
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How Netflix Tunes
EC2 Instances for
Performance
B r e n d a n G r e g g , P e r f o r m a n c e a n d O S E n g i n e e r i n g T e a m

C M P 3 2 5

N o v e m b e r 2 8 , 2 0 1 7

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix performance and operating systems team

•  Evaluate technology
-  Instance types, Amazon Elastic Compute Cloud (EC2) options

•  Recommendations and best practices
-  Instance kernel tuning, assist app tuning

•  Develop performance tools
-  Develop tools for observability and analysis

•  Project support
-  New database, programming language, software change

•  Incident response
-  Performance issues, scalability issues

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Agenda
1.  Instance selection
2.  Amazon EC2 features
3.  Kernel tuning
4.  Methodologies
5.  Observability

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Warnings
•  This is what’s in our medicine cabinet
•  Consider these “best before: 2018”
•  Take only if prescribed by a performance engineer

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

1. Instance selection

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Netflix cloud
Many application workloads: Compute, storage, caching…

S3

EC2

Cassandra
EVCache

Applications
(services)

ELB
Elasticsearch

SQS SES

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix AWS environment
•  Elastic Load Balancing

allows real load testing
1.  Single instance canary, then,
2.  Auto scaling group

•  Much better than micro-
benchmarking alone, which
is error prone

…
ASG-v011

…
ASG-v010

ASG Cluster
prod1

Canary

ELB

Instance
Instance
Instance
Instance
Instance

Instance
Instance
Instance
Instance
Instance

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Current generation instances
•  Families:

-  m4: General purpose
•  Balanced

-  c5: Compute-optimized
•  Latest CPUs, lowest price/compute perf

-  i3, d2: Storage-optimized
•  SSD large capacity storage

-  r4, x1: Memory optimized
•  Lowest cost/Gbyte

-  p2, g3, f1: Accelerated computing
•  GPUs, FPGAs…

•  Types: Range from medium to 16x large+, depending on family

•  Netflix uses over 30 different instance types

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix instance type selection
A.  Flow chart
B.  By-resource
C.  Brute force

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

A. Instance selection flow chart
Start

i3

Need large
disk capacity?

Disk I/O
bound?

Can
cache?

Select memory to
cache working set

Find best
balance

d2

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

B. By-resource approach
1.  Determine bounding resource

-  E.g.: CPU, disk I/O, or network I/O
-  Found using:

•  Estimation (expertise)
•  Resource observability with an existing real workload

•  Resource observability with a benchmark or load test (experimentation)

2.  Choose instance type for the bounding resource
-  If disk I/O, consider caching, and a memory-optimized type
-  We have tools to aid this choice: Nomogram Visualization

This focuses on optimizing a given workload
More efficiency can be found by adjusting the workload to suit instance types

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Nomogram Visualization tool

2. Select
resources

3. From any
resource,
see types
and cost

1. Select
instance
families

(cost redacted)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

C. Brute force choice
1.  Run load test on ALL instance types

-  Optionally, different workload configurations as well

2.  Measure throughput
-  And check for acceptable latency

3.  Calculate price/performance for all types
4.  Choose most efficient type

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Latency requirements
•  Check for an acceptable latency distribution when

optimizing for price/performance

Headroom Unacceptable Acceptable

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix instance type re-selection
A.  Usage
B.  Cost
C.  Variance

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

A. Instance usage
•  Older instance types can be identified, analyzed, and upgraded

to newer types

Types
(redacted)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

B. Instance cost
•  Also checked regularly. Tuning the price in price/perf.

Cost per hour

Breakdowns

Details (redacted)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

C. Instance variance
•  An instance type may be resource-constrained only occasionally,

or after warmup, or a code change
•  Continually monitor performance, analyze variance/outliers

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

2. Amazon EC2 features

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

EC2 virtualization

slide updated after talk. see: http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Networking SR-IOV
•  AWS "enhanced networking"

-  Uses SR-IOV: Single Root I/O Virtualization
-  PCIe device provides virtualized instances
-  Some instance types, VPC only

•  "Bare metal" network access
-  Higher network throughput, reduced RTT and jitter
-  ixgbe driver types: Up to 10 Gbps
-  ena driver types: Up to 25 Gbps

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Storage SR-IOV
•  New in 2017, first used by i3s
•  Should be called "enhanced storage"

-  Some instance types only
-  Accesses NVMe attached storage (faster transport than SATA)
-  Uses VT-d for I/O virtualization

•  "Bare metal" disk access
-  i3.16xl can exceed 3 million IOPS

https://aws.amazon.com/blogs/aws/now-available-i3-instances-for-demanding-io-intensive-applications/

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

3. Kernel tuning

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Kernel tuning
•  Typically 1-30% wins, for average performance

-  Adds up to significant savings for the Netflix cloud

•  Bigger wins when reducing latency outliers
•  Deploying tuning:

-  Generic performance tuning is baked into our base AMI
-  Experimental tuning is a package add-on (nflx-kernel-tunables)
-  Workload-specific tuning is configured in application AMIs
-  Remember to tune the workload with the tunables

•  We run Ubuntu Linux

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tuning targets
1.  CPU scheduler
2.  Virtual memory
3.  Huge pages
4.  NUMA
5.  File System
6.  Storage I/O
7.  Networking
8.  Hypervisor (Xen)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

1. CPU scheduler
•  Tunables:

-  Scheduler class, priorities, migration latency, tasksets…

•  Usage:
-  Some apps benefit from reducing migrations using taskset(1), numactl(8),

cgroups, and tuning sched_migration_cost_ns
-  Some Java apps have benefited from SCHED_BATCH, to reduce context

switching. E.g.:

schedtool –B PID

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

2. Virtual memory
•  Tunables:

-  Swappiness, overcommit, OOM behavior…

•  Usage:
-  Swappiness is set to zero to disable swapping and favor ditching the file

system page cache first to free memory. (This tunable doesn’t make much
difference, as swap devices are usually absent.)

vm.swappiness = 0 # from 60

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

3. Huge pages
•  Tunables:

-  Explicit huge page usage, transparent huge pages (THPs)
-  Using 2 or 4 Mbytes, instead of 4k, should reduce various CPU overheads and

improve MMU page translation cache reach

•  Usage:
-  THPs (enabled in later Ubuntu kernels) depending on the workload and CPUs,

sometimes improve perf on HVM instances (~5% lower CPU), but sometimes
hurt perf (~25% higher CPU during %usr, and more during %sys refrag)

-  We switched it back to madvise:

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

4. NUMA
•  Tunables:

-  NUMA balancing

•  Usage:
-  On multi-NUMA systems (largest instances) and earlier kernels (around 3.13),

NUMA page rebalance was too aggressive, and could consume 60% CPU alone.
-  We disable it. Will re-enable/tune later.

kernel.numa_balancing = 0

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

5. File system
•  Tunables:

-  Page cache flushing behavior, file system type and its own tunables (e.g., ZFS
on Linux)

•  Usage:
-  Page cache flushing is tuned to provide a more even behavior: Background

flush earlier, aggressive flush later
-  Access timestamps disabled, and other options depending on the FS

vm.dirty_ratio = 80 # from 40
vm.dirty_background_ratio = 5 # from 10
vm.dirty_expire_centisecs = 12000 # from 3000
mount -o defaults,noatime,discard,nobarrier …

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

6. Storage I/O
•  Tunables:

-  Read ahead size, number of in-flight requests, I/O scheduler, volume stripe
width…

•  Usage:
-  Some workloads, e.g., Cassandra, can be sensitive to read ahead size
-  SSDs can perform better with the “noop” scheduler (if not default already)
-  Tuning md chunk size and stripe width to match workload

/sys/block/*/queue/rq_affinity 2
/sys/block/*/queue/scheduler noop
/sys/block/*/queue/nr_requests 256
/sys/block/*/queue/read_ahead_kb 256
mdadm –chunk=64 ...

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

7. Networking
•  Tunables:

-  TCP buffer sizes, TCP backlog, device backlog, TCP reuse…

•  Usage:

net.core.somaxconn = 1024
net.core.netdev_max_backlog = 5000
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_wmem = 4096 12582912 16777216
net.ipv4.tcp_rmem = 4096 12582912 16777216
net.ipv4.tcp_max_syn_backlog = 8096
net.ipv4.tcp_slow_start_after_idle = 0
net.ipv4.tcp_tw_reuse = 1
net.ipv4.ip_local_port_range = 10240 65535
net.ipv4.tcp_abort_on_overflow = 1 # maybe

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

8. Hypervisor (Xen)
•  Tunables:

-  PV/HVM (baked into AMI)
-  Kernel clocksource. From slow to fast: hpet, xen, tsc

•  Usage:
-  We’ve encountered a Xen clocksource regression in the past (Ubuntu Trusty).

Fixed by tuning clocksource to TSC (although beware of clock drift).
-  Best case example (so far): CPU usage reduced by 30%, and average app

latency reduced by 43%.

echo tsc > /sys/devices/system/clocksource/clocksource0/current_clocksource

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

4. Methodologies
Techniques of performance analysis

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

1. RPS, CPU 2. Volume

6. Load avg

3. Instances 4. Scaling

5. CPU/RPS

7. Java heap 8. ParNew

9. Latency 10. 99th tile

Checklists: e.g. , Netflix perf vitals
dashboard

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Analysis perspectives

Application

System libraries

System calls

Kernel

Devices

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

USE Method
•  For every hardware and

software resource, check:
1.  Utilization
2.  Saturation
3.  Errors

•  Resource constraints show as saturation or high utilization
-  Resize or change instance type
-  Investigate tunables for the resource

•  The USE Method poses questions to answer

Resource
utilization

(%) X

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

On-CPU and off-CPU analysis
State	transi*on	diagram	

Can be analyzed using:
•  On-CPU: Sampling
•  Off-CPU: Scheduler tracing

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

5. Observabil ity
Finding, quantifying, and confirming tunables

Discovering system wins (5-25%’s) and application wins (2-10x’s)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Statistical tools
•  vmstat, pidstat, sar, etc., used mostly normally
$ sar -n TCP,ETCP,DEV 1
Linux 3.2.55 (test-e4f1a80b) 08/18/2014 _x86_64_ (8 CPU)

09:10:43 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s
09:10:44 PM lo 14.00 14.00 1.34 1.34 0.00 0.00 0.00
09:10:44 PM eth0 4114.00 4186.00 4537.46 28513.24 0.00 0.00 0.00

09:10:43 PM active/s passive/s iseg/s oseg/s
09:10:44 PM 21.00 4.00 4107.00 22511.00

09:10:43 PM atmptf/s estres/s retrans/s isegerr/s orsts/s
09:10:44 PM 0.00 0.00 36.00 0.00 1.00
[…]

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Host perf analysis in 60s

http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

1.  	uptime
2.  	dmesg | tail
3.  	vmstat 1
4.  	mpstat -P ALL 1
5.  	pidstat 1
6.  	iostat -xz 1
7.  	free -m
8.  	sar -n DEV 1
9.  	sar -n TCP,ETCP 1
10.  	top

load	averages	
kernel	errors	
overall	stats	by	*me	
CPU	balance	
process	usage	
disk	I/O	
memory	usage	
network	I/O	
TCP	stats	
check	overview	

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

System profilers
•  perf

-  Standard Linux profiler. In the Linux source tree.
-  Interval sampling, CPU performance counter events.
-  User and kernel static and dynamic tracing.

•  perf CPU flame graphs:

git clone https://github.com/brendangregg/FlameGraph
cd FlameGraph
perf record -F 49 -ag -- sleep 30
perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf.svg

https://medium.com/netflix-techblog/java-in-flames-e763b3d32166

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Java
(Broken stacks:
No frame pointer)

Kernel
(C)

JVM
(C++)

AWS re:Invent
2014

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Java

Kernel
(C)

JVM
(C++)

User
(C)

AWS re:Invent
2017

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tracing Tools: ftrace
•  Part of the Linux kernel

-  First added in 2.6.27 (2008), and enhanced in later releases
-  Already available in all Netflix Linux instances

•  Front-end tools aid usage: perf-tools collection
-  https://github.com/brendangregg/perf-tools
-  Unsupported hacks: see WARNINGs
-  Also see the trace-cmd front-end, as well as perf

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

ftrace tool: iosnoop
/apps/perf-tools/bin/iosnoop –ts
Tracing block I/O. Ctrl-C to end.
STARTs ENDs COMM PID TYPE DEV BLOCK BYTES LATms
5982800.302061 5982800.302679 supervise 1809 W 202,1 17039600 4096 0.62
5982800.302423 5982800.302842 supervise 1809 W 202,1 17039608 4096 0.42
5982800.304962 5982800.305446 supervise 1801 W 202,1 17039616 4096 0.48
5982800.305250 5982800.305676 supervise 1801 W 202,1 17039624 4096 0.43
[…]

/apps/perf-tools/bin/iosnoop –h
USAGE: iosnoop [-hQst] [-d device] [-i iotype] [-p PID] [-n name] [duration]
 -d device # device string (eg, "202,1)
 -i iotype # match type (eg, '*R*' for all reads)
 -n name # process name to match on I/O issue
 -p PID # PID to match on I/O issue
 -Q # include queueing time in LATms
 -s # include start time of I/O (s)
 -t # include completion time of I/O (s)
[…]

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tracing tools: perf
perf record –e skb:consume_skb –ag -- sleep 10
perf report
[...]
 74.42% swapper [kernel.kallsyms] [k] consume_skb
 |
 --- consume_skb
 arp_process
 arp_rcv
 __netif_receive_skb_core
 __netif_receive_skb
 netif_receive_skb
 virtnet_poll
 net_rx_action
 __do_softirq
 irq_exit
 do_IRQ
 ret_from_intr
[…]

Summarizing stack traces for a
tracepoint

perf can do many things, it is
hard to pick just one example

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tracing tools: BPF
•  Enhanced Berkeley Packet Filter (BPF, aka eBPF)

-  Safe, efficient, advanced, production tracing. Best on Linux 4.9+.

BPF
bytecode

Observability Program Kernel

tracepoints

kprobes

uprobes

BPF

maps

per-event
data

statistics

verifier

output

static tracing

dynamic tracing

async
copy

perf events

sampling, PMCs

BPF
program

event config
attach

load

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

BPF: tcplife
/usr/share/bcc/tools/tcplife
PID COMM LADDR LPORT RADDR RPORT TX_KB RX_KB MS
2509 java 100.82.34.63 8078 100.82.130.159 12410 0 0 5.44
2509 java 100.82.34.63 8078 100.82.78.215 55564 0 0 135.32
2509 java 100.82.34.63 60778 100.82.207.252 7001 0 13 15126.87
2509 java 100.82.34.63 38884 100.82.208.178 7001 0 0 15568.25
2509 java 127.0.0.1 4243 127.0.0.1 42166 0 0 0.61
12030 upload-mes 127.0.0.1 34020 127.0.0.1 8078 11 0 3.38
12030 upload-mes 127.0.0.1 21196 127.0.0.1 7101 0 0 12.61
3964 mesos-slav 127.0.0.1 7101 127.0.0.1 21196 0 0 12.64
12021 upload-sys 127.0.0.1 34022 127.0.0.1 8078 372 0 15.28
2509 java 127.0.0.1 8078 127.0.0.1 34022 0 372 15.31
2235 dockerd 100.82.34.63 13730 100.82.136.233 7002 0 4 18.50
2235 dockerd 100.82.34.63 34314 100.82.64.53 7002 0 8 56.73
[...]

Dynamic tracing of TCP set state only; does not trace send/receive
https://github.com/iovisor/bcc includes other TCP tools

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Hardware counters
•  Model Specific Registers (MSRs)

-  Basic details: Timestamp clock, temperature, power
-  Some are available in Amazon EC2

•  Performance Monitoring Counters (PMCs)
-  Advanced details: Cycles, stall cycles, cache misses…
-  Availability depends on instance type: either none, some, or all

•  Root cause CPU usage at the cycle level
-  E.g., higher CPU usage due to more memory stall cycles

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

MSRs
•  Can be used to verify real CPU clock rate

-  Can vary with turboboost. Important to know for perf comparisons.
-  Tool from https://github.com/brendangregg/msr-cloud-tools:

ec2-guest# ./showboost
CPU MHz : 2500
Turbo MHz : 2900 (10 active)
Turbo Ratio : 116% (10 active)
CPU 0 summary every 5 seconds...

TIME C0_MCYC C0_ACYC UTIL RATIO MHz
06:11:35 6428553166 7457384521 51% 116% 2900
06:11:40 6349881107 7365764152 50% 115% 2899
06:11:45 6240610655 7239046277 49% 115% 2899
[...]

Real CPU MHz

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

PMCs: Architectural
•  Some instance types (e.g., m4.16xl) support the PMC

architectural set:

http://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

PMCs: All
•  All PMCs are available on this c5.18xl:
perf stat -d -a -- sleep 5

 Performance counter stats for 'system wide':

 360195.435103 cpu-clock (msec) # 71.454 CPUs utilized
 38,733 context-switches # 0.108 K/sec
 504 cpu-migrations # 0.001 K/sec
 861,393 page-faults # 0.002 M/sec
 2,275,234,239 cycles # 0.006 GHz
 191,859,050,716 instructions # 84.32 insn per cycle
 38,989,119,249 branches # 108.244 M/sec
 152,913,791 branch-misses # 0.39% of all branches
 40,262,604,776 L1-dcache-loads # 111.780 M/sec
 283,924,939 L1-dcache-load-misses # 0.71% of all L1-dcache hits
[...]

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix Atlas
•  Cloud-wide and instance monitoring:

Application

Metrics

Presentation

Interactive
graph

Summary
statistics

Region

Time range

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix Atlas
•  All metrics in one system
•  System metrics:

-  CPU usage, disk I/O, memory…

•  Application metrics:
-  Requests completed, latency percentiles, errors…

•  Filters/breakdowns by region,
application, ASG, metric, instance

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix Vector
•  Real-time per-second instance metrics:

Utilization

Per-device

Saturation

Errors

Breakdowns

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Vector on-demand flame graphs

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Vector
•  Given an instance, analyze low-level performance
•  On-demand flame graphs

-  CPU, off-CPU, context switch, IPC, page fault, disk I/O
-  These use perf or BPF

•  Quick
-  GUI-driven root cause analysis

•  Scalable
-  Other teams can use it easily

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Summary
1.  Instance selection
2.  Amazon EC2 features
3.  Kernel tuning
4.  Methodologies
5.  Observability

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

References & l inks
•  Amazon EC2:

-  http://aws.amazon.com/ec2/instance-types/
-  http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
-  http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
-  https://www.slideshare.net/AmazonWebServices/cmp402-amazon-ec2-instances-deep-dive
-  http://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html

•  Netflix on EC2:
-  http://www.slideshare.net/cpwatson/cpn302-yourlinuxamioptimizationandperformance
-  http://www.brendangregg.com/blog/2014-09-27/from-clouds-to-roots.html
-  http://techblog.cloudperf.net/2016/05/2-million-packets-per-second-on-public.html
-  http://techblog.cloudperf.net/2017/04/3-million-storage-iops-on-aws-cloud.html

•  Performance Analysis:
-  http://www.brendangregg.com/linuxperf.html
-  http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html
-  https://github.com/iovisor/bcc https://github.com/brendangregg/perf-tools
-  https://www.slideshare.net/brendangregg/velocity-2015-linux-perf-tools
-  http://www.brendangregg.com/USEmethod/use-linux.html
-  https://medium.com/netflix-techblog/java-in-flames-e763b3d32166
-  http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html#Java
-  https://github.com/brendangregg/FlameGraph

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix talks @ re:Invent
Monday

 10:45am ARC208:Walking the tightrope: Balancing Innovation, Reliability, Security, and Efficiency (Venetian)
 12:15pm SID206: Best Practices for Managing Security on AWS (MGM)

Tuesday
 10:45am ARC209: A Day in the Life of a Netflix Engineer (Venetian)
 11:30am CMP325: How Netflix Tunes EC2 Instances for Performance (Venetian)

Wednesday
 11:30am MCL317: Orchestrating ML Training for Netflix Recommendations (Venetian)
 12:15pm NET303: A day in the life of a Cloud Network Engineer at Netflix (Venetian)
 1:00pm ARC312: Why Regional Reservations are a Game Changer for Netflix (Venetian)
 1:00pm SID304: SecOps 2021 Today: Using AWS Services to Deliver SecOps (MGM)
 1:45pm DEV334: Performing Chaos at Netflix Scale (Venetian)
 4:45pm SID316: Using Access Advisor to Strike the Balance Between Security and Usability (MGM)

Thursday
 12:15pm CMP311: Auto Scaling Made Easy: How Target Tracking Scaling Policies Hit the Bullseye (Palazzo)
 12:15pm DAT308: Codex: Conditional Modules Strike Back (Venetian)
 12:55pm CMP309: How Netflix Encodes at Scale (Venetian)
 5:00pm ABD401: How Netflix Monitors Applications Real Time with Kinesis (Aria)

Friday
 8:30am ABD319: Tooling Up For Efficiency: DIY Solutions @ Netflix (Aria)
 10:00am ABD401: Netflix Keystone SPaaS - Real-time Stream Processing as a Service (Aria)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Thank you!

B r e n d a n G r e g g , N e t fl i x P e r f o r m a n c e a n d O p e r a t i n g S y s t e m s T e a m

@ b r e n d a n g r e g g

C M P 3 2 5

