—_—

./ ACM Applicative 2016

Jun, 2016

System Methodology

Holistic Performance Analysis on
Modern Systems

Brendan Gregg

Senior Performance Architect N E T F L I X

ATTITUDE AND
VELOCITY DATA |

L

[

_

Apollo LMGC
performance analysis

CONTROL ELECTRONICS SECTION

-

DESCENT ENGINE

ARM COMMANDS
GIMBAL COMMANDS THROTTLE COMMANDS
AUTOMATIC GIMBAL]
THROT M COMMANDS| GIMBAL
ROTTLE COMMANDS | oo o e
ENGINE ACTUATORS
MANUAL THROTTLE CONTROL [
COMMANDS ASSEMBLY
DESCENT ENGINE
ON-OFF COMMANDS
DESCENT
(] THRUST/ TRANSLATION v
CONTROLLER COMMANDS
ASSEMBLIES
DESCENT
ENGINE ARM
ENGINE ON-OFF COMMANDS ASCENT
MANUAL ENGINE ae ENGINE
FROM CONTROLS _ COMMANDS e oimzom ON=OFF
COMMANDS
AND DISPLAYS ASSEMBLIES o
FROM €S
| ASCENT ENGINE | .|
UPLINK | ARMING ASSEMBLY
COMMANDS

¥ N—

TRANSLATION COMMANDS

(MECHANICAL)

ASCENT ENGINE

—

THRUSTER ON-OFF COMMANDS

renDEzvous | RANGE AND VELOCITY DATA
RADAR l
TR ey WTESTRe O J
PRIMARY GUIDANCE AND NAVIGATION SECTION
) \
DATA IN
DISPLAY
AND
KEYBOARD DATA OUY
RR TRACKING ANGLES ANGLE DATA _
GIMBAL ™
DRIVE GUIDANCE
COUPLNG hag COMMANDS | COMPUTER
DATA UNIT
GIMBAL
ANGILES
COARSE
ALIGN CORE SET
SIGNALS
POWER AND AREA
SERVO GYRO T
ASSEMBLY | ERRORS GIMBAL
ANGLES VAC SETS
|
ERASABLE
GIMBAL
e MEMORY
COMMANDS INERTIAL l
MEASUREMENT
UNIT FIXED
MEMORY
TORQUING ACCELEROMETER
COMMANDS DATA
ACCELEROM~
ETER DATA
PULSE
TORQUE TORQUING
ASSEMBLY COMMANDS

ROTATION COMMANDS

SR —— N

ATTITUDE AND
TRANSLATION
CONTROL
ASSEMBLY

REACTION CONTROL
SUBSYSTEM

ON-OFF
COMMANDS
(PRIMARY
CouLs)

>

4-JET HARDOVER
ON-OFF COMMANDS
(SECONDARY COILS)

4 ATTITUDE

CONTROLLER
ASSEMBLIES

Figure 3-2.4. Primary Guidance Path - Simplified Block Diagram

-

NETFLIX

REGIONS WHERE NETFLIX IS AVAILABLE

ubuntu

@ FreeBSD,

Background

History

« System Performance Analysis up to the '90s:
— Closed source UNIXes and applications
— Vendor-created metrics and performance tools
— Users interpret given metrics

* Problems
— Vendors may not provide the best metrics
— Often had to infer, rather than measure
— Given metrics, what do we do with them?

ps alx

F S UID PID PPID CPU PRI NICE ADDR SZ WCHAN TTY TIME CMD

3 S 0 0 0o 0o 0 20 2253 2 4412 ? 186:14 swapper
1s 0 1 0 0 30 20 2423 8 46520 ? 0:00 /etc/init
1S 0 16 1 0 30 20 2273 11 46554 co 0:00 —sh

Today

1. Open source
— Operating systems: Linux, BSDs, illumos, etc.

— Applications: source online (Github)
2. Custom metrics
— Can patch the open source, or,
— Use dynamic tracing (open source helps)
3. Methodologies
— Start with the questions, then make metrics to answer them
— Methodologies can pose the questions

Biggest problem with dynamic tracing has been what to do with it.
Methodologies guide your usage.

Crystal Ball Thinking

Anti-Methodologies

Street Light Anti-Method

. Pick observability tools that are
— Familiar

— Found on the Internet

— Found at random

. Run tools <
. Look for obvious issues ~

66006666

Drunk Man Anti-Method

* Drnk Tune things at random until the problem goes away

w

Blame Someone Else Anti-Method

. Find a system or environment component you are not
responsible for

Hypothesize that the issue is with that component
Redirect the issue to the responsible team
When proven wrong, go to 1

Traffic Light Anti-Method

1. Turn all metrics into traffic lights
2. Open dashboard
3. Everything green”? No worries, mate.

» Type | errors: red instead of green
— team wastes time
« Type Il errors: green instead of red

— performance issues undiagnosed
— team wastes more time looking elsewhere

)

N

Traffic lights are suitable for objective metrics (eg, errors
not subjective metrics (eg, IOPS, latency).

Methodologies

Performance Methodologies

e For System engineers: System Methodologies:
— Problem statement method

— ways to analyze unfamiliar — Functional diagram method

systems and applications — Workload analysis
« For app developers: — Workload characterization
— Resource analysis

— guidance for metric and

— USE method
dashboard design memo

— Thread State Analysis

— On-CPU analysis

— CPU flame graph analysis
— Off-CPU analysis

— Latency correlations

| Collect your — Checklists

own toolbox of — Static performance tuning
methodologies — Tools-based methods

Problem Statement Method

1. What makes you think there is a performance problem?
2. Has this system ever performed well?
3. What has changed recently?
— software? hardware? load?
4. Can the problem be described in terms of latency?
— orrun time. not IOPS or throughput.
5. Does the problem affect other people or applications?

6. What is the environment?

— software, hardware, instance types?
versions? config?

Functional Diagram Method

1. Draw the functional diagram
2. Trace all components in the data path
3. For each component, check performance

Breaks up a bigger problem into
smaller, relevant parts

Eg, imagine throughput
between the UCSB 360 and E
the UTAH PDP10 was slow... |

ARPA Network 1969

Workload Analysis

Begin with application metrics & context

A drill-down methodology

Pros:

— Proportional,
accurate metrics

— App context
Cons:
— App specific

— Difficult to dig from

app to resource

N4

Analysis

Workload

!

Application

System Libraries

System Calls

Kernel

Hardware

Workload Characterization

« Check the workload: who, why, what, how
— not resulting performance

Workload > Target
« Eg, for CPUs:

1. Who: which PIDs, programs, users
2. Why: code paths, context

3. What: CPU instructions, cycles

4. How: changing over time

Workload Charact

erization: CPUs

3233M
63488
24660

202M

151M
3233M
24320

17236
21600
23944
21464
15192

7268
50036
14508
14508

4508

Who

p]
49
H top
58600
10308
204M
2256
632
1304
1164
792
392
1028
2920
956
952

SASS RS IS JS S IS B IS RS IS
Pooooocooooooooe e
PoooooooooooddN® (¢
[SIS RS S IS IS IS B S IS B I Y
Poooocooooeee

60 /usr/lib/jvm/java

.68 ab -k —c 100 -n 1
.62 htop

125 /apps/epic/perl/b.
:36 postgres: bgregg-
.26 /usr/lib/jvm/java:
.29 /sbin/init

.04 upstart-udev-brid
.06 /sbin/udevd ——dael
.21 dbus—-daemon ——sys
.00 /sbin/udevd ——dael
.00 upstart-socket-br
.24 dhclient3 -e IF_M
.06 /usr/sbin/sshd -D
.00 /sbin/getty -8 38
.00 /sbin/getty -8 38

| | tracesys
_GI_lb.. | S

Why

Flame Graph

CPU sample
| flame graphs

ey

1|0 | -
) 1B expand_word_internal | 1§ |1 |

1}
|

expand_words

execute_while_or_until

execute_command_internal

) reader._loop.

-
o
2

100%

80%

60%

40%

20%

0%
13:28:27

CPU Utilization

monitoring | e«

13:29:10

13:30:00 13:30:25

root@lgud-bgregg:~# perf stat -a -d sleep 10
Performance counter sta ide':

39996.388668 task—
1,026,540 conte
193,563 cpu-migrations
4,835 page-faults
83,859,543,001 cycles
61,028,919,136 stalled-cycles—frontend
50,812,852,642 stalled-cycles-backend
52,969,864,055 instructions

.999
.026
.005
.121
097

.63

By

.613

.68%

.000

.00% of all
.071 M/sec

10,223,584,755 branches
376,529,869 branch-misses
0 Ll-dcache-loads
1,339,950,792 Ll-dcache-load-misses
762,761,193 LLC-loads

HEHHBHHEHBEHHEEREHRS

Resource Analysis

 Typical approach for system performance analysis:

begin with system tools & metrics

Pros:
— Generic

— Aids resource
perf tuning

cons:

— Uneven coverage

— False positives

/\

Analysis

Workload

!

Application

System Libraries

System Calls

Kernel

Hardware

The USE Method

Hardware
« For every resource, check:
1. Utilization: busy time
2. Saturation: queue length or time
CPU

3. Errors: easy to interpret (objective)

Interconnect

CPU

Starts with the questions, then finds the tools

. Memory
Eg, for hardware, check every resource incl. busses: sus
DRAM
I/O Bus
Expander Interconnect /O Bridge
[Power
' ' Supply
I/0 Controller Network Controller

Interface Transports
Disk Disk Swap Port Port

USE Method: Rosetta Stone of Performance Checklists

The following USE Method example checklists are automatically generated from the individual pages for: Linux, Solaris, Mac
OS X, and FreeBSD. These analyze the performance of the physical host. You can customize this table using the checkboxes on

the right.

There are some additional USE Method example checklists not included in this table: the SmartOS checklist, which is for use

within an OS virtualized guest, and the Unix 7th Edition checklist for historical interest.

Linux

Solaris

FreeBSD
Mac OS X

Redraw

For general purpose operating system differences, see the Rosetta Stone for Unix, which was the inspiration for this page.

Hardware Resources

http://www.brendangregg.com/USEmethod/use-rosetta.html

| Resource “ Metric ”

Linux

“ Solaris

| FreeBSD

. . fmadm faulty; cpustat dmesg; /var/log/messages;
perf (LPE) if processor specific error events (CPC) are
CPU errors available; eg, AMDG64's "04Ah Single-bit ECC Errors (CiEL) o volbmizaei cisvos e o BRC an winie G
szt o e [counters are supported (eg, error counters are supported (eg,
thermal throttling) thermal throttling)
system-wide: vimstat 1, "t" > CPU count [2]; sar -gq, |[system-wide: uptime, load system-wide: uptime, "load
"rung-sz" > CPU count; dstat -p, "run" > CPU averages; vmstat 1, "t"; averages" > CPU count; vmstat
CPU ruration || COUAE Per-process: /proc/PID/schedstat 2nd field DTrace dispglen.d (DTT) for |1, "procs:t" > CPU count; pet-
saturatio (sched_info.run_delay); perf sched latency (shows |ja better "vmstat r"; pet- cpu: DTrace to profile CPU run
"Average" and "Maximum" delay per-schedule); dynamic||process: prstat -mLc 1, queue lengths [1]; per-process:
tracing, eg, SystemTap schedtimes.stp "queued(us)" [3] ||"LAT" DTrace of scheduler events [2]
system-wide: vmstat 1, "us" + "sy" + "st"; sar -u, per-cpu: mpstat 1, "ust" +
sum fields except "%idle" and "%iowait"; dstat -c, "sys"; system-wide: vmstat . "o
S " en e system-wide: vmstat 1, "us" +
sum fields except "idl" and "wai"; per-cpu: mpstat -P ||1, "us" + "sy"; per-process: "o per-cou: ymstat —P: per-
.. .. ||ALL 1, sum fields except "%idle" and "%iowait"; sar -||prstat -c 1 ("CPU" == y's percp i "o P
CPU utilization . " process: top, "WCPU" for
P ALL, same as mpstat; per-process: top, "%CPU"; recent), prstat -mLc 1 weiochted and recent usace: Der-
htop, "CPU%"; ps -o pcpu; pidstat 1,"%CPU"; |[("USR" + "SYS"); per-kernel- kerr%el— . —Sg"’WI/)CPU"
pet-kernel-thread: top/htop ("K" to toggle), where thread: lockstat -Ii P PEOP =5,
VIRT == 0 (heuristic). [1] rate, DTrace profile stack()
CPU errors L8 () B o el cpustat (CPC) for whatever ||pmcstat ‘and r.elevant PMCs for
interconnect is available whatever is available
CPU H L HT e e - Hcpustat (CPCQ) for stall ”pmcstat and relevant PMCs for

111

USE Method: Unix 7th Edition Performance Checklist

Out of curiosity, I've developed a USE Method-based performance checklist for Unix 7th Edition on a 4]
PDP-11/45, which I've been running via a PDP simulator. 7th Edition is from 1979, and was the first Unix
with iostat(1M) and pstat(1M), enabling more serious performance analysis from shipped tools. Were I to
write a checklist for earlier Unixes, it would contain many more "unknowns".

I often work on the illumos kernel, a direct descendant of Unix which contains some original AT&T code.
It's been interesting to study this eatlier version, and see familiar code that has survived over 30 years of
development.

Example screenshots from various tools are shown at the end of this page.
PDP 11/70 front panel (similar to the 11/43)

Physical Resources

|component“ type ” metric l

CPU atilization system-wide: iostat 1, utilization is "user" + "nice" + "systm"; per-process: ps alx, "CPU" shows recent CPU usage
(max 255), and "TIME" shows cumulative minutes:seconds of CPU time

|CPU “saturation”ps alx | awk '$2 == "R" { r++ } END { print r - 1 }', shows the number of runnable processes l

|CPU Herrors ”console message if lucky, otherwise panic l

Memory atilization system-wide: unknown [1]; per-type: unknown [2]; per-process: ps alx, "SZ" is the in-core (main memory) in blocks (512

capacity bytes); pstat -p, "SIZE" is in-core size, in units of core clicks (64 bytes) and printed in octal!

Memory saturation system-wide: iostat 1, sustained "tpm" may be caused by swapping to disk; significant delays as processes wait for space

capacity to swap in

Memc_)ry errors malloc() returns 0; ENOMEM

capacity

system-wide: iostat -i 1, "IO active" plus "IO wait" percents; per-disk-controller: iostat -i 1, RF, RK, RP "active"
Disk I/O ||utilization ||petcents; rough estimate using iostat 1, and "tpm" for transactions per minute on expected max; pet-disk: listen to each
rattle; unknown from Unix, unless only 1 disk per controller; per-process: unknown

IDisk 1/0O ||saturation|[unknown [3] |

|Disk I/0 Herrors Hmight get a console message, eg, "err on dev", "ECC on dev" or "no space on dev", otherwise unknown [4] ‘

|Tape I/0 “utilization Hlook at tape drives and watch them spin [5] l

ATTITUDE AND I
RENDEZVOUS | RANGE _AND VELOCITY DATA VELOCITY DATA | LANDING I ApOI |O Gu Idance

RADAR l RADAR

] i___.__l Computer

AARAAR AT LMY Satuews OOORAN GeTOTh, OOORONT Teremen CWER Urrmemme ARNSVED SSmeRmR e Commepn ey —1
PRIMARY GUIDANCE AND NAVIGATION SECTION ’ ‘ CONTROL ELECTRONICS SECTION DESCENT ENGINE
ARM
DATA IN RM COMMANDS
DISPLAY GIMBAL COMMANDS THROTTLE COMMANDS
AND
KEYBOARD DATA OUY
o iR coma COMMANDS| GIMBAL ’
THROTTLE COMMANDS | e o B! oaive
ENGINE ACTUATORS
MANUAL THROTTLE | CONTROL 1
COMMANDS ASSEMBLY
RR TRACKI T ‘
CKING ANGLES ANGLE DATA _ R BT
GIMBAL M ON-OFF COMMANDS
DRIVE GUIDANCE -
MPUTER
COUPLNG |g COMMANDS | COMPY
DATA UniT DESCENT (MECHANICAL)
fx:.,'é; "l THRUST/ TRANSLATION g’:f‘_g'f,
CONTROLLER COMMANDS
ASSEMBLIES
COARSE DESCENT
ALIGN CORE SET ENGINE ARM
_ SIGNALS ARE A
POWER AND ENGINE ON-OFf COMMANDS ASCENT ASCENT ENGINE
SERVO E.GJS% | MANUAL ENGINE sac ENGINE
ASSEMBLY | GIMBAL FROM CONTROLS __ COMMANDS _ CONTROL ON-=OFF
ANGLES | \VAC SETS AND DISMLAYS ASSEMBLIES | -raMANDS -
FROM CS
T | ASCENT ENGINE |
UPLINK | ARMING ASSEMBLY
ERASABLE COMMANDS
c;r;mt MEMORY REACTION CONTROL
MEASUREMENT TRANSLATION COMMANDS >
UNIT FIXED *| armruoe aNo | ON-OFF
THRUSTER ON-OFF COMMANDS TRANSLATION | COMMANDS
MEMORY CONTROL (PRIMARY
ASSEMBLY ColLS)
TORQUING ACCELEROMETER
COMMANDS DATA
ACCELEROM~
MAse STER DATA 4-JET HARDOVER
TORQUE TORQUING » ON-OFF COMMANDS
ASSEMBLY COMMANDS » (SECONDARY COILS)

ROTATION COMMANDS N ATTITUDE
CONTROLLER
l l ASSEMBLIES |
I T D G SR S — —

Figure 3-2.4. Primary Guidance Path - Simplified Block Diagram

USE Method: Software

« USE method can also work for software resources

— kernel or app internals, cloud environments
— small scale (eg, locks) to large scale (apps). Eg:

 Mutex locks:

— utilization = lock hold time Saturation

oooon

— saturation =2 lock contention
Errors
— errors - any errors IXIS

>

« Entire application:)
— utilization - percentage of worker threads busy
— saturation - length of queued work
— errors - request errors

Resource
Utilization
(%)

RED Method

* For every service, check that:

1. Request rate Metrics
2. Error rate Database
3. Duration (distribution)
are within SLO/A User
o _ . Database
Another exercise in posing questions
from functional diagrams Payments
Server
Load Web Web Server
Balancer Proxy Asset
Server

By Tom Wilkie: http://www.slideshare.net/weaveworks/monitoring-microservices

Thread State Analysis

preemption or State transition diagram

time quantum expired

running mode
(on-CPU) 1 switch
swap out
schedule
Runnable —
A swap in
resource 1/0 O wakeup
> Wait . .
|ldentify & quantify
acquire lock acquired time in states
> Block
ofi-CPU Narrows further
sleep wakeup analysis to state
»(Sleep
Q Thread states are
wait work .
for work >® arrives applicable to all apps
e

TSA: eg, Solaris

1) $ prstat -mLc 1
PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID

45747 1000 35 28 0.0 0.0 22 0.0 16 0.1 216 93 38K 0 beam.smp/192
Leeed | /| AN
Executing Anon. Lock Sleep Runnable
2 Paging +idle +idle
)
>
Fields : States - Analysis - Actions

USR+SYS - Executing 1. Profile stacks using DTrace; Flame Graphs . Look for inefficiencies

2. Check CPU stall cycles: cpustat, DTrace - Look for tunables/

3. If SYS time, analyze syscalls using DTrace - config in active code

DFL - Anon. Paging 1. Confirm using: vmstat -p 1, “api” . Upgrade memory

3 2. Check system-wide memory free: vmstat 1 Increase memory limits

: 3. Check any resource controls; eg: zonememstat - Look for leaks/growth
LCK Lock + Idle 1. Coarse: profile CPU stacks and look for spins . Check config

[2. Analyze using DTrace [p]lockstat providers .

3. Separate locks and the Idle state using DTrace
sched:::off-cpu with ustack()

SLP Sleep + |ldle 1. Quick resource check: iostat -xnz 1, nicstat 1 Tune or upgrade

i 2. Identify both sleep reason and separate from Idle: : resource

DTrace sched:::off-cpu with ustack() and stack()

LAT - Runnable 1. Check system CPU usage: mpstat 1 - Upgrade CPUs

. 2. Check any resource controls; eg, prctl, * Increase CPU limits

kstat -p caps::cpucaps_zone*: - Move/tune other load
3. Check for pbind/psets limiting migrations : Unbind apps

RSTS: DEC OS
from the 1970's

TENEX (1969-72)
also had Control-T
for job states

TSA: eg, RSTS/E

State Column (Job Status)

RN
RS

BF

SL
SR
FP

HB

KB
~C

CR
MT,MM, or MS
LP
DT

DK,DM,DB,
DP,DL,DR

Run

Residency

Buffers

Sleep
Send/Receive

File Processor

Terminal

Hibernating

Keyboard
CTRL/C

Card Reader
Magnetic Tape
Line Printer
DECtape

Disk

Job is running or waiting to run.

Job is waiting for residency. (The job has been swapped
out of memory and is waiting to be swapped back in.)

Job is waiting for buffers (no space is available for I/O
buffers).

Job is sleeping (SLEEP statement).
Job is sleeping and is a message receiver.

Job is waiting for file processing by the system (opening
or closing a file, file search).

Job is waiting to perform output to a terminal.

Job is detached and waiting to perform /O to or from a
terminal. (Someone must attach to the job before it can
resume execution.)

Job is waiting for input from a terminal.

Job is at command level, awaiting a command. (In other
words, the keyboard monitor has displayed its prompt
and is waiting for input.)

Job is waiting for input from a card reader.
Job is waiting for magnetic tape 1/O.

Job is waiting to perform line printer output.
Job is waiting for DECtape I/O.

Job is waiting to perform disk I/O.

TSA: eg, OS X

Instruments: Thread States

Instruments2
1} \S/CJ/ @ firefox (1027) v D) G 00:00:42 @ L] ' - ' N | Wil Q~ Recorded Data
Record Target Inspection Range > Run 1 of 1 ’J View Library Filter
lnstl’uments I 1 I I 1 I | 1 | 1 1 I | | I I
Thread States Target
firefox (1027) v
Track Display
Style: | Thread States
Type: Stacked
Zoom: 4x
- FURRERT CIETORPE s O WRmOR o
Thread States
O unknown
O waiting
Gl - =) @ Suspended
& Thread States O Requested to suspend =
¥ Call Tree ’ :;“n":":" e "Alive ms On CPU Switches Children % Living Children
Separate by Thread b . . 856 966 1 100%
© Waiting and uninterruptible
Invert Call Tree P 1 16 1 100%
_ (O At termination
v Hide Missing Symbols O Idling processor . 29
;:de S(;:Aerg (LJ-b’ranes Track vior . 2,428,558 7,528 17 100%
SARY L RNy Size track by thread count
Flatten Recursion

» Call Tree Constraints

On-CPU Analysis

running mode
(on-CPU) ! switch

CPU Utilization #%Utilization
A

Heat Map # of CPUs
1. Split into user/kernel states 4
— [proc, vmstat(1) /

2. Check CPU balance e

— mpstat(1), CPU utilization heat map

3. Profile software
— User & kernel stack sampling (as a CPU flame graph)

4. Profile cycles, caches, busses
— PMCs, CPI flame graph

CPU Flame Graph Analysis

1. Take a CPU profile
2. Render it as a flame graph
3. Understand all software that is in >1% of samples

Discovers issues by their CPU usage

— Directly: CPU consumers Flame Graph

- Indirectly: initialization
of 1/0, locks, times, ...

Narrows target of study

to only running code

- See: "The Flame Graph",
CACM, June 2016

Java Mixed-Mode CPU Flame Graph

Linux perf_events, with:

eq,

| -

o

=

@)

al

)

=

o

L

S ®

o

A ®©

+ £
< m
LG |
| =

T ©
> > Bk W
© @©

=) . W
. .__-________M

O
O

CPI Flame Graph

* Profile cycle stack traces and instructions or stalls separately
 Generate CPU flame graph (cycles) and color using other profile

* eg, FreeBSD: pmcstat

vn_se..
Sys_se..
amd64_syscall

vm_page_grab
allocbuf
getblk
cluster_rbuild
cluster_read
ffs_read
VOP_READ_APV
vn_read
vn_io_fault
aio_daemon
fork_exit

e..
ip_..
tcp_out..
tcp_do_segment
tcp_input

ip_input
netisr_dispatch_src
ether_demux
ether_nh_input

netisr_dispatch_src L

t4_eth_rx
service_iq
t4_intr
intr_event_execute_handlers
ithread_loop

red == instructions
blue == stalls

e
CcX..

la..]
eth..
m.. ip_out..
m.. tcp_output
tcp_do_segment
tcp_input
ip_input

netisr_dispatch_src
ether_demux
ether_nh_input
netisr_dispatch_src
tcp_lro_flush

N |
vm_pag..

sc.. vm_pageout

off-CPU

preemption or
time quantum expired
swap out
schedule
- Runnable —
A swap in
resource |/O - wakeup
> ai .
Analyze off-CPU time
scatire lock acquired via blocking code path:
9 .@ Off-CPU flame graph
sleep wakeup Often need wakeup
>(_ Sleep code paths as well...
wait work
for work arrives
> Idle

Off-CPU Time Flame Graph

directory read file read FSEIE o) GIE:

from disk from disk path read from disk

pipe write

N
h-

< >
Trace blocking events with Off-CPU time Stack depth

kernel stacks & time blocked
(eg, using Linux BPF)

—

Wakeup Time Flame Graph

Who did the wakeup:

-
]
-

II

| _xen_evtchn_do_upcall work.. _ X.. xen_evtchn_do_..

... can also associate wake-up stacks with off-CPU stacks
(eg, Linux 4.6: samples/bpf/offwaketime™)

vmstat

Waker task 2

C h d | N G I'd p h S n_tty_write

insert_work

Associate more than

tty_flip_buffer_push Waker stacu
queue_work_on N\

\
wokeup

one waker: the full VLGRS o Waker task 1 [

chain of wakeups

Waker "stac_k 1

With enough stacks,

all paths lead to metal

An approach for

wokeup |

analyzing all off-CPU

iIssues

Off-CPU stack ===

Blocked task

1.

Latency Correlations

Measure latency
histograms at different

stack layers

2. Compare histograms

to find latency origin

Even better, use latency
heat maps

Match outliers based on
both latency and time

Frequency
1000 2000 3000

| 1 | 1 | 1 |

0

OOOOOO

Latency Distribution

----- average (mean)

500 1000 1500 2000

Disk 1/0O latency (us)
Latency Heat Map

]
[|
‘!n

Checklists: eg, Linux Perf Analysis in 60s

1. uptime -----cmmmemmceeeeeee » load averages

2. dmesg | tail -------------------- » kernel errors

3. vmstat 1 --------mmmmmee o » overall stats by time
4. mpstat -P ALL 1---------------- » CPU balance

5. pidstat 1 ----------------------—-- > process usage

6. iostat -xz 1 -------------------- » disk 1/0

. free -m - __ » memory usage

8. sar -n DEV 1 ---c-mmmmmmm— - » network I/0

9. sar -n TCP,ETCP 1 ------------- » TCP stats

10. top ----------mmmmmmmmmmee e » check overview

http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

Checklists: eg, Netflix perfvitals Dashboard

2. Volume

1. RPS, CPU

3. Instances — pE= S ;. <+<— 4. Scaling
5.CPU/RPS ——> . <=6 Load Avg

7. Java Heap . ‘VLJVUU‘UY“’ g Ss==— 8. ParNew

Rl aiiibldglly ' st 10. 99 tile

9. Latency

Static Performance Tuning: eg, Linux

Operating System Hardware P
App Config 1dd Various:
sysc sys
ysctl /sy
\ Applications / dmesg lshw
System Libraries y / pro?/ cpuinfo
cpuid lscpu
df System Call Interface CPU \ }
\Tc’\ VFS Sockets Scheduler Interconnect CPU
S | ™ File Systems TCP/UDP | Clocksource |w._ 1
X _ /sys/ ... /
3 Volume Manager |y o [P Virtual Memory
C
y Block Device Interf}e/ ”" Ethernet \\ Memory numactl Bus
evice Drivers
mdadm // //6 \\ A ?DRAM
dmesg ip route VO Bus .
/O Bridge F/W Config
MegaCli Expander Interconnect :
l I
\ I/O Controller <« 1lspci— Network Controller ethtool
Interface Transports
o Disk Disk Swap Port Port |e— ip
lsblk lsscsi blockdev \swapon ifconfig

smartctl fdisk -1

1.

dtruss,sc_usage
errinfo, kill d

Tools-Based Method

plockstat 1

opensnoop netstat sotop

soconnect mac.d,soaccept mac.d
dapptrace httpdstat.d

Try all the tools! May be an anti-pattern. Eg, OS X:

Most DTrace scripts are in /usr/bin
Some are from the DTrace book
and are available online

top,ps

execsnoop // / PP /Ps
i ActivityMonitor Instruments

A Applicati)
\ \\\\\ \pp catdos |]| /,// [/ \ [GFU] atMonitor
» \\\\ | \ System Libraries v p *...
e . e
c dispglen.d i
8 | \\KQQ \ OSFMK _rungcclc 4 FSB Temp.Monitor
8 = £ Svsteln'\C INnter?gce Scheduler <1 1 . o——
.ﬁ% X 4 VFS \\\V Sockets} viual - N -2tency | Romndee o | DRAM
El 2| | [HFs+.. \\" TCP/UDP Memory priclass.d |, Bus \top,p§
/ A P /O Kit N prldlst d * footprint
v / / Block Devices |¥ Etherne ’Dewce Drivers | vm stat |Southbridge ., ActivityMonitor
R Custom Instruments &
fs_usage / » tcpdump kextstat footpr:l.nt zprint PMCs for bus observability
. | I I
hfsslower.d 1°St?t I/0O Controller De(vPIcr;’Itz;G%ng)ect Network Controller Other Devices
df ,nfstat iosnoop~ ‘" | I ot I I
i i nieriace Port Port
. iopendin? Disk Disk Transports 2 2 ™~ ne ts tat:
maclife.d| ActivityMonitor

macvfssnoop.d

T \bitesize.d pingltraceroute
seeksize.d

atMonitor

Brendan Gregg 2016

Other Methodologies

Scientific method

5 Why's

Process of elimination

Intel's Top-Down Methodology
Method R

What You Can Do

w

What you can do

. Know what's now possible on modern systems

— Dynamic tracing: efficiently instrument any software
— CPU facilities: PMCs, MSRs (model specific registers)
— Visualizations: flame graphs, latency heat maps, ...

Ask questions first: use methodologies to ask them

Then find/build the metrics
Build or buy dashboards to support methodologies

Dynamic Tracing: Efficient Metrics

Eg, tracing TCP retransmits

Old way: packet capture

tcpdump 1. read Cr—m—_l |

<

Kernel

2. dump

send I—P

buffer

receive

Analyzer 1.read \
ezs\

2. proc
3. print

New way: dynamic tracing

h

file system =% disks

Tracer 1. configure [_—

2. read

tcp_retransmit_skb()

Dynamic

cifs*.d, iscsi¥*
nfsv3*.d, nfsvd*.d

ssh*.d, httpd*.d~\\\\‘

.d :Services

Tracing:

Language Providers:

Measure Anything

hotuser, umutexmax.d, lib*.d
node*.d, erlang*.d,
php*.d, pl*.d, py*.d, rb*.d,

j*.d, js*.d
sh*.d

mysqgl*.d, postgres*.d, redis*.d, riak*.d

opensnoop, statsnoop

errinfo, dtruss, rwtop
rwsnoop, mmap.d, kill.d
shellsnoop, zonecalls.d

weblatency.d, fddist

Z

priclass.d, pridist.d
___— cv_wakeup slow.d
displat.d, capslat.d

—— minfbypid.d
Pgpginbypid.d

macops.d, ixgbecheck.d

“——__ ngesnoop.d, ngelink.d

solstbyte.d

ipio.d, ipproto.d, ipfbtsnoop.d

Databases:
fswho.d, fssnoop.d / / / / / /
sollife.d
solvfssnoop.d Applications vYvvy
DBs, all server types, ...
dnlecsnoop.d System Libraries 4
zfsslower.d K/
ziowait.d \\ System Call Interface 1’4
ziostacks.d X VFS Sockets Scheduler
spasync.d \ < k\ <«
metaslab free.d \\ File Systems TCP/UDP A N]
S Volume Managers IP \ Virtual <
iosnoop, iotop Block Device Interface Ethernet Memory <
disklatency.d <
satacmds . d y Device Drivers \ \ \ \
satalatency.d \ \ \ \
scsicmds.d soconnect.d, soaccept.d, soclose.d, socketio.d,
scsilatency.d sotop.d, soerror.d, ipstat.d,
sdretry.d, sdqueue.d ipdropper.d, tcpstat.d, tcpaccept.d, tcpconnect.d, tcpioshort.d
tcpio.d, tcpbytes.d, tcpsize.d, tcpnmap.d, tcpconnlat.d, tcplstbyte.d
ide*.d, mpt*.d

tcpfbtwatch.d, tcpsnoop.d, tcpconnregqmaxqg.d, tcprefused.d
tcpretranshosts.d, tcpretranssnoop.d, tcpsackretrans.d, tcpslowstart.d

tcptimewait.d, udpstat.d, udpio.d,

icmpstat.d, icmpsnoop.d

Those are Solaris/DTrace tools. Now becoming possible on all OSes:
FreeBSD & OS X DTrace, Linux BPF, Windows ETW

Performance Monitoring Counters

Eg, FreeBSD PMC groups for Intel Sandy Bridge:

CPU TLB
unhalted UOPS DTLB llc
instruction INST IDQ L1D ITLB L2 MEM_*_LLC
\ \ |
\ \
\ \
] v U Dec¥)der L TLBY \J
FP CPU v L3
~ — L1 — L2 .
! U6P Buffers | MMU Slice
= /LCache / BPU \
/ // \\
/ \
DSB branch LD PAGE <+—OFFCORE

BP RESOURCE_STALLS .SB
RESOURCE_STALLS .LB Other
Hardware

Visualizations

Eg, Disk I/O latency as a heat map, quantized in kernel:

root@bgregg-test-i-23e@lede: /mnt/src/linux-4.0.0+/samples/bpf# ./tracex3
heatmap of I0 latency

- many events with this latency
| - few events

0

3187
2393
2266
1556

high-latency # 1909
outliers # 1496

///’ # 1533
1414

1551

1491

1456

1511

1573

bulk of I/O # 1652

latency >

passage
of time

low-latency

mode \

USE Method: eg, Netflix Vector

ol e o jation x Runnable .
CPU: utilization saturation
. @ sys| @ cpul cpul @cpu2 cpu3 @ kernel.all.r @ 1 minute 5 minute @ 15 minute
35.00
30.00
80% 80% 6.00
L N O o
60% 60% A ANl IS NG / \ 20.00 4.00 MR
VRENY vy 4 %
40% 40% ;
10.00 2.00
20% 20%
0% 0% 0.00 0.00
10:40:03 10:40:50 10:41:40 10:42:01 10:40:03 10:40:50 10:41:40 10:42:01 10:40:05 10:40:50 10:41:40 10:42:03 10:40:05 10:40:50 10:41:40 10:42:03

Fk Packets

Network: | - [utilization |« e [lOQd | ower cor oo oo | SATUrALION fon i

T .
6000 o V 8 415 '
/\,\r\,\ 30000 ,\/\/\/ '
‘ 600 300} \'\/\/‘\ M\
4000 20000 v
4000 200
2000 10000 2000 100 sesterssssnbrrnagees Pt I N e ae e st
0 0 0
10:40:03 10:40:50 10:41:40 10:42:01 10:40:03 10:40:50 10:41:40 10:42:01 10:40:03 10:40:50 10:41:40 10:42:01 10:40:03 10:40:50 10:41:40 10:42:01
x Page Fau x Context Switches
ofe . .
L]
° E (cache) @ free (unused) @ kernel.all.pswitch
NP ’ P AP 322621
30000
10000 20000
5000 10000
0 0 0
10:40:00 10:40:20 10:40:40 10:41:00 10:41:20 10:41:40 10:41:59 10:40:00 10:40:03 10:40:50 10:41:40 10:42:01
hroughput (Bytes)
[e . °
Disk: load utilization saturation
[xvdb read @ xvdc read @ xvda read xvdb read @ xvdc read @ xvda xvdb @ xvdc cy xvdb read latency
@ xvdb write xvdc write xvda write @ xvdb write xvdc write Y xvda write latency
1 80% 1 @ xvdb write |1afncy xvdc write latency
100 I
100.00 60% {
40%
50.00 50 i
20%
10:41:59 10:40:00 10:40:50 10:41:59 10:41:59

USE Method: To Do

Hardware

Showing what is and is not commonly measured

U|SI|E
UIS|E CPU l
\ Interconnect
CPU
1
U|SI|E >
U|S|E Memory
Bus
U|S|E Y U[S|E » DRAM
I/O Bus
U|SI|E :
\ Expander]Interconnect /O Bridge
I Power
l l Supply

I/0 Controller Network Controller

Interface Transports
| Disk Disk Swap Port Port
ad LY X

U|S|E U|S|E U|S|E U|S|E

CPU Workload Characterization: To Do

Showing what is and is not commonly measured

Who

top, htop

151M
3233M
24320

17236
21600
23944
21464
15192

7268
50036
14508
14508

10308
204M
2256

(73
1304
1164

792

392
1028
2920

956

952

Poooooosocoooss
Poooooococoooses
PoooooosososoonNne
bPboooooooooour

Pooooososcosososs

:36
.26
.29

usr/lib/jvm/java
b -k —c 100 -n 1
top
apps/epic/perl/b
postgres: bgregg-
/usr/lib/jvm/java
/sbin/init
upstart-udev-brid
/sbin/udevd —dae
dbus—-daemon —sys
/sbin/udevd —dae
upstart-socket-br
dhclient3 -e IF_M
/usr/sbin/sshd -D|
/sbin/getty -8 38
/sbin/getty -8 38

Why

Flame Graph

perf record -g
flame Graphs

[
‘execute_command_ncerral

‘execute_wile_or_uncl

execute commang_ ntema.

§ reader_o0p

T
o
2

CPU Utiliz:

100%
80%
60%
40%

20%

0%
13:28:27

monitoring

user

13:29:10

13:30:00

13:30:25

What

root@laud-bareaa:~# perf stat -a —d sleep 10

l perf stat -a -d A

0.005
0.121
2.097

193,563 cpu-migrations #
4,835 page-faults #
83,859,543,001 cycles #
61,028,919,136 stalled-cycles-frontend #
50,812,852,642 stalled-cycles—backend # 6
52,969,864,055 instructions # 0.63
1.15
255.613
3.68%
0.000
0.00%
19.071 M/sec

10,223,584,755 branches
376,529,869 branch-misses
L1-dcache-loads
1,339,950,792 Ll-dcache-load-misses
762,761,193 LLC-loads

Summary

 ltis the crystal ball age of performance observability
 What matters is the questions you want answered
 Methodologies are a great way to pose questions

References & Resources

USE Method
— http://queue.acm.org/detail.cfm?id=2413037
— http://www.brendangregg.com/usemethod.html
TSA Method
— http://www.brendangregg.com/tsamethod.html
Off-CPU Analysis
— http://www.brendangregg.com/offcpuanalysis.html
— http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
— http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html
Static Performance Tuning, Richard Elling, Sun blueprint, May 2000
RED Method: http://www.slideshare.net/weaveworks/monitoring-microservices
Other system methodologies
— Systems Performance: Enterprise and the Cloud, Prentice Hall 2013
— http://www.brendangregg.com/methodology.html
— The Art of Computer Systems Performance Analysis, Jain, R., 1991
Flame Graphs I 1L
— http://queue.acm.org/detail.cfm?id=2927301
— http://www.brendangregg.com/flamegraphs.html
— http://techblog.netflix.com/2015/07/java-in-flames.html NER
Latency Heat Maps DISTRI
— http://queue.acm.org/detail.cfm?id=1809426 Q
— http://www.brendangregg.com/HeatMaps/latency.html
ARPA Network: http://www.computerhistory.org/internethistory/1960s ame Grap
RSTS/E System User's Guide, 1985, page 4-5
DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and FreeBSD, Prentice Hall 2011
Apollo: http://www.hq.nasa.gov/office/pao/History/alsj/a11 http://www.hq.nasa.gov/alsj/alsj-LMdocs.html

I

e O G

Questions?
http://slideshare.net/brendangregg
http://www.brendangregg.com
bgregg@netflix.com
@brendangregg

Systems
Performance

NETFLIX

