 445
probes and arguments, 1036

UDP scripts
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

UFS scripts, 351
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

UFS vs. ZFS synchronous writes, 242
uid, 31
uint64_t, 26
Unanchored probes, 1088
Unary arithmetic operators, 1022
Unary bitwise operators, 1023
Unary logical operators, 1022
Unary operators, 27
Uncached file system read, 331
Uncomment characters, 1088
Underscore, 793n
Unix File System. see UFS
unrolled loop, 232, 618
Unsigned integers, 26–27
unsigned long, 1021
unsigned long long, 27, 1021
Unstable, 1088
Unstable interface, 790
Unstable providers, 275–278
uregs[], 31, 677, 791, 1013
URLs accessed, 616
USB storage, 375
USDT, 1088
USDT example, Bourne shell provider, 1052–1061
User Datagram Protocol. see UDP
User-land, 1088
User-land C, 680
User-mode instructions, 801–803
User-mode level-two cache misses, 803–804

User process memory activity, 101–117
User stack trace profile at 101 hertz, 800–801
usermod(1M), 868
ustack(), 40–41, 90, 113, 165, 687, 872, 1008,

1017, 1071
ustackframes, 44, 1008–1010
Utilities, 55

V
-v, 161
-V, 811
Variables, 9

associative arrays, 29
built-in, 31–32
clause local, 30–31
clause-local variables, 998
DTrace tunable, 1005–1010
external, 33
global and aggregation variables, 999
macro, 32
operators, 27–28
scalar, 28
structs and pointers, 29
thread local, 30
thread-local variables, 997–998
types, 26–27

Vertical tab (\v), 1021
vfs (virtual file system), 126
vfs provider, 298, 303
VFS scripts

dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
vfslife.d, 345
vfssnoop.d, 340–343

Video demonstration, 269–273
vim, 343–344
Virtual File System. see vfs
Virtual host controller interconnect, 221, 234–236
Virtual memory, 898
Virtual memory info provider (vminfo), 297
Virtual Network Computing (VNC), 824
VirtualBox simulator version, 973
VM life-cycle probes, 691
vmem, 120, 894, 913
vmem heap segment, 913
vminfo provider, 96–97, 302, 308, 920
vm_map_enter(), 105
vmstat, 909

Index 1115

vmstat(1), 55–56
vm_stat(1), 55, 95, 99
vmstat(8), 55
vmstat(1M), 55, 388–389
vmstat(1M/8), 95
vmtop10.d script, 109–110
vnode interface statistics, 951
vnode_getattr(), 929
VNOP interface, 303, 338–339
Volume manager, 332, 357, 1088
VOP interface, 303, 340–343
VOP_READ_APV(), 170
vopstat, 951
VThread-local variables, 30, 997–998, 1085,

1087
vtimestamp, 31, 995–996

W
-w, 43, 1007
Wait service time, 213–215
walltimestamp, 31
Web browsers, tracking, 573–574
Web server processes, 323–324
while getopts loop, 193
Whitespace, 887, 1008
Wi-Fi vs. Ethernet, 462
Wiki software, 735
Wildcards, 23–24, 305–307, 690, 991
Workload, 102, 254, 270, 987, 1088
Worksheets (Analytics), 983
Write canceling, 332
write DMA extended, 242
Writes by file system type, 307
Writes by process name and file system type, 307
Writing target software, 989–991

X
-x, 43, 843
xcalls (cross calls), 91
XDR (External Data Representation), 270, 1088

scripts, 447, 529–533
xpv provider probes and arguments, 1037
Xvnc case study

profile provider, 829–831
syscall provider, 824–829

Y
Youtube demonstration video, 269–273

Z
-Z, 316, 375–376, 626, 744, 756
zalloc(), 105, 916–917
ZFS, 221, 225, 241–242, 250

I/O pipeline (ZIO), 357, 361
ZFS ARC, 303, 312–313
ZFS function calls, 688
ZFS 8KB mirror reads

cross calls, 390–393
vmstat(1M), mpstat(1M), and iostat(1M),

388–389
ZFS scripts

perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

zpool status, 221
Zprint, 909

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 9 Applications
	Capabilities
	Strategy
	Checklist
	Providers
	Scripts
	Case Studies
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

