
Java Mixed-Mode
Flame Graphs
Brendan Gregg Senior Performance Architect

Oct	
 2015	

Understanding Java CPU usage
quickly and completely

Quickly

•  Via SSH and open source tools (covered in this talk)
•  Or using Netflix Vector GUI (also open source):

1. Observe high CPU usage
2. Generate a flame graph

Java Mixed-Mode Flame Graph
via Linux perf_events:

Completely

Java JVM

Kernel

GC

Messy House Fallacy

•  Don't overlook system code: kernel, libraries, etc.

Fallacy:	
 my	
 code	
 is	
 a	
 mess,	
 I	
 bet	
 yours	
 is	

immaculate,	
 therefore	
 the	
 bug	
 must	
 be	
 mine	

	

Reality:	
 everyone's	
 code	
 is	
 terrible	
 and	
 buggy	

Context

•  Over 60 million subscribers
–  Just launched in Spain!

•  AWS EC2 Linux cloud
•  FreeBSD CDN
•  Awesome place to work

 Cloud
•  Tens of thousands of AWS EC2 instances
•  Mostly running Java applications (Oracle JVM)

Linux	
 (usually	
 Ubuntu)	

Java	
 (JDK	
 8)	

Tomcat	
 GC	
 and	

thread	

dump	

logging	

hystrix,	
 metrics	
 (Servo),	

health	
 check	

OpMonal	
 Apache,	

memcached,	
 Node.js,	

…	

Atlas,	
 S3	
 log	
 rotaMon,	

sar,	
 Trace,	
 perf,	
 stap,	

perf-­‐tools	

Vector,	
 pcp	

ApplicaMon	
 war	
 files,	

plaYorm,	
 base	
 servlet	

Why we need CPU profiling

•  Improving performance
–  Identify tuning targets
–  Incident response
–  Non-regression testing
–  Software evaluations
–  CPU workload

characterization
•  Cost savings

–  ASGs often scale on load
average (CPU), so CPU
usage is proportional to cost

Instance	

Instance	

Instance	

Scaling	
 Policy	

loadavg,	
 latency,	
 …	

	

Cl
ou

dW
at
ch
,	
 S
er
vo
	

Auto	
 Scaling	

Group	

The Problem with Profilers

Java Profilers

Java

GC

Kernel,
libraries,
JVM

Java Profilers

•  Visibility
–  Java method execution
–  Object usage
–  GC logs
–  Custom Java context

•  Typical problems:
–  Sampling often happens at safety/yield points (skew)
–  Method tracing has massive observer effect
–  Misidentifies RUNNING as on-CPU (e.g., epoll)
–  Doesn't include or profile GC or JVM CPU time
–  Tree views not quick (proportional) to comprehend

•  Inaccurate (skewed) and incomplete profiles

System Profilers

Java Kernel
TCP/IP

GC

Idle
thread Time

Locks epoll JVM

System Profilers

•  Visibility
–  JVM (C++)
–  GC (C++)
–  libraries (C)
–  kernel (C)

•  Typical problems (x86):
–  Stacks missing for Java
–  Symbols missing for Java methods

•  Other architectures (e.g., SPARC) have fared better
•  Profile everything except Java

Workaround

•  Capture both Java and system profiles, and examine
side by side

•  An improvement, but Java context is often crucial for
interpreting system profiles

Java System

Java Mixed-Mode Flame Graph

Solution

Java JVM

Kernel

GC

Solution

•  Fix system profiling
–  Only way to see it all

•  Visibility is everything:
–  Java methods
–  JVM (C++)
–  GC (C++)
–  libraries (C)
–  kernel (C)

•  Minor Problems:
–  0-3% CPU overhead to enable frame pointers (usually <1%).
–  Symbol dumps can consume a burst of CPU

•  Complete and accurate (asynchronous) profiling

Java
JVM

Kernel

GC

Simple Production Example

1.  Poor performance,
and one CPU at 100%

2.  perf_events flame
graph shows JVM
stuck compiling

Another System Example

Exception handling consuming CPU

DEMO

FlameGraph_tomcat01.svg

Exonerating The System

•  From last week:
-  Frequent thread creation/

destruction assumed to be
consuming CPU resources.
Recode application?

-  A flame graph quantified this
CPU time: near zero

-  Time mostly other Java methods

Profiling GC

GC internals, visualized:

CPU Profiling

CPU Profiling

A
B

block interrupt

on-CPU off-CPU

A
B
A A

B
A

syscall

time

•  Record stacks at a timed interval: simple and effective
–  Pros: Low (deterministic) overhead
–  Cons: Coarse accuracy, but usually sufficient

stack
samples: A

Stack Traces

•  A code path snapshot. e.g., from jstack(1):

$ jstack 1819

[…]

"main" prio=10 tid=0x00007ff304009000

nid=0x7361 runnable [0x00007ff30d4f9000]

 java.lang.Thread.State: RUNNABLE

at Func_abc.func_c(Func_abc.java:6)

at Func_abc.func_b(Func_abc.java:16)

at Func_abc.func_a(Func_abc.java:23)

at Func_abc.main(Func_abc.java:27)

running
parent
g.parent
g.g.paren

running

codepath

start

System Profilers

•  Linux
–  perf_events (aka "perf")

•  Oracle Solaris
–  DTrace

•  OS X
–  Instruments

•  Windows
–  XPerf

•  And many others…

Linux perf_events

•  Standard Linux profiler
–  Provides the perf command (multi-tool)
–  Usually pkg added by linux-tools-common, etc.

•  Features:
–  Timer-based sampling
–  Hardware events
–  Tracepoints
–  Dynamic tracing

•  Can sample stacks of (almost) everything on CPU
–  Can miss hard interrupt ISRs, but these should be near-zero. They can

be measured if needed (I wrote my own tools)

perf record Profiling

•  Stack profiling on all CPUs at 99 Hertz, then dump:
perf record -F 99 -ag -- sleep 30
[perf record: Woken up 9 times to write data]
[perf record: Captured and wrote 2.745 MB perf.data (~119930 samples)]
perf script
[…]
bash 13204 cpu-clock:
 459c4c dequote_string (/root/bash-4.3/bash)
 465c80 glob_expand_word_list (/root/bash-4.3/bash)
 466569 expand_word_list_internal (/root/bash-4.3/bash)
 465a13 expand_words (/root/bash-4.3/bash)
 43bbf7 execute_simple_command (/root/bash-4.3/bash)
 435f16 execute_command_internal (/root/bash-4.3/bash)
 435580 execute_command (/root/bash-4.3/bash)
 43a771 execute_while_or_until (/root/bash-4.3/bash)
 43a636 execute_while_command (/root/bash-4.3/bash)
 436129 execute_command_internal (/root/bash-4.3/bash)
 435580 execute_command (/root/bash-4.3/bash)
 420cd5 reader_loop (/root/bash-4.3/bash)
 41ea58 main (/root/bash-4.3/bash)
 7ff2294edec5 __libc_start_main (/lib/x86_64-linux-gnu/libc-2.19.so)
[… ~47,000 lines truncated …]

one
stack
sample

perf report Summary

•  Generates a call tree and combines samples:
perf report -n -stdio
[…]
Overhead Samples Command Shared Object Symbol
........
#
 20.42% 605 bash [kernel.kallsyms] [k] xen_hypercall_xen_version
 |
 --- xen_hypercall_xen_version
 check_events
 |
 |--44.13%-- syscall_trace_enter
 | tracesys
 | |
 | |--35.58%-- __GI___libc_fcntl
 | | |
 | | |--65.26%-- do_redirection_internal
 | | | do_redirections
 | | | execute_builtin_or_function
 | | | execute_simple_command
[… ~13,000 lines truncated …]

call tree
summary

Flame Graphs

perf report Verbosity

•  Despite summarizing, output is still verbose
perf report -n -stdio
[…]
Overhead Samples Command Shared Object Symbol
........
#
 20.42% 605 bash [kernel.kallsyms] [k] xen_hypercall_xen_version
 |
 --- xen_hypercall_xen_version
 check_events
 |
 |--44.13%-- syscall_trace_enter
 | tracesys
 | |
 | |--35.58%-- __GI___libc_fcntl
 | | |
 | | |--65.26%-- do_redirection_internal
 | | | do_redirections
 | | | execute_builtin_or_function
 | | | execute_simple_command
[… ~13,000 lines truncated …]

Full perf report Output

… as a Flame Graph

Flame Graphs

•  Flame Graphs:
–  x-axis: alphabetical stack sort, to maximize merging
–  y-axis: stack depth
–  color: random (default), or a dimension

•  Currently made from Perl + SVG + JavaScript
–  Multiple d3 versions are being developed

•  Easy to get working
–  http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
–  Above commands are Linux; see URL for other OSes

git clone --depth 1 https://github.com/brendangregg/FlameGraph
cd FlameGraph
perf record -F 99 -a –g -- sleep 30
perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf.svg

Linux perf_events Workflow

perf stat perf record

perf report perf script

count events capture stacks

text UI dump profile

stackcollapse-perf.pl

flamegraph.pl

perf.data	

flame graph
visualization

perf list

list events

Typical
Workflow

Flame Graph Interpretation

a()

b() h()

c()

d()

e() f()

g()

i()

Flame Graph Interpretation (1/3)

Top edge shows who is running on-CPU,
and how much (width)

a()

b() h()

c()

d()

e() f()

g()

i()

Flame Graph Interpretation (2/3)

Top-down shows ancestry
e.g., from g():

h()

d()

e()

i()

a()

b()

c()

f()

g()

Flame Graph Interpretation (3/3)

a()

b() h()

c()

d()

e() f()

g()

i()

Widths are proportional to presence in samples
e.g., comparing b() to h() (incl. children)

Flame Graph Colors

•  Randomized by default
•  Can be used as a dimension. e.g.:

–  Mixed-mode flame graphs
–  Differential flame graphs
–  Search

Mixed-Mode Flame Graphs

•  Hues:
–  green == Java
–  red == system
–  yellow == C++

•  Intensity randomized
to differentiate frames
–  Or hashed based on

function name

Java JVM
Kernel

Mixed-Mode

Differential Flame Graphs

•  Hues:
–  red == more samples
–  blue == less samples

•  Intensity shows the
degree of difference

•  Used for comparing
two profiles

•  Also used for showing
other metrics: e.g., CPI

Differential

more less

Flame Graph Search

•  Color: magenta to show matched frames

search
button

Flame Charts

•  Flame charts: x-axis is time
•  Flame graphs: x-axis is population (maximize merging)

•  Final note: these are useful, but are not flame graphs

Stack Tracing

System Profiling Java on x86

•  For example,
using Linux perf

•  The stacks are
1 or 2 levels
deep, and have
junk values

perf record –F 99 –a –g – sleep 30
perf script
[…]
java 4579 cpu-clock:
 ffffffff8172adff tracesys ([kernel.kallsyms])
 7f4183bad7ce pthread_cond_timedwait@@GLIBC_2…

java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f4179101c97 [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/perf-4458.map)
 a2d53351ff7da603 [unknown] ([unknown])

java 4579 cpu-clock:
 7f4179349aec [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f4179101d0f [unknown] (/tmp/perf-4458.map)
[…]

… as a Flame Graph

Broken Java stacks
(missing frame pointer)

Why Stacks are Broken

•  On x86 (x86_64), hotspot uses
the frame pointer register (RBP)
as general purpose

•  This "compiler optimization"
breaks (simple) stack walking

•  Once upon a time, x86 had fewer
registers, and this made much more sense

•  gcc provides -fno-omit-frame-pointer to avoid
doing this, but the JVM had no such option…

Fixing Stack Walking

Possibilities:
A.  Fix frame pointer-based stack walking (the default)

–  Pros: simple, supported by many tools
–  Cons: might cost a little extra CPU

B.  Use a custom walker (likely needing kernel support)
–  Pros: full stack walking (incl. inlining) & arguments
–  Cons: custom kernel code, can cost more CPU when in use

C.  Try libunwind and DWARF
–  Even feasible with JIT?

Our current preference is (A)

Hacking OpenJDK (1/2)

•  As a proof of concept, I hacked hotspot to support an
x86_64 frame pointer

--- openjdk8clean/hotspot/src/cpu/x86/vm/x86_64.ad 2014-03-04 …
+++ openjdk8/hotspot/src/cpu/x86/vm/x86_64.ad 2014-11-08 …
@@ -166,10 +166,9 @@
 // 3) reg_class stack_slots(/* one chunk of stack-based "registers" */)
 //

-// Class for all pointer registers (including RSP)
+// Class for all pointer registers (including RSP, excluding RBP)
 reg_class any_reg(RAX, RAX_H,
 RDX, RDX_H,
- RBP, RBP_H,
 RDI, RDI_H,
 RSI, RSI_H,
 RCX, RCX_H,
[...]

Remove RBP from
register pools

Hacking OpenJDK (2/2)

•  We used this patched version successfully for some limited
(and urgent) performance analysis

--- openjdk8clean/hotspot/src/cpu/x86/vm/macroAssembler_x86.cpp 2014-03-04…
+++ openjdk8/hotspot/src/cpu/x86/vm/macroAssembler_x86.cpp 2014-11-07 …
@@ -5236,6 +5236,7 @@
 // We always push rbp, so that on return to interpreter rbp, will be
 // restored correctly and we can correct the stack.
 push(rbp);
+ mov(rbp, rsp);
 // Remove word for ebp
 framesize -= wordSize;

--- openjdk8clean/hotspot/src/cpu/x86/vm/c1_MacroAssembler_x86.cpp …
+++ openjdk8/hotspot/src/cpu/x86/vm/c1_MacroAssembler_x86.cpp …
[...]

Fix x86_64 function
prologues

-XX:+PreserveFramePointer

•  We shared our patch publicly
–  See "A hotspot patch for stack profiling (frame pointer)" on the

hotspot complier dev mailing list
–  It became JDK-8068945 for JDK 9 and JDK-8072465 for JDK 8,

and the -XX:+PreserveFramePointer option

•  Zoltán Majó (Oracle) took this on, rewrote it, and it is now:
–  In JDK 9
–  In JDK 8 update 60 build 19
–  Thanks to Zoltán, Oracle, and the other hotspot engineers for

helping get this done!
•  It might cost 0 – 3% CPU, depending on workload

Broken Java Stacks (before)

•  Check with "perf
script" to see stack
samples

•  These are 1 or 2
levels deep (junk
values)

perf script
[…]
java 4579 cpu-clock:
 ffffffff8172adff tracesys ([kernel.kallsyms])
 7f4183bad7ce pthread_cond_timedwait@@GLIBC_2…

java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f4179101c97 [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/perf-4458.map)
 a2d53351ff7da603 [unknown] ([unknown])

java 4579 cpu-clock:
 7f4179349aec [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f4179101d0f [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f417908c194 [unknown] (/tmp/perf-4458.map)
[…]

Fixed Java Stacks

•  With -XX:
+PreserveFramePointer
stacks are full, and
go all the way to
start_thread()

•  This is what the
CPUs are really
running: inlined
frames are not
present

perf script
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
 7fd30184def8 [unknown] (/tmp/perf-8131.map)
 7fd30174f544 [unknown] (/tmp/perf-8131.map)
 7fd30175d3a8 [unknown] (/tmp/perf-8131.map)
 7fd30166d51c [unknown] (/tmp/perf-8131.map)
 7fd301750f34 [unknown] (/tmp/perf-8131.map)
 7fd3016c2280 [unknown] (/tmp/perf-8131.map)
 7fd301b02ec0 [unknown] (/tmp/perf-8131.map)
 7fd3016f9888 [unknown] (/tmp/perf-8131.map)
 7fd3016ece04 [unknown] (/tmp/perf-8131.map)
 7fd30177783c [unknown] (/tmp/perf-8131.map)
 7fd301600aa8 [unknown] (/tmp/perf-8131.map)
 7fd301a4484c [unknown] (/tmp/perf-8131.map)
 7fd3010072e0 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd3010004e7 [unknown] (/tmp/perf-8131.map)
 7fd3171df76a JavaCalls::call_helper(JavaValue*,…
 7fd3171dce44 JavaCalls::call_virtual(JavaValue*…
 7fd3171dd43a JavaCalls::call_virtual(JavaValue*…
 7fd31721b6ce thread_entry(JavaThread*, Thread*)…
 7fd3175389e0 JavaThread::thread_main_inner() (/…
 7fd317538cb2 JavaThread::run() (/usr/lib/jvm/nf…
 7fd3173f6f52 java_start(Thread*) (/usr/lib/jvm/…
 7fd317a7e182 start_thread (/lib/x86_64-linux-gn…

Fixed Stacks Flame Graph

Java stacks
(but no symbols)

Stacks & Inlining

•  Frames may be missing (inlined)
•  Disabling inlining:

–  -XX:-Inline
–  Many more Java frames
–  Can be 80% slower!

•  May not be necessary
–  Inlined flame graphs often make

enough sense
–  Or tune -XX:MaxInlineSize and

-XX:InlineSmallCode a little to reveal more frames
•  Can even improve performance!

•  perf-map-agent (next) has experimental un-inline support

No inlining

Symbols

Missing Symbols

 12.06% 62 sed sed [.] re_search_internal
 |
 --- re_search_internal
 |
 |--96.78%-- re_search_stub
 | rpl_re_search
 | match_regex
 | do_subst
 | execute_program
 | process_files
 | main
 | __libc_start_main

 71.79% 334 sed sed [.] 0x000000000001afc1
 |
 |--11.65%-- 0x40a447
 | 0x40659a
 | 0x408dd8
 | 0x408ed1
 | 0x402689
 | 0x7fa1cd08aec5

broken

not broken

•  Missing symbols may show up as hex; e.g., Linux perf:

Fixing Symbols

•  For JIT'd code, Linux perf already looks for an
externally provided symbol file: /tmp/perf-PID.map, and
warns if it doesn't exist

•  This file can be created by a Java agent

perf script
Failed to open /tmp/perf-8131.map, continuing without symbols
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
[…]

Java Symbols for perf

•  perf-map-agent
–  https://github.com/jrudolph/perf-map-agent
–  Agent attaches and writes the /tmp file on demand (previous

versions attached on Java start, wrote continually)
–  Thanks Johannes Rudolph!

•  Use of a /tmp symbol file
–  Pros: simple, can be low overhead (snapshot on demand)
–  Cons: stale symbols

•  Using a symbol logger with perf instead
–  Patch by Stephane Eranian currently being discussed on

lkml; see "perf: add support for profiling jitted code"

Java Mixed-Mode Flame Graph

Stacks & Symbols

Java JVM

Kernel

GC

Stacks & Symbols (zoom)

Instructions

Instructions

1.  Check Java version
2.  Install perf-map-agent
3.  Set -XX:+PreserveFramePointer
4.  Profile Java
5.  Dump symbols
6.  Generate Mixed-Mode Flame Graph

Note these are unsupported: use at your own risk

Reference: http://techblog.netflix.com/2015/07/java-in-flames.html

1. Check Java Version

•  Need JDK8u60 or better
–  for -XX:+PreserveFramePointer

•  Upgrade Java if necessary

$ java -version
java version "1.8.0_60"
Java(TM) SE Runtime Environment (build 1.8.0_60-b27)
Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)

2. Install perf-map-agent

•  Check https://github.com/jrudolph/perf-map-agent for the
latest instructions. e.g.:

$ sudo bash
apt-get install -y cmake
export JAVA_HOME=/usr/lib/jvm/java-8-oracle
cd /usr/lib/jvm
git clone --depth=1 https://github.com/jrudolph/perf-map-agent
cd perf-map-agent
cmake .
make

3. Set -XX:+PreserveFramePointer

•  Needs to be set on Java startup
•  Check it is enabled (on Linux):
$ ps wwp `pgrep –n java` | grep PreserveFramePointer

4. Profile Java

•  Using Linux perf_events to profile all processes, at 99
Hertz, for 30 seconds (as root):

•  Just profile one PID (broken on some older kernels):

•  These create a perf.data file

perf record -F 99 -a -g -- sleep 30

perf record -F 99 -p PID -g -- sleep 30

5. Dump Symbols

•  See perf-map-agent docs for updated usage
•  e.g., as the same user as java:

•  perf-map-agent contains helper scripts. I wrote my own:
–  https://github.com/brendangregg/Misc/blob/master/java/jmaps

•  Dump symbols quickly after perf record to minimize stale
symbols. How I do it:

$ cd /usr/lib/jvm/perf-map-agent/out
$ java -cp attach-main.jar:$JAVA_HOME/lib/tools.jar \
 net.virtualvoid.perf.AttachOnce PID

perf record -F 99 -a -g -- sleep 30; jmaps

6. Generate a Mixed-Mode Flame Graph

•  Using my FlameGraph software:

–  perf script reads perf.data with /tmp/*.map
–  out.stacks01 is an intermediate file; can be handy to keep

•  Finally open flame01.svg in a browser
•  Check for newer flame graph implementations (e.g., d3)

perf script > out.stacks01
git clone --depth=1 https://github.com/brendangregg/FlameGraph
cat out.stacks01 | ./FlameGraph/stackcollapse-perf.pl | \
 ./FlameGraph/flamegraph.pl --color=java --hash > flame01.svg

Automation

Netflix Vector

Netflix Vector

Near real-time,
per-second metrics

Flame Graphs

Select
Metrics

Select Instance

Netflix Vector

•  Open source, on-demand, instance analysis tool
–  https://github.com/netflix/vector

•  Shows various real-time metrics
•  Flame graph support currently in development

–  Automating previous steps
–  Using it internally already
–  Also developing a new d3 front end

DEMO

d3-flame-graph

Advanced Analysis

Linux perf_events Coverage

… all possible with Java stacks

Advanced Flame Graphs

•  Examples:
–  Page faults
–  Context switches
–  Disk I/O requests
–  TCP events
–  CPU cache misses
–  CPI

•  Any event issued in synchronous Java context

Synchronous Java Context

•  Java thread still on-CPU, and event is directly triggered
•  Examples:

–  Disk I/O requests issued directly by Java à yes
•  direct reads, sync writes, page faults

–  Disk I/O completion interrupts à no*
–  Disk I/O requests triggered async, e.g., readahead à no*

* can be made yes by tracing and associating context

Page Faults

•  Show what triggered main memory (resident) to grow:

•  "fault" as (physical) main memory is allocated on-
demand, when a virtual page is first populated

•  Low overhead tool to solve some types of memory leak

perf record -e page-faults -p PID -g -- sleep 120

RES column in top(1) grows
because

Page Fault Flame Graph

GC

Java code
epoll

Context Switches

•  Show why Java blocked and stopped running on-CPU:

•  Identifies locks, I/O, sleeps
–  If code path shouldn't block and looks random, it's an involuntary context switch. I

could filter these, but you should have solved them beforehand (CPU load).

•  e.g., was used to understand framework differences:

perf record -e context-switches -p PID -g -- sleep 5

vs

rxNetty Tomcat

Context Switch Flame Graph (1/2)

rxNetty

epoll futex

Context Switch Flame Graph (2/2)

Tomcat sys_poll

futex

Disk I/O Requests

•  Shows who issued disk I/O (sync reads & writes):

•  e.g.: page faults in GC? This JVM has swapped out!:

perf record -e block:block_rq_insert -a -g -- sleep 60

GC

TCP Events

•  TCP transmit, using dynamic tracing:

•  Note: can be high overhead for high packet rates
–  For the current perf trace, dump, post-process cycle

•  Can also trace TCP connect & accept (lower overhead)
•  TCP receive is async

–  Could trace via socket read

perf probe tcp_sendmsg
perf record -e probe:tcp_sendmsg -a -g -- sleep 1; jmaps
perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso,trace > out.stacks
perf probe --del tcp_sendmsg

TCP Send Flame Graph

kernel

Java

JVM

Only one code-path
taken in this example

ab (client process)

CPU Cache Misses

•  In this example, sampling via Last Level Cache loads:

•  -c is the count (samples

once per count)
•  Use other CPU counters to

sample hits, misses, stalls

perf record -e LLC-loads -c 10000 -a -g -- sleep 5; jmaps
perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso > out.stacks

One Last Example

•  Back to a
mixed-mode
CPU flame graph

•  What else can we
show with color?

CPI Flame Graph

•  Cycles Per
Instruction!
–  red == instruction

heavy
–  blue == cycle

heavy (likely mem
stall cycles)

zoomed:

Links & References
•  Flame Graphs

–  http://www.brendangregg.com/flamegraphs.html
–  http://techblog.netflix.com/2015/07/java-in-flames.html
–  http://techblog.netflix.com/2014/11/nodejs-in-flames.html
–  http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html

•  Linux perf_events
–  https://perf.wiki.kernel.org/index.php/Main_Page
–  http://www.brendangregg.com/perf.html
–  http://www.brendangregg.com/blog/2015-02-27/linux-profiling-at-netflix.html

•  Netflix Vector
–  https://github.com/netflix/vector
–  http://techblog.netflix.com/2015/04/introducing-vector-netflixs-on-host.html

•  JDK tickets
–  JDK8: https://bugs.openjdk.java.net/browse/JDK-8072465
–  JDK9: https://bugs.openjdk.java.net/browse/JDK-8068945

•  hprof: http://www.brendangregg.com/blog/2014-06-09/java-cpu-sampling-using-hprof.html

Thanks

•  Questions?
•  http://techblog.netflix.com
•  http://slideshare.net/brendangregg
•  http://www.brendangregg.com
•  bgregg@netflix.com
•  @brendangregg

Oct	
 2015	

