CMP325

How Netflix Tunes EC2 Instances for Performance

Brendan Gregg, Performance and OS Engineering Team

November 28, 2017

REGIONS WHERE NETFLIX IS AVAILABLE

Netflix performance and operating systems team

- Evaluate technology
 - Instance types, Amazon Elastic Compute Cloud (EC2) options
- Recommendations and best practices
 - Instance kernel tuning, assist app tuning
- Develop performance tools
 - Develop tools for observability and analysis
- Project support
 - New database, programming language, software change
- Incident response
 - Performance issues, scalability issues

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Agenda

- 1. Instance selection
- 2. Amazon EC2 features
- 3. Kernel tuning
- 4. Methodologies
- 5. Observability

Warnings

- This is what's in our medicine cabinet
- Consider these "best before: 2018"
- Take only if prescribed by a performance engineer

1. Instance selection

The Netflix cloud

Many application workloads: Compute, storage, caching...

Netflix AWS environment

- Elastic Load Balancing allows real load testing
 - 1. Single instance canary, then,
 - 2. Auto scaling group
- Much better than microbenchmarking alone, which is error prone

Current generation instances

- Families:
 - **m4**: General purpose
 - Balanced
 - **c5**: Compute-optimized
 - Latest CPUs, lowest price/compute perf
 - i3, d2: Storage-optimized
 - SSD large capacity storage
 - r4, x1: Memory optimized
 - Lowest cost/Gbyte
 - p2, g3, f1: Accelerated computing
 - GPUs, FPGAs...

i3.8xlarge

- Types: Range from medium to 16x large+, depending on family
- Netflix uses over 30 different instance types

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix instance type selection

- A. Flow chart
- B. By-resource
- C. Brute force

A. Instance selection flow chart

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

B. By-resource approach

1. Determine bounding resource

- E.g.: CPU, disk I/O, or network I/O
- Found using:
 - Estimation (expertise)
 - Resource observability with an existing real workload
 - Resource observability with a benchmark or load test (experimentation)
- 2. Choose instance type for the bounding resource
 - If disk I/O, consider caching, and a memory-optimized type
 - We have tools to aid this choice: Nomogram Visualization

This focuses on optimizing a given workload

More efficiency can be found by adjusting the workload to suit instance types

Nomogram Visualization tool

C. Brute force choice

- 1. Run load test on ALL instance types
 - Optionally, different workload configurations as well
- 2. Measure throughput
 - And check for acceptable latency
- 3. Calculate price/performance for all types
- 4. Choose most efficient type

Latency requirements

• Check for an acceptable latency distribution when optimizing for price/performance

Netflix instance type re-selection

- A. Usage
- B. Cost
- C. Variance

A. Instance usage

 Older instance types can be identified, analyzed, and upgraded to newer types

	Ana	alyze Inst	tance Ty	/pes (l	PROD)						
	Region us-eas	t-1	\$					Data last upda	ated 15 minutes a	igo	
	Summa	rry Chart Summary Ta	uble ASG Breakdor	wn							
			11	1 1	Instance Ty	pes summary	1	11	1		
Types dacted)	-										

B. Instance cost

• Also checked regularly. Tuning the price in price/perf.

C. Instance variance

- An instance type may be resource-constrained only occasionally, or after warmup, or a code change
- Continually monitor performance, analyze variance/outliers

2. Amazon EC2 features

EC2 virtualization

			impon	ance					
		Bare-metal performance Near-metal performance Optimized performance Poor performance	Most Net	Local Juota NO	Aemoie storage	Least Interrup Storage	Moinero fine	0310, 19 0310, 190	or
	Tech	Туре	With						
	VM	Fully Emulated		VS	VS	VS	VS	VS	VS
Old	VM	Xen HVM 3.0	PV drivers	VH	Р	Р	Р	VS	VS
	VM	Xen HVM 4.0.1	PVHVM drivers	VH	Р	Р	Р	Р	VS
	VM	Xen AWS 2013	PVHVM + SR-IOV(net)	VH	VH	Р	Р	Р	VS
	VM	Xen AWS 2017	PVHVM + SR-IOV(net, stor.)	VH	VH	VH	Р	Р	VS
↓	VM	AWS Nitro 2017		VH	VH	VH	VH	VH	VS
New	HW	AWS Bare Metal 2017		Н	н	н	Н	Н	Н
		Bare Metal		Н	н	н	Н	Н	Н

. .

VM: Virtual Machine. HW: Hardware.

VS: Virt. in software. VH: Virt. in hardware. P: Paravirt. Not all combinations shown.

SR-IOV(net): ixgbe/ena driver. SR-IOV(storage): nvme driver.

slide updated after talk. see: http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

Networking SR-IOV

- AWS "enhanced networking"
 - Uses SR-IOV: Single Root I/O Virtualization
 - PCIe device provides virtualized instances
 - Some instance types, VPC only
- "Bare metal" network access
 - Higher network throughput, reduced RTT and jitter
 - ixgbe driver types: Up to 10 Gbps
 - ena driver types: Up to 25 Gbps

Storage SR-IOV

- New in 2017, first used by i3s
- Should be called "enhanced storage"
 - Some instance types only
 - Accesses NVMe attached storage (faster transport than SATA)
 - Uses VT-d for I/O virtualization
- "Bare metal" disk access
 - i3.16xl can exceed 3 million IOPS

https://aws.amazon.com/blogs/aws/now-available-i3-instances-for-demanding-io-intensive-applications/

3. Kernel tuning

Kernel tuning

- Typically 1-30% wins, for average performance
 - Adds up to significant savings for the Netflix cloud
- Bigger wins when reducing latency outliers
- Deploying tuning:
 - Generic performance tuning is baked into our base AMI
 - Experimental tuning is a package add-on (nflx-kernel-tunables)
 - Workload-specific tuning is configured in application AMIs
 - Remember to tune the workload with the tunables
- We run Ubuntu Linux

Tuning targets

- 1. CPU scheduler
- 2. Virtual memory
- 3. Huge pages
- 4. NUMA
- 5. File System
- 6. Storage I/O
- 7. Networking
- 8. Hypervisor (Xen)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

1. CPU scheduler

- Tunables:
 - Scheduler class, priorities, migration latency, tasksets...
- Usage:
 - Some apps benefit from reducing migrations using taskset(1), numactl(8), cgroups, and tuning sched_migration_cost_ns
 - Some Java apps have benefited from SCHED_BATCH, to reduce context switching. E.g.:

schedtool -B PID

2. Virtual memory

- Tunables:
 - Swappiness, overcommit, OOM behavior...
- Usage:
 - Swappiness is set to zero to disable swapping and favor ditching the file system page cache first to free memory. (This tunable doesn't make much difference, as swap devices are usually absent.)

vm.swappiness = 0

from 60

3. Huge pages

- Tunables:
 - Explicit huge page usage, transparent huge pages (THPs)
 - Using 2 or 4 Mbytes, instead of 4k, should reduce various CPU overheads and improve MMU page translation cache reach
- Usage:
 - THPs (enabled in later Ubuntu kernels) depending on the workload and CPUs, sometimes improve perf on HVM instances (~5% lower CPU), but sometimes hurt perf (~25% higher CPU during %usr, and more during %sys refrag)
 - We switched it back to madvise:

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

4. NUMA

- Tunables:
 - NUMA balancing
- Usage:
 - On multi-NUMA systems (largest instances) and earlier kernels (around 3.13),
 NUMA page rebalance was too aggressive, and could consume 60% CPU alone.
 - We disable it. Will re-enable/tune later.

kernel.numa_balancing = 0

5. File system

- Tunables:
 - Page cache flushing behavior, file system type and its own tunables (e.g., ZFS on Linux)
- Usage:
 - Page cache flushing is tuned to provide a more even behavior: Background flush earlier, aggressive flush later
 - Access timestamps disabled, and other options depending on the FS

vm.dirty_ratio = 80 # from 40
vm.dirty_background_ratio = 5 # from 10
vm.dirty_expire_centisecs = 12000 # from 3000
mount -o defaults,noatime,discard,nobarrier ...

6. Storage I/O

- Tunables:
 - Read ahead size, number of in-flight requests, I/O scheduler, volume stripe width...
- Usage:
 - Some workloads, e.g., Cassandra, can be sensitive to read ahead size
 - SSDs can perform better with the "noop" scheduler (if not default already)
 - Tuning md chunk size and stripe width to match workload

/sys/block/*/queue/rq_affinity	2
/sys/block/*/queue/scheduler	noop
/sys/block/*/queue/nr_requests	256
/sys/block/*/queue/read_ahead_kb	256
mdadm -chunk=64	

7. Networking

- Tunables:
 - TCP buffer sizes, TCP backlog, device backlog, TCP reuse...
- Usage:

```
net.core.somaxconn = 1024
net.core.netdev_max_backlog = 5000
net.core.rmem_max = 16777216
net.ipv4.tcp_wmem = 4096 12582912 16777216
net.ipv4.tcp_rmem = 4096 12582912 16777216
net.ipv4.tcp_max_syn_backlog = 8096
net.ipv4.tcp_slow_start_after_idle = 0
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_abort_on_overflow = 1  # maybe
```


8. Hypervisor (Xen)

- Tunables:
 - PV/HVM (baked into AMI)
 - Kernel clocksource. From slow to fast: hpet, xen, tsc
- Usage:
 - We've encountered a Xen clocksource regression in the past (Ubuntu Trusty).
 Fixed by tuning clocksource to TSC (although beware of clock drift).
 - Best case example (so far): CPU usage reduced by 30%, and average app latency reduced by 43%.

echo tsc > /sys/devices/system/clocksource/clocksource0/current_clocksource

4. Methodologies

Techniques of performance analysis

Checklists: e.g., Netflix perf vitals dashboard

aws

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Analysis perspectives

re:**Invent**

USE Method

- For every hardware and software resource, check:
 - 1. Utilization
 - 2. Saturation
 - 3. Errors

- Resource constraints show as saturation or high utilization
 - Resize or change instance type
 - Investigate tunables for the resource
- The USE Method poses questions to answer

On-CPU and off-CPU analysis

On-CPU: Sampling

Off-CPU: Scheduler tracing

5. Observability

Finding, quantifying, and confirming tunables

Discovering system wins (5-25%'s) and application wins (2-10x's)

Statistical tools

• vmstat, pidstat, sar, etc., used mostly normally

```
$ sar -n TCP, ETCP, DEV 1
Linux 3.2.55 (test-e4f1a80b)
                            08/18/2014
                                           _x86_64_ (8 CPU)
09:10:43 PM IFACE rxpck/s txpck/s rxkB/s rxcmp/s txcmp/s rxmcst/s
09:10:44 PM
            0.00
09:10:44 PM eth0 4114.00 4186.00 4537.46 28513.24 0.00 0.00
                                                            0.00
09:10:43 PM active/s passive/s iseg/s oseg/s
09:10:44 PM
            21.00
                 4,00 4107.00 22511.00
09:10:43 PM atmptf/s estres/s retrans/s isegerr/s orsts/s
09:10:44 PM
             0.00
                     0.00 36.00
                                  0.00
                                             1.00
Г...]
```


Host perf analysis in 60s

1.	uptime	load averages
2.	dmesg tail ·····►	kernel errors
3.	vmstat 1	overall stats by time
4.	mpstat -P ALL 1►	CPU balance
5.	pidstat 1	process usage
6.	iostat -xz 1 ·····►	disk I/O
7.	free -m>	memory usage
8.	sar −n DEV 1	network I/O
9.	sar −n TCP,ETCP 1>	TCP stats
10.	top	check overview

http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

Aws re:Invent © 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

System profilers

- perf
 - Standard Linux profiler. In the Linux source tree.
 - Interval sampling, CPU performance counter events.
 - User and kernel static and dynamic tracing.
- perf CPU flame graphs:

```
# git clone https://github.com/brendangregg/FlameGraph
# cd FlameGraph
# perf record -F 49 -ag -- sleep 30
# perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf.svg
```

https://medium.com/netflix-techblog/java-in-flames-e763b3d32166

aws

Tracing Tools: ftrace

- Part of the Linux kernel
 - First added in 2.6.27 (2008), and enhanced in later releases
 - Already available in all Netflix Linux instances
- Front-end tools aid usage: perf-tools collection
 - https://github.com/brendangregg/perf-tools
 - Unsupported hacks: see WARNINGs
 - Also see the trace-cmd front-end, as well as perf

ftrace tool: iosnoop

<pre># /apps/perf-to Tracing block 1</pre>	ools/bin/iosnoop [/0. Ctrl-C to e	o -ts end.						
STARTS	ENDS	COMM	PID	TYPE	DEV	BLOCK	BYTES	LATMS
5982800.302061	5982800.302679	supervise	1809	W	202,1	17039600	4096	0.62
5982800.302423	5982800.302842	supervise	1809	W	202,1	17039608	4096	0.42
5982800.304962	5982800.305446	supervise	1801	W	202,1	17039616	4096	0.48
5982800.305250	5982800.305676	supervise	1801	W	202,1	17039624	4096	0.43
[]								
# /apps/perf-to USAGE: iosnoop	ools/bin/iosnoop [-hQst] [-d dev -d device -i iotype -n name -p PID -Q -s -t	b - h /ice] [-i id # device # match # proces # PID to # inclue # inclue # inclue	otype] e stri type ss nam o matc de que de sta de com	[-p] ng (eg (eg, e to r h on I ueing rt tir pletic	PID] [- g, "202 '*R*' fo natch o I/O iss time i ne of I on time	n name] [d ,1) or all rea n I/O issu ue n LATms /O (s) of I/O (s	uration ds) e)	ו]
[]								

Tracing tools: perf

```
# perf record -e skb:consume_skb -ag -- sleep 10
# perf report
[...]
    74.42% swapper [kernel.kallsyms] [k] consume_skb
                consume skb
                arp_process
                arp_rcv
                                                  Summarizing stack traces for a
                __netif_receive_skb_core
                                                  tracepoint
                ___netif_receive_skb
                netif_receive_skb
                virtnet_poll
                                                   perf can do many things, it is
                net_rx_action
                                                  hard to pick just one example
                 __do_softirq
                irq_exit
                do_IRQ
                 ret from intr
٢...٦
```

Tracing tools: BPF

- Enhanced Berkeley Packet Filter (BPF, aka eBPF)
 - Safe, efficient, advanced, production tracing. Best on Linux 4.9+.

BPF: tcplife

# /usı	r/share/bcc,	/tools/tcplife						
PID	COMM	LADDR	LPORT	RADDR	RPORT	TX_KB	RX_KB	MS
2509	java	100.82.34.63	8078	100.82.130.159	12410	0	0	5.44
2509	java	100.82.34.63	8078	100.82.78.215	55564	0	0	135.32
2509	java	100.82.34.63	60778	100.82.207.252	7001	0	13	15126.87
2509	java	100.82.34.63	38884	100.82.208.178	7001	0	0	15568.25
2509	java	127.0.0.1	4243	127.0.0.1	42166	0	0	0.61
12030	upload-mes	127.0.0.1	34020	127.0.0.1	8078	11	0	3.38
12030	upload-mes	127.0.0.1	21196	127.0.0.1	7101	0	0	12.61
3964	mesos-slav	127.0.0.1	7101	127.0.0.1	21196	0	0	12.64
12021	upload-sys	127.0.0.1	34022	127.0.0.1	8078	372	0	15.28
2509	java	127.0.0.1	8078	127.0.0.1	34022	0	372	15.31
2235	dockerd	100.82.34.63	13730	100.82.136.233	7002	0	4	18.50
2235	dockerd	100.82.34.63	34314	100.82.64.53	7002	0	8	56.73
Г Т								

Dynamic tracing of TCP set state only; does *not* trace send/receive https://github.com/iovisor/bcc includes other TCP tools

. . .

Hardware counters

- Model Specific Registers (MSRs)
 - Basic details: Timestamp clock, temperature, power
 - Some are available in Amazon EC2
- Performance Monitoring Counters (PMCs)
 - Advanced details: Cycles, stall cycles, cache misses...
 - Availability depends on instance type: either none, some, or all
- Root cause CPU usage at the cycle level
 - E.g., higher CPU usage due to more memory stall cycles

MSRs

- Can be used to verify real CPU clock rate
 - Can vary with turboboost. Important to know for perf comparisons.
 - Tool from https://github.com/brendangregg/msr-cloud-tools:

PMCs: Architectural

• Some instance types (e.g., m4.16xl) support the PMC architectural set:

Event Name	UMask	Event Select	Example Event Mask Mnemonic
UnHalted Core Cycles	00H	3CH	CPU_CLK_UNHALTED.THREAD_P
Instruction Retired	00H	СОН	INST_RETIRED.ANY_P
UnHalted Reference Cycles	01H	3CH	CPU_CLK_THREAD_UNHALTED.REF_XCLK
LLC Reference	4FH	2EH	LONGEST_LAT_CACHE.REFERENCE
LLC Misses	41H	2EH	LONGEST_LAT_CACHE.MISS
Branch Instruction Retired	00H	C4H	BR_INST_RETIRED.ALL_BRANCHES
Branch Misses Retired	00H	C5H	BR_MISP_RETIRED.ALL_BRANCHES

http://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

PMCs: All

• All PMCs are available on this c5.18xl:

```
# perf stat -d -a -- sleep 5
```

Performance counter stats for 'system wide':

```
360195.435103

38,733

504

861,393

2,275,234,239

191,859,050,716

38,989,119,249

152,913,791

40,262,604,776

283,924,939

[...]
```

cpu-clock (msec) context-switches cpu-migrations page-faults cycles instructions branches branches L1-dcache-loads L1-dcache-load-misses

```
# 71.454 CPUs utilized
# 0.108 K/sec
# 0.001 K/sec
# 0.002 M/sec
# 0.006 GHz
# 84.32 insn per cycle
# 108.244 M/sec
# 0.39% of all branches
# 111.780 M/sec
# 0.71% of all L1-dcache hits
```


Netflix Atlas

• Cloud-wide and instance monitoring:

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Netflix Atlas

- All metrics in one system
- System metrics:
 - CPU usage, disk I/O, memory...
- Application metrics:
 - Requests completed, latency percentiles, errors...
- Filters/breakdowns by region, application, ASG, metric, instance

name: \bigcirc cpu "cpu" ssCpuUtilization CpuRawidle CpuRawInterrupt CpuRawKernel CpuRawNice CpuRawSystem CpuRawUser CpuRawWait ssCpuIdle ssCpuSystem ssCpuUser JvmMetrics_getProcessCpu JvmMetrics_getProcessCpuRollingMedian JvmMetrics_getSystemCpu JvmMetrics_getSystemCpuRollingMedian ProcessCpuLoad Procoss Cou Timo

Netflix Vector

• Real-time per-second instance metrics:

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Vector on-demand flame graphs

Widg	get -	Window 2 min	Flame Graph
CPU Memory Network	+ + +		
Disk	•		
Task		CPU Flame Graph (task)	
Container	•	Package Name CPU Flame Graph (task)	
Default Widgets Clear Widgets		Uninlined CPU Flame Graph (task) Page Fault Flame Graph (task) Disk I/O Flame Graph (task)	Marcine Marcine <t< td=""></t<>
Reset Dashboard		IPC Flame Graph (task) Context Switch Flame Graph (task)	Image: State of the s
		Off-CPU Time Flame Graph (task)	In: Javaling/Threads.com cell stab JavaCalis:coll.yhter JavaCalis:coll.yhter
		Off-Wake Time Flame Graph (task)	avaCate:real; virtual thread; entry P. JavaTinesd; thread; main, inner G. JavaTinesd; thread; main

Vector

- Given an instance, analyze low-level performance
- On-demand flame graphs
 - CPU, off-CPU, context switch, IPC, page fault, disk I/O
 - These use perf or BPF
- Quick
 - GUI-driven root cause analysis
- Scalable
 - Other teams can use it easily

Summary

- 1. Instance selection
- 2. Amazon EC2 features
- 3. Kernel tuning
- 4. Methodologies
- 5. Observability

References & links

- Amazon EC2:
 - <u>http://aws.amazon.com/ec2/instance-types/</u>
 - <u>http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html</u>
 - <u>http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html</u>
 - <u>https://www.slideshare.net/AmazonWebServices/cmp402-amazon-ec2-instances-deep-dive</u>
 - <u>http://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html</u>
- Netflix on EC2:
 - <u>http://www.slideshare.net/cpwatson/cpn302-yourlinuxamioptimizationandperformance</u>
 - <u>http://www.brendangregg.com/blog/2014-09-27/from-clouds-to-roots.html</u>
 - <u>http://techblog.cloudperf.net/2016/05/2-million-packets-per-second-on-public.html</u>
 - <u>http://techblog.cloudperf.net/2017/04/3-million-storage-iops-on-aws-cloud.html</u>
- Performance Analysis:
 - <u>http://www.brendangregg.com/linuxperf.html</u>
 - <u>http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html</u>
 - <u>https://github.com/iovisor/bcc</u> <u>https://github.com/brendangregg/perf-tools</u>
 - <u>https://www.slideshare.net/brendangregg/velocity-2015-linux-perf-tools</u>
 - <u>http://www.brendangregg.com/USEmethod/use-linux.html</u>
 - <u>https://medium.com/netflix-techblog/java-in-flames-e763b3d32166</u>
 - <u>http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html#Java</u>
 - <u>https://github.com/brendangregg/FlameGraph</u>

Netflix talks @ re:Invent

Monday 10:45am ARC208:Walking the tightrope: Balancing Innovation, Reliability, Security, and Efficiency (Venetian) 12:15pm SID206: Best Practices for Managing Security on AWS (MGM) Tuesday 10:45am ARC209: A Day in the Life of a Netflix Engineer (Venetian) 11:30am CMP325: How Netflix Tunes EC2 Instances for Performance (Venetian) Wednesdav 11:30am MCL317: Orchestrating ML Training for Netflix Recommendations (Venetian) 12:15pm NET303: A day in the life of a Cloud Network Engineer at Netflix (Venetian) 1:00pm ARC312: Why Regional Reservations are a Game Changer for Netflix (Venetian) 1:00pm SID304: SecOps 2021 Today: Using AWS Services to Deliver SecOps (MGM) 1:45pm DEV334: Performing Chaos at Netflix Scale (Venetian) 4:45pm SID316: Using Access Advisor to Strike the Balance Between Security and Usability (MGM) Thursday 12:15pm CMP311: Auto Scaling Made Easy: How Target Tracking Scaling Policies Hit the Bullseye (Palazzo) 12:15pm DAT308: Codex: Conditional Modules Strike Back (Venetian) 12:55pm CMP309: How Netflix Encodes at Scale (Venetian) 5:00pm ABD401: How Netflix Monitors Applications Real Time with Kinesis (Aria) Friday 8:30am ABD319: Tooling Up For Efficiency: DIY Solutions @ Netflix (Aria) 10:00am ABD401: Netflix Keystone SPaaS - Real-time Stream Processing as a Service (Aria)

CMP325

AWS REINCENT Thank you!

Brendan Gregg, Netflix Performance and Operating Systems Team @brendangregg

