Fast by Friday

Why Kernel Superpowers are Essential

A = Brendan Gregg
erne| sy

ecipes - t I
E'!dition In e e

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

What would it take
to solve any computer performance issue
in 5 days”?

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Imagine solving the performance of anything

Operating systems, kernels, web browsers, phones, applications,
websites, microservices, processors, Al, etc,, ...

Examples: Linux, Windows, Firefox, Google docs, Minecraft,
Amazon.com, Intel GPUs, pytorch, etc., ...

Websites should load in the blink of an eye.

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Timely performance analysis allows faster and more efficient
software/hardware/tuning options to be adopted

Good for the environment: Less cycles, energy, carbon

Good for innovation: Rewards investment in engineering
Good for companies: Less compute expense
Good for end-users: Lower latency, cheaper products

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

A vision:

Kernel Recipes 2023

"Fast by Friday":

Any computer performance issue
reported on Monday
should be solved by Friday
(or sooner)

Fast by Friday: Why Kernel Superpowers are Essential

Definitions

"Fast by Friday":

Any computer performance issue
reported on Monday
should be solved by Friday
(or sooner)

Issues: any performance analysis task, especially SW/HW evaluations

Solved by friday: doesn't mean fixed, it means root cause(s) known

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

"Fast by Friday" is...

A vision

A way of thinking

A call to action

A methodology

A practical deadline

| want to completely understand the performance of everything...in 5 days

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

The first of three activities

1. Found Performance root cause(s) known
2. Fixed Fix developed
3. Deployed Fixed everywhere

"Fast by Friday" focuses on (1) as it's often the biggest obstacle.

Yes, even for the Linux kernel. Show me a 2x perf fix and I'll show you comparies running it by Friday.
If the wasted cores paper was widely applicable, I'd have a pretty good example.

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

The Problem

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Expected performance improvement for computing products

Product Performance: Hypothetical

2018 2019 2020 2021 2022 2023 2024 2025

Performance

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

10

Example reality

Product Performance: Actual

Performance

2018 2019 2020 2021 2022 2023 2024 2025

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

11

Example reality: 3 issues

Product Performance: Actual

Not enough time
to properly analyze
all new software/

(O]
§ hardware/compiler Regression not
% options (e.g., icx!) solved in time
T©
k3 Bottleneck not

found in time m

] ﬁ

2018 2019 2020 2021 2022 2023 2024 2025

We, engineers, have to fix this!

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

\

/

\

Amount
of lost
performance

£

—_—

<z

12

Problem: Computers are getting increasingly complex

Processor GPU
DRAM Processor { Processor DRAM chiplet chiplet | accelerators |
il HBM J—
: > | chiplet chiplet -\ QAT| 5 . FPGA/ |
Bridge E-cores E-cores i s : ‘
[: bevosememon ‘ -~ TPU/
NICs HBAs IPU ‘ . DPU |
e
NICs |
Just one example (computer hardware) of increasing complexity. l HBAS | DRAM
Software is worse! } eBPF |

Performance issues can now go unsolved for weeks, months, years
Product decisions miss improvements as analysis and tuning takes too long

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential 13

Analogy: Car performance

You build the world's fastest car, but the customer says: "it isn't"

You investigate and discover:
They were sent the wrong car

.. with flat tires They also weren't told how to drive it

.. unbalanced wheels ... and left economy enabled

.. @ minor engine issue ... and didn't use the turbo button

.. and older firmware
This may take too long to debug and the customer may leave.
Computers are like this too!

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential 14

A common scenario at product vendors

Your product is probably the fastest

But there's likely some config/tunable error
It's the final week of the customer eval
You have to make it fast by friday

O
Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential Ay‘ (7/’ ’A/, gp l o 15

How

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

16

"Fast by Friday": Proposed Agenda

Prior weeks: Preparation

Monday: Quantify, static tuning, load
Tuesday:

Wednesday: Profiling

Thursday: Latency, logs, critical path
Friday: Efficiency, algorithms

Post weeks: Case study, retrospective

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

17

Prior weeks: Preparation

Everything must work on Monday!

J

Critical analysis tools ("crisis tools") must be
preinstalled; E.g., Linux: procps, sysstat,
linux-tools-common, bcc-tools, bpftrace,

Stack tracing and symbols should work for the
kernel, libraries, and applications

Tracing (host & distributed) must work

The performance engineers must already have host
SSH root access

A functional diagram of the system must be known
Source code should be available

Current industry status: 1 out of 5

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

DESCENT ENGINE

Figure 3-2.4. Primary Guidance Path - Simplified Block I's

Example functional diagram

Source: Lunar Module - LM10 Through LM14 Familiarization Manual" (1969):

18

Table 4.1 Linux crisis tool packages

linux-tools-common linux-tools-$(uname -r)

bce-tools (aka bpfce-tools)

bpftrace

perf-tools-unstable

trace-cmd

nicstat

ethtool

tiptop

msr-tools
github.com/brendangregg/msr-cloud-tools

github.com/brendangregg/pmc-cloud-tools

Package Provides

procps ps(1), vmstat(8), uptime(1), top(1)
util-linux dmesg(1), Isblk(1), Iscpu(1)

sysstat iostat(1), mpstat(1), pidstat(1), sar(1)
iproute2 ip(8), ss(8), nstat(8), tc(8)

numactl numastat(8)

perf(1), turbostat(8)

opensnoop(8), execsnoop(8), runglat(8),

runglen(8), softirqs(8), hardirqs(8), ext4slower(8),

ext4dist(8), biotop(8), biosnoop(8), biolatency(8),
tcptop(8), teplife(8), trace(8), argdist(8),
funccount(8), stackcount(8), profile(8), and
many more

bpftrace, basic versions of opensnoop(8),

execsnoop(8), runglat(8), runglen(8), biosnoop(8),

biolatency(8), and more

Ftrace versions of opensnoop(8), execsnoop(8),

iolatency(8), iosnoop(8), bitesize(8), funccount(8),

kprobe(8)

trace-cmd(1)

nicstat(1)

ethtool(8)

tiptop(1)

rdmsr(8), wrmsr(8)

showboost(8), cpuhot(8), cputemp(8)

pmcarch(8), cpucache(8), icache(8), tibstat(8),
resstalls(8)

Source: Systems Performance 2nd Edition, page 131-132

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Prior weeks: "Crisis Tools™

No time to "apt-get update; apt-get
install..." during a perf crisis.

Ftrace is great as it's usually there;

my Ftrace/perf tools:

Operating System

opensnoop syscount execsnoop
/
\ Applications /
| \ System Libraries /
\] System Call Interface
funccount VFS Sockets
functrace File Systems TCP/UDP‘
funcslower | volume Manager P \ Virtual
funcgraph [T povice Interface Ethernet Memory
kprobe L
Device Drivers \
: / /0 Bus \
iosnoop .
iolatency Expander Interconnect /O Bridge tepretrans

bitesize

Hardware

CPU

1/0 Controller
Interface Transports

[pisk

| [pisk] [swap |

https://github.com/brendangregg/perf-tools

Network Controller

Various:
tpoint

Interconnect
Scheduler CPU
1

Memory
Bus

DRAM

19

Monday: Quantify, static tuning, load

1 t-f th b I 2.5.5 Problem Statement
. Q u a n I y e p ro e l I I Defining the problem statement is a routine task for support staff when first responding to
issues. It’s done by asking the customer the following questions:
O Problem Statement method 1. What makes you think there is a performance problem?
. . 2. Has this system ever performed well? S_\"S[(\IHS
2 . Statl C pe rfo rm a n Ce tu n I n g 3. What changed recently? Software? Hardware? Load? P(fl'[k}l'mill]l'(‘
4. Can the problem be expressed in terms of latency or runtime? Enterprise apddfieCloud:
) Second el
O The Syste m Wlthout Ioad 5. Does the problem affect other people or applications (or is it just you)? onden G
6. What is the environment? What software and hardware are used? Versions? 4 R 1‘
o Check all hardware, software Casiciuationt L e
. . Just asking and answering these questions often points to an immediate cause and soluti i: £.=
versions paSt errors, co nfl g The problem statement has therefore been included here as its own methodology and sho| =
! ! be the first approach you use when tackling a new issue. ©
O Cove red i n SyS perf I have solved performance issues over the phone by using the problem statement method alone,
and without needing to log in to any server or look at any metrics.

3 . Load VS implementation Problem Statement method

Source: Systems Performance 2nd edition, page 44

o Just a problem of load?
o Usually solved via basic monitoring
and line charts

Current industry status: 4 out of 5
A familiar pattern of load
Source: https://www.brendangregg.com/Slides/SREcon_2016_perf_checklists

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Monday (cont.):

If still unsolved, we now know:
- It's areal issue, of this magnitude, affecting these systems
- It's not just config
- It's not just load

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

21

Tuesday:

N P
1. Recent issue checklist oo
o Often need new tools for ad hoc checks ~ /gytm\:é.;% c:r.es\ .
o Can now be automated by Al auto-tuners d

)& ‘/ Sodkets Sch! er Intg ot N PU.
flle Systems N\JCP/UDP” Y

(e.g., Intel Granulate) % [VoumoManager | >€ SN
T | Block Device Interface /Etherkk S
2 EI I t . S b t t I 't Device Drivere,_ .~ |
. Iminaton:. ou sys ems It ISn
o It's impossible to deep-dive everything in Expander rtersonnec B
one week, need to narrow down vo Controller

o New tools to exonerate components m ok | % ISR
o Dashboards of health check traffic lights

o Include experiments: microbenchmarks

Generic system diagram

Current industry status: 2 out of 5

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential 22

New observability tools often need kernel superpowers

We need new tools for broad and deep custom performance
analysis, ideally that can be developed and run in-situ by
Friday. No restarts.

eBPF is a kernel superpower that makes this possible.

(e.g., show me how much workload A queued behind workload B: This is not just queue latency
histograms, but needs programmatic filters.)

Ftrace/perf/perf+eBPF also have kernel superpowers in the

hands of wizards.
)
.

* i
perf v

Ftrace

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Tuesday (cont.

Current eBPF tools

*snoop, *top, *stat, “count, *slower, *dist

Supports later methodologies

Workload characterization, latency analysis, off-CPU
analysis, USE method, etc.

Future elimination tools
*health, *diagnosis
Supports "fast by friday"
Analyzes existing dynamic workload

Open source & in the target code repo
E.g., Linux subsystem tools should be in Linux, like unit
tests, accepted by maintainers, and ideally written by
the developers! E.g., dctcphealth should ideally be
written by the dctcp author: Daniel Borkmann!
This ensures they are accurate and maintained.
They should not be in bce/bpftrace or proprietary.

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

filetop opensnoop c* java* node* php* javathreads gethostlatency
filelife fileslower statsnoop python* ruby* memleak
vfscount vfsstat syncsnoop mysqld_gslower jnistacks sslsniff
filetype fsrwstat wproflle dbstat dbslower
v;ssig iaed 1as scx:ead bashreadline threadsnoop
s P ucalls uflow mysqld_clat pmlock pmheld
ync L_
uobjnew ustat bashfunc syscount
cachestat cachetop uthreads ugec bashfunclat killsnoop
dostat t shellsnooj
mount snoop A % P .
ABDlicatons signals naptime
icstat #p eperm setuids
bgfgms Runtimes elfsnoop modsnoop
readahea / exitsnoop
o] pidpersec
wiitabadk System Libraries - 1k
trace 'R 7 7 cpudist cpuwa
argdist \\ System Call Interface R T orar
st \1 // cpuun21aimed
funcslower
funclatency VFS f 4 Sockets - deadlock
stackcount Scheduler - offcputime wakeuptime
profile ly- File Systems / TCP/UDP = offwaketime softirgs
/ ™~ offcpuhist threaded
btrfsdist Volume Manage! P) pidnss mlock mheld
btrfsslower ‘ 9 Virtual smpcalls workg
extd4dist extdslower |® N - Memory
nfsslower nfsdist /44 Block Device, Net Device * slabratetop
xfsslower xfsdist 4 oomkill memleak
zfsslower zfsdist f // BviEE DriversT \ \ shmsnoop drsnoop
overlayfs 4 HA kmem kpages numamove
i mmapsnoop brkstack
mdflush scsilatency / ieee8021lscan | nettxlat \ &+ PSfiscp brksLack
scsiresult nvmelatency netsize pecy
biotop biosnoop AEesy superping fmapfault hfaults
biolatency £4: tcptop tcplife tcptracer — qdisc-fq vmscan swapin
bitesize sotdsnoop tcpconnect tcpaccept \
seeksize ... tcpconnlat tcpretrans hardirgs
biopattern :g;t:::zjfz’:\g tcpsubnet tcpdrop criticalstat
biostacks soconnect soaccept tcPs:ftes ; Other: tryancop
2oerr socketio socksize tepsynbl topwin
iosched t le t t capable 1lestat | CPUs
soconnlat solstbyte cpnagle tcprese! cstat Q
blkthrot skbdrop skblife bt 1 ’
vmexits

Current eBPF performance tools
Source: BPF Performance Tools, cover art [Gregg 2019]

Tuesday (cont.):

| wrote the ZFS L2ARC (second level cache) so | should write the
health check tool, or at least share thoughts for others to follow:

| designed it to either help or do nothing, so shouldn’t be an issue, but... It could burn CPU for
scanning, memory for metadata, and disk 1/O throughput for caching, and not providing a net
win, especially if someone set the record size to very small. Plus there could be outright bugs
by new: There was that ARC bug | talked about at the last KR.

Experimental is easiest: It's a cache, so turn it off! Are things now faster or slower?

Accurate observability is hard: Measure CPU burn (profiling or eBPF tracing), disk 1/0, and
impact of LZARC kernel metadata preventing app WSS from caching, but measuring WSS is
hard, and my website is overdue an update www.brendangregg.com/wss.html

Rough observability: From kernel counters: Is the L2ZARC in use? Is the recsize <32k? Is it
constantly scanning (CPU)? Is there heavy disk I/O (contention)? Then “maybe”.

| have more thoughts and this should become a bcc tool request ticket. When it’s your own
code, you know a lot of “however’s!

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

25

Tuesday (cont.):

In summary, a practical L2ZARC health tool could:

1. Use kernel counters to check for possible resource contention
versus handpicked thresholds, and report “good” or “maybe issue”.

2. If maybe, prompt for an invasive test that disables the L2ZARC while

If needed can measure contention via kprobe/kfunc tracing and eBPF.

The tool should be in ZFS and its logic and thresholds maintained.

monitoring systemic throughput. Report “good” or “bad” and quantify.

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

26

Tuesday (cont.):

An ugly half-good tool is better than nothing

Sharing thoughts can let others write it (Documentation/*/health.txt)
Reporting "maybe" is ok

Not an C64 diagnostics cart: Has to analyze exsiting workloads
Test hierarchy: safe -> violent, only progress if needed, can prompt
Be pragmatic: eBPF, perf, Ftrace, /proc, use anything

mmoOOoOw >

Current tools: "Here's data, you figure it out"
Health tools: "l figured it out"

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

27

Tuesday (cont.):

If still unsolved, we now know:

- It's not a recent issue
- It's caused by these components

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

28

Wednesday: Profiling

1. CPU Flame Graphs

o More efficient with eBPF
o eBPF runtime stack walkers

2. CPI Flame Graphs
o Needs PMCs PEBS on Intel for accuracy

3. Off-CPU Flame Graphs

o Impractical without eBPF

Solves most performance issues
Needs preparation!

Current industry status: 3 out of 5

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

ﬂ e .u.n. h

{unany) |
unary.. |
|
i 15118 I8 |
re.. i | [} !I
i i Illl

il
i
L |
-

expand_words

[
RED7ENERE
| | .

epergres
&

Ig‘
_a

. i
| rc.. . |
|
in..
A re - m..
s e

1

| s [sw..| ¢ .. 3
[.. . d.. . G ...

h.

d.. . st | e b
(do.. sc.. S&. BEmISML. sc.. do.. Feulrc. sc. _..|du do.. [pollISEheduIEIMEOUE I (do.. _.. do..s.. EH
(GO WO.. WOz wo.. K] sm... co.. kb KERNFGLIWRE c. co. dosyspol [0 b v. BESSSEE
sy @ K. REDKEL e KED sy.. FERIFERIKL. Sy.|s. Syusyspol o iSyE Sy ke ke
[re. re. re.. dd.. re.. @n. ddi @dWjre.. en. e. en.entry SYSCALL 64 fastpath [[en.e.. EAMFLFE
ieh.. kw.. kw.. KW mi. mi. ntpd rc. [FC.FC.re. Buisshdsupervise [G vm. W w..
L __|

Off-CPU/waker time flame graph

29

Wednesday (cont.): End-of-day Status

If still unsolved, we now know:

- It's caused by these codepaths

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

30

Thursday: Latency, logs,

1. Latency drilldowns
o Latency histograms
o Latency heat maps
o Latency outliers

2. Logs, event tracing

o Custom event logs

3. Critical path analysis

o Multi-threaded tracing
o Distributed tracing across a distributed
environment

4. Hardware counters

Current industry status: 3 out of 5

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

critical path, HW

nnnnnn

Latency heat maps
Source: https://www.brendangregg.com/HeatMaps/latency.html

i

Distributed tracing
Source: https://www.brendangregg.com/Slides/Monitorama2015_NetflixInstanceAnalysis

31

Thursday: Latency, logs, critical path, HW

1. Latency drilldowns eBPF Tools

o Latency histograms
o Latency heat maps
o Latency outliers

2. Logs, event tracing

o Custom event logs

T *dist

~— *slower

~— *snoop, bpftrace
3. Critical path analysis

o Multi-threaded tracing

o Distributed tracing across a distributed
environment ~~__"Zero instrumentation”

(when faster uprobes is done;
4) Hardwa re cCou nte rs currently: https://dont-ship.it)
T~ perf & its

Current industry status: 3 out of 5 subcommands

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Latency Heat Map

nnnnnn

-y L. p—

e = ™

el e i =
P, Tkt o LN L L e S

Latency heat maps
Source: https://www.brendangregg.com/HeatMaps/latency.html

Ty
(BE |

Distributed tracing

Source: https://www.brendangregg.com/Slides/Monitorama2015_NetflixInstanceAnalysis

32

Thursday (cont.): End-of-day Status

If still unsolved, we now know:

- Latency has this distribution, over time, and these outliers
- Latency is coming from this specific component
- It's not a low-level hardware issue

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

33

Friday: Efficiency, algorithms

1. Is the target efficient?

@)

O O O O

@)

A largely unsolved problem
Cycles/carbon per request
Compare with similar products
New efficiency tools (eBPF?)
System efficiency equals the
least efficient component
Modeling, theory

2. Use faster algorithms?

©)

Big O Notation

Current industry status: 1 out of 5

Runtime (lower is better)

Protocol CIFS iSCSI FTP NFSv3 NFSv4
Cycles(k) 2241 1843 970 | 395 485

per 1k read

Example efficiency comparisons (made up)
Algorithm Performance
/,’/O/(n log n))
-5
[P — e O(ogn)]
o(1)

Size of data input

Source: Systems Performance 2nd Edition, page 175

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

34

Friday (cont.): End-of-day Status

If still unsolved, we now know:

- The code is efficient already. There is no “problem”!

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

35

Post weeks: Case study, retrospective

1. Document as a case study
o JIRA, wiki, gist
o External blog/talk

Including (redacted) flame graphs is great: You may
find overlooked perf issues years later from them.

o Repetition?
Add to Tuesday's "Recent issue checklist"

2. Retrospective
o How to debug it faster by friday?

Current industry status: 1 out of 5

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Brendan Gregg's Blog o
TensorFlow Library Performance

Awhile ago | helped a colleague, Vadim, debug a performance issue with TensorFlow in an unexpected location.
I thought this was a bit interesting so I've been meaning to share it; here's a rough post of the details.

1. The Expert's Eye

Vadim had spotted something unusual in this CPU flamegraph (redacted); do you see it?:

e e ——
e L L Lo
U L Lo L
Leomne. L Lomne L. L
Leombe. L Lot L. Leome.
Lo, L Loome. L. Lown Lo
L L L L Laomw L
| Lme L Leaw L Lowe L
| L LG L Lome L
| 1 8 Loomme. 1 Lowe. L Lown Lo
| Lo Lo, L Leomne. L Lo
| Lo Lo Lo, 1 Lomte. L Loomn Lno
| Loomn. L Lo L. 1 Lo L Lomn L
| — s LA A A o
| [— . o A — Lan
| L TSy P Py [— .
| i [R o L. [IR———— o
11 i [r— e L EY IR no
1 | Savmil s
| | il Rl Py St 1 1
i i . - = =
| 5

I'm impressed he found it so quickly, but then if you look at enough flame graphs the smaller unusual patterns
start to jump out. In this case there's an orange tower (kernel code) that's unusual. The cause I've highlighted
here. 10% of total CPU time in page faults.

At Nefflix 10% of CPILI time somewhere 1inexnected can he a larae costly isaiie acrnss thoinisands of server

Example blog post: https://www.brendangregg.com/blog

36

"Fast by Friday": My current industry ratings (5

Prior weeks: Preparation

Monday: Quantify, static tuning, load
Tuesday:

Wednesday: Profiling

Thursday: Latency, logs, critical path
Friday: Efficiency, algorithms

Post weeks: Case study, retrospective

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

== best)

1

We are not currently good at this

37

"Fast by Friday": Linux Kernel Superpowers

Prior weeks: Preparation

Monday: eBPF
Tuesday: -—
Wednesday: Profiling “— perf
Thursday: Latency, logs, critical path x,/’ Ftrace
Friday: Efficiency, algorithms

Post weeks: Case study, retrospective

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

38

What Needs to Change

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

39

A way of thinking, a call for action

Consider perf wins that took weeks as room for improvement
New tracing tools needed: *diagnose, *health

Crisis tools should be installed by default in enterprise distros
Stack walking should work by default for everything

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

40

Stack walking, frame pointers, and eBPF walking

. : . Reasons FPs were
Frame pointers already enabled at major companies. disabled in 2004:
Fedora first distro to offer it? - 1386
. . - gdb doesn't
Can't we be smarter if needed? meed them
NOP/ _fentry _ style rewrites (Rostedt)? Options with LD/ELF. - gccvsice /
eBPF custom runtime y
stack walkers (Java. etc) [PATCH] Omit frame pointer and fix %ebp by default on x86 (take 3)
’ . The following patch is the latest revision of a patch to enable
i -fomit-frame-pointer by default on x86. The GDB and GCC's debugging
YeS’ multlple people are folks have done an impressive job supporting debugging without a
i i i frame pointer, and it would be a shame if 3.5 didn't benefit from
dOIng thIS. They ShOUId Shlp those efforts. As recently as a few hours ago, one of GCC's
as open source with the benchmarking gurus reported new performance figures of GCC vs icc
without using "-fomit-frame-pointer" reflecting the need to get
runtime code. better optimization with GCC's default flags.

https://gcc.gnu.org/legacy-mi/gcc-patches/2004-08/msg01033.html

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential 41

Summary

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

42

"Fast by Friday" Summary

Prior weeks: Preparation

Day 1.

Day 2:

Day 3: Profiling

Day 4: Latency, logs, critical path
Day 5: Efficiency, algorithms

Post weeks: Case study, retrospective

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

Fast by Friday:
Any computer performance
Issue reported on Monday
should be solved by Friday
(or sooner)

43

"Fixed by Friday" (a different talk) sample

Performance Mantras:

Don't do it

Do it, but don't do it again

Do it less

Do it later

Do it when they're not looking
Do it concurrently

Do it cheaper

AR A ol ol

Fixed by Friday:

Any known performance bug
reported on Monday
should have a fix by Friday
(or sooner)

AFAIK these mantras are from Craig Hanson and Pat Crain (I'm still looking for a reference)

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

44

Take Aways

"Fast by Friday": Any computer performance issue reported on
Monday should be solved by Friday (or sooner)

Kernel superpowers, especially eBPF, are essential for such
fast in-situ production analysis

It will take all of us many years: OS changes, kernel support,
new tools, methodologies. How can you help? One step at a time!

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential 45

Q&A

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential

46

Thanks

Jesper Dangaard Brouer

eBPF: Alexei Starovoitov (Meta), Daniel Borkmann (Isovalent), David S. Miller (Red Hat),
Jakub Kicinski (Meta), Yonghong Song (Meta), Andrii Nakryiko (Meta), Thomas Graf
(Isovalent), Martin KaFai Lau (Meta), John Fastabend (Isovalent), Quentin Monnet
(Isovalent), Jesper Dangaard Brouer (Red Hat), Andrey Ignatov (Meta), Stanislav
Fomichev (Google), Joe Stringer (Isolavent), KP Singh (Google), Dave Thaler
(Microsoft), Liz Rice (Isovalent), Chris Wright (Red Hat), Linus Torvalds, and many
more in the BPF community

Ftrace: Steven Rostedt (Google) and the Ftrace community

Perf: Arnaldo Carvalho de Melo (Red Hat) and the N>

perf community 7«% @\:
ernel Recipes edition! - @Wm °
K | Recipes 10th edit y KR@@“P@S

Kernel Recipes 2023 Fast by Friday: Why Kernel Superpowers are Essential 47

