
System	
 Methodology	

Holis0c	
 Performance	
 Analysis	
 on	

Modern	
 Systems	

Brendan Gregg
Senior Performance Architect

Jun,	
 2016	
 ACM Applicative 2016

Apollo LMGC
performance analysis

ERASABLE	

MEMORY	

CORE	
 SET	

AREA	

VAC	
 SETS	

FIXED	

MEMORY	

Background	

History	

•  System Performance Analysis up to the '90s:

–  Closed source UNIXes and applications
–  Vendor-created metrics and performance tools
–  Users interpret given metrics

•  Problems
–  Vendors may not provide the best metrics
–  Often had to infer, rather than measure
–  Given metrics, what do we do with them?

ps alx
 F S UID PID PPID CPU PRI NICE ADDR SZ WCHAN TTY TIME CMD
 3 S 0 0 0 0 0 20 2253 2 4412 ? 186:14 swapper
 1 S 0 1 0 0 30 20 2423 8 46520 ? 0:00 /etc/init
 1 S 0 16 1 0 30 20 2273 11 46554 co 0:00 –sh
[…]

Today	

1.  Open source

–  Operating systems: Linux, BSDs, illumos, etc.
–  Applications: source online (Github)

2.  Custom metrics
–  Can patch the open source, or,
–  Use dynamic tracing (open source helps)

3.  Methodologies
–  Start with the questions, then make metrics to answer them
–  Methodologies can pose the questions

Biggest problem with dynamic tracing has been what to do with it.
Methodologies guide your usage.

Crystal	
 Ball	
 Thinking	

An#-­‐Methodologies	

Street	
 Light	
 An#-­‐Method	

1.  Pick observability tools that are

–  Familiar
–  Found on the Internet
–  Found at random

2.  Run tools
3.  Look for obvious issues

Drunk	
 Man	
 An#-­‐Method	

•  Drink Tune things at random until the problem goes away

Blame	
 Someone	
 Else	
 An#-­‐Method	

1.  Find a system or environment component you are not

responsible for
2.  Hypothesize that the issue is with that component
3.  Redirect the issue to the responsible team
4.  When proven wrong, go to 1

Traffic	
 Light	
 An#-­‐Method	

1.  Turn all metrics into traffic lights
2.  Open dashboard
3.  Everything green? No worries, mate.

•  Type I errors: red instead of green
–  team wastes time

•  Type II errors: green instead of red
–  performance issues undiagnosed
–  team wastes more time looking elsewhere

Traffic lights are suitable for objective metrics (eg, errors),
not subjective metrics (eg, IOPS, latency).

Methodologies	

Performance	
 Methodologies	

System Methodologies:

–  Problem statement method
–  Functional diagram method
–  Workload analysis
–  Workload characterization
–  Resource analysis
–  USE method
–  Thread State Analysis
–  On-CPU analysis
–  CPU flame graph analysis
–  Off-CPU analysis
–  Latency correlations
–  Checklists
–  Static performance tuning
–  Tools-based methods
…

•  For system engineers:
–  ways to analyze unfamiliar

systems and applications

•  For app developers:
–  guidance for metric and

dashboard design

Collect your
own toolbox of
methodologies

Problem	
 Statement	
 Method	

1.  What makes you think there is a performance problem?
2.  Has this system ever performed well?
3.  What has changed recently?

–  software? hardware? load?
4.  Can the problem be described in terms of latency?

–  or run time. not IOPS or throughput.
5.  Does the problem affect other people or applications?
6.  What is the environment?

–  software, hardware, instance types?
versions? config?

Func0onal	
 Diagram	
 Method	

1.  Draw the functional diagram
2.  Trace all components in the data path
3.  For each component, check performance

Breaks up a bigger problem into
smaller, relevant parts

Eg, imagine throughput
between the UCSB 360 and
the UTAH PDP10 was slow…

ARPA	
 Network	
 1969	

Workload	
 Analysis	

•  Begin with application metrics & context
•  A drill-down methodology
•  Pros:

–  Proportional,
accurate metrics

–  App context
•  Cons:

–  App specific
–  Difficult to dig from

app to resource

Applica0on	

	

	
 System	
 Libraries	

System	
 Calls	

Kernel	

Hardware	

Workload	

Analysis	

Workload	
 Characteriza0on	

•  Check the workload: who, why, what, how

–  not resulting performance

•  Eg, for CPUs:
1.  Who: which PIDs, programs, users
2.  Why: code paths, context
3.  What: CPU instructions, cycles
4.  How: changing over time

Target	
 Workload	

Workload	
 Characteriza0on:	
 CPUs	

Who

How What

Why

top CPU	
 sample	

flame	
 graphs	

monitoring	
 PMCs	

Resource	
 Analysis	

•  Typical approach for system performance analysis:

begin with system tools & metrics
•  Pros:

–  Generic
–  Aids resource

perf tuning
•  Cons:

–  Uneven coverage
–  False positives

Applica0on	

	

	
 System	
 Libraries	

System	
 Calls	

Kernel	

Hardware	

Workload	

Analysis	

The	
 USE	
 Method	

•  For every resource, check:

1.  Utilization: busy time
2.  Saturation: queue length or time
3.  Errors: easy to interpret (objective)

Starts with the questions, then finds the tools
Eg, for hardware, check every resource incl. busses:

http://www.brendangregg.com/USEmethod/use-rosetta.html

ERASABLE	

MEMORY	

CORE	
 SET	

AREA	

VAC	
 SETS	

FIXED	

MEMORY	

Apollo Guidance
Computer

USE	
 Method:	
 SoZware	

•  USE method can also work for software resources

–  kernel or app internals, cloud environments
–  small scale (eg, locks) to large scale (apps). Eg:

•  Mutex locks:
–  utilization à lock hold time
–  saturation à lock contention
–  errors à any errors

•  Entire application:
–  utilization à percentage of worker threads busy
–  saturation à length of queued work
–  errors à request errors

Resource	

U0liza0on	

(%)	
 X	

RED	
 Method	

•  For every service, check that:

1.  Request rate
2.  Error rate
3.  Duration (distribution)

 are within SLO/A

Another exercise in posing questions
from functional diagrams

By Tom Wilkie: http://www.slideshare.net/weaveworks/monitoring-microservices

Load	

Balancer	

Web	

Proxy	

Web	
 Server	

User	

Database	

Payments	

Server	

Asset	

Server	

Metrics	

Database	

Thread	
 State	
 Analysis	

Identify & quantify
time in states

Narrows further
analysis to state

Thread states are
applicable to all apps

State transition diagram

TSA:	
 eg,	
 Solaris	

TSA:	
 eg,	
 RSTS/E	

RSTS: DEC OS
from the 1970's

TENEX (1969-72)
also had Control-T
for job states

TSA:	
 eg,	
 OS	
 X	

Instruments:	
 Thread	
 States	

On-­‐CPU	
 Analysis	

1.  Split into user/kernel states

–  /proc, vmstat(1)
2.  Check CPU balance

–  mpstat(1), CPU utilization heat map
3.  Profile software

–  User & kernel stack sampling (as a CPU flame graph)
4.  Profile cycles, caches, busses

–  PMCs, CPI flame graph

CPU	
 U0liza0on	

Heat	
 Map	

CPU	
 Flame	
 Graph	
 Analysis	

1.  Take a CPU profile
2.  Render it as a flame graph
3.  Understand all software that is in >1% of samples

Discovers issues by their CPU usage
-  Directly: CPU consumers
-  Indirectly: initialization

of I/O, locks, times, ...

Narrows target of study
to only running code
-  See: "The Flame Graph",

CACM, June 2016

Flame	
 Graph	

Java	
 Mixed-­‐Mode	
 CPU	
 Flame	
 Graph	

Java	

JVM	

Kernel	

GC	

•  eg, Linux perf_events, with:
•  Java –XX:+PreserveFramePointer
•  Java perf-map-agent

CPI	
 Flame	
 Graph	

•  Profile cycle stack traces and instructions or stalls separately
•  Generate CPU flame graph (cycles) and color using other profile
•  eg, FreeBSD: pmcstat

red	
 ==	
 instruc0ons	

blue	
 ==	
 stalls	

Off-­‐CPU	
 Analysis	

Analyze off-CPU time
via blocking code path:
Off-CPU flame graph

Often need wakeup
code paths as well…

Off-­‐CPU	
 Time	
 Flame	
 Graph	

file	
 read	

from	
 disk	

directory	
 read	

from	
 disk	

pipe	
 write	

path	
 read	
 from	
 disk	

fstat	
 from	
 disk	

Stack	
 depth	
 Off-­‐CPU	
 0me	
 Trace blocking events with
kernel stacks & time blocked
(eg, using Linux BPF)

Wakeup	
 Time	
 Flame	
 Graph	

… can also associate wake-up stacks with off-CPU stacks
(eg, Linux 4.6: samples/bpf/offwaketime*)

Who did the wakeup:

Associate more than
one waker: the full
chain of wakeups

With enough stacks,
all paths lead to metal

An approach for
analyzing all off-CPU
issues

Chain	
 Graphs	

Latency	
 Correla0ons	

1.  Measure latency

histograms at different
stack layers

2.  Compare histograms
to find latency origin

Even better, use latency
heat maps
•  Match outliers based on

both latency and time

Checklists:	
 eg,	
 Linux	
 Perf	
 Analysis	
 in	
 60s	

1.  uptime
2.  dmesg | tail
3.  vmstat 1
4.  mpstat -P ALL 1
5.  pidstat 1
6.  iostat -xz 1
7.  free -m
8.  sar -n DEV 1
9.  sar -n TCP,ETCP 1
10.  top

load	
 averages	

kernel	
 errors	

overall	
 stats	
 by	
 0me	

CPU	
 balance	

process	
 usage	

disk	
 I/O	

memory	
 usage	

network	
 I/O	

TCP	
 stats	

check	
 overview	

http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

1.	
 RPS,	
 CPU	
 2.	
 Volume	

6.	
 Load	
 Avg	

3.	
 Instances	
 4.	
 Scaling	

5.	
 CPU/RPS	

7.	
 Java	
 Heap	
 8.	
 ParNew	

9.	
 Latency	
 10.	
 99th	
 0le	

Checklists:	
 eg,	
 Neklix	
 perfvitals	
 Dashboard	

Sta0c	
 Performance	
 Tuning:	
 eg,	
 Linux	

Tools-­‐Based	
 Method	

1.  Try all the tools! May be an anti-pattern. Eg, OS X:

Other	
 Methodologies	

•  Scientific method
•  5 Why's
•  Process of elimination
•  Intel's Top-Down Methodology
•  Method R

What	
 You	
 Can	
 Do	

What	
 you	
 can	
 do	

1.  Know what's now possible on modern systems

–  Dynamic tracing: efficiently instrument any software
–  CPU facilities: PMCs, MSRs (model specific registers)
–  Visualizations: flame graphs, latency heat maps, …

2.  Ask questions first: use methodologies to ask them
3.  Then find/build the metrics
4.  Build or buy dashboards to support methodologies

Dynamic	
 Tracing:	
 Efficient	
 Metrics	

send	

receive	

tcpdump	

Kernel	

buffer	

file	
 system	

1.	
 read	

2.	
 dump	

Analyzer	
 1.	
 read	

2.	
 process	

3.	
 print	

disks	

Old way: packet capture

New way: dynamic tracing

Tracer	
 1.	
 configure	

2.	
 read	

tcp_retransmit_skb()	

Eg, tracing TCP retransmits

Dynamic	
 Tracing:	
 Measure	
 Anything	

Those are Solaris/DTrace tools. Now becoming possible on all OSes:
FreeBSD & OS X DTrace, Linux BPF, Windows ETW

Performance	
 Monitoring	
 Counters	

Eg, FreeBSD PMC groups for Intel Sandy Bridge:

Visualiza0ons	

Eg, Disk I/O latency as a heat map, quantized in kernel:

USE	
 Method:	
 eg,	
 Neklix	
 Vector	

u0liza0on	
 satura0on	
 CPU:	

u0liza0on	
 satura0on	
 Network:	
 load	

u0liza0on	
 satura0on	
 Memory:	

load	
 satura0on	
 Disk:	
 u0liza0on	

USE	
 Method:	
 To	
 Do	

Showing what is and is not commonly measured

U	
 S	
 E	

U	
 S	
 E	

U	
 S	
 E	

U	
 S	
 E	

U	
 S	
 E	

U	
 S	
 E	

U	
 S	
 E	

U	
 S	
 E	
 U	
 S	
 E	
 U	
 S	
 E	
 U	
 S	
 E	

CPU	
 Workload	
 Characteriza0on:	
 To	
 Do	

Who

How What

Why

top,	
 htop perf record -g
flame	
 Graphs	

monitoring	
 perf stat -a -d

Showing what is and is not commonly measured

Summary	

•  It is the crystal ball age of performance observability
•  What matters is the questions you want answered
•  Methodologies are a great way to pose questions

References	
 &	
 Resources	

•  USE Method

–  http://queue.acm.org/detail.cfm?id=2413037
–  http://www.brendangregg.com/usemethod.html

•  TSA Method
–  http://www.brendangregg.com/tsamethod.html

•  Off-CPU Analysis
–  http://www.brendangregg.com/offcpuanalysis.html
–  http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
–  http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html

•  Static Performance Tuning, Richard Elling, Sun blueprint, May 2000
•  RED Method: http://www.slideshare.net/weaveworks/monitoring-microservices
•  Other system methodologies

–  Systems Performance: Enterprise and the Cloud, Prentice Hall 2013
–  http://www.brendangregg.com/methodology.html
–  The Art of Computer Systems Performance Analysis, Jain, R., 1991

•  Flame Graphs
–  http://queue.acm.org/detail.cfm?id=2927301
–  http://www.brendangregg.com/flamegraphs.html
–  http://techblog.netflix.com/2015/07/java-in-flames.html

•  Latency Heat Maps
–  http://queue.acm.org/detail.cfm?id=1809426
–  http://www.brendangregg.com/HeatMaps/latency.html

•  ARPA Network: http://www.computerhistory.org/internethistory/1960s
•  RSTS/E System User's Guide, 1985, page 4-5
•  DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and FreeBSD, Prentice Hall 2011
•  Apollo: http://www.hq.nasa.gov/office/pao/History/alsj/a11 http://www.hq.nasa.gov/alsj/alsj-LMdocs.html

Feb	

2016	

•  Questions?
•  http://slideshare.net/brendangregg
•  http://www.brendangregg.com
•  bgregg@netflix.com
•  @brendangregg

Jun,	
 2016	
 ACM Applicative 2016

