
Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Fast by Friday

 Brendan Gregg

Why Kernel Superpowers are Essential

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 2

What would it take
to solve any computer performance issue

in 5 days?

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 3

Imagine solving the performance of anything

Operating systems, kernels, web browsers, phones, applications,
websites, microservices, processors, AI, etc., …

Examples: Linux, Windows, Firefox, Google docs, Minecraft,
Amazon.com, Intel GPUs, pytorch, etc., …

Websites should load in the blink of an eye.

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 4

Timely performance analysis allows faster and more efficient
software/hardware/tuning options to be adopted

Good for the environment: Less cycles, energy, carbon
Good for innovation: Rewards investment in engineering
Good for companies: Less compute expense
Good for end-users: Lower latency, cheaper products

Why

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 5

"Fast by Friday":
Any computer performance issue

reported on Monday
should be solved by Friday

(or sooner)

A vision:

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 6

"Fast by Friday":
Any computer performance issue

reported on Monday
should be solved by Friday

(or sooner)

Issues: any performance analysis task, especially SW/HW evaluations

Solved by friday: doesn't mean fixed, it means root cause(s) known

Definitions

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 7

A vision
A way of thinking
A call to action
A methodology
A practical deadline

I want to completely understand the performance of everything…in 5 days

"Fast by Friday" is…

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 8

1. Found Performance root cause(s) known
2. Fixed Fix developed
3. Deployed Fixed everywhere

"Fast by Friday" focuses on (1) as it's often the biggest obstacle.

Yes, even for the Linux kernel. Show me a 2x perf fix and I'll show you comparies running it by Friday.
If the wasted cores paper was widely applicable, I'd have a pretty good example.

The first of three activities

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 9

The Problem

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 10

Expected performance improvement for computing products
Product Performance: Hypothetical

P
er

fo
rm

an
ce

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 11

Example reality
Product Performance: Actual

P
er

fo
rm

an
ce

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 12

Example reality: 3 issues

Bottleneck not
found in time

Not enough time
to properly analyze
all new software/
hardware/compiler
options (e.g., icx!)

Regression not
solved in time

We, engineers, have to fix this!

Product Performance: Actual
P

er
fo

rm
an

ce

Amount
of lost
performance

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 13

Problem: Computers are getting increasingly complex

Just one example (computer hardware) of increasing complexity.
Software is worse!

Performance issues can now go unsolved for weeks, months, years
Product decisions miss improvements as analysis and tuning takes too long

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023 14

Analogy: Car performance

You build the world's fastest car, but the customer says: "it isn't"
You investigate and discover:

They were sent the wrong car
… with flat tires
… unbalanced wheels
… a minor engine issue
… and older firmware

This may take too long to debug and the customer may leave.
Computers are like this too!

They also weren't told how to drive it
… and left economy enabled
… and didn't use the turbo button

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

A common scenario at product vendors

Your product is probably the fastest
But there's likely some config/tunable error
It's the final week of the customer eval
You have to make it fast by friday

15

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

How

16

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Prior weeks: Preparation

Monday: Quantify, static tuning, load
Tuesday: Checklists, elimination
Wednesday: Profiling
Thursday: Latency, logs, critical path
Friday: Efficiency, algorithms

Post weeks: Case study, retrospective

"Fast by Friday": Proposed Agenda

17

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Prior weeks: Preparation

Everything must work on Monday!
❏ Critical analysis tools ("crisis tools") must be

preinstalled; E.g., Linux: procps, sysstat,
linux-tools-common, bcc-tools, bpftrace, …

❏ Stack tracing and symbols should work for the
kernel, libraries, and applications

❏ Tracing (host & distributed) must work
❏ The performance engineers must already have host

SSH root access
❏ A functional diagram of the system must be known
❏ Source code should be available

Example functional diagram
Source: Lunar Module - LM10 Through LM14 Familiarization Manual" (1969):

Current industry status: 1 out of 5

18

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Prior weeks: "Crisis Tools"

Source: Systems Performance 2nd Edition, page 131-132

No time to "apt-get update; apt-get

install…" during a perf crisis.

Ftrace is great as it's usually there;
my Ftrace/perf tools:

19

https://github.com/brendangregg/perf-tools

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Monday: Quantify, static tuning, load

1. Quantify the problem
○ Problem statement method

2. Static performance tuning
○ The system without load
○ Check all hardware, software

versions, past errors, config
○ Covered in sysperf

3. Load vs implementation
○ Just a problem of load?
○ Usually solved via basic monitoring

and line charts

Current industry status: 4 out of 5

Problem Statement method
Source: Systems Performance 2nd edition, page 44

A familiar pattern of load
Source: https://www.brendangregg.com/Slides/SREcon_2016_perf_checklists

20

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Monday (cont.): End-of-day Status

If still unsolved, we now know:
- It’s a real issue, of this magnitude, affecting these systems
- It’s not just config
- It’s not just load

21

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Tuesday: Checklists, elimination

1. Recent issue checklist
○ Often need new tools for ad hoc checks
○ Can now be automated by AI auto-tuners

(e.g., Intel Granulate)

2. Elimination: Subsystems it isn't
○ It's impossible to deep-dive everything in

one week, need to narrow down
○ New tools to exonerate components
○ Dashboards of health check traffic lights
○ Include experiments: microbenchmarks

Current industry status: 2 out of 5

Generic system diagram

22

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

We need new tools for broad and deep custom performance
analysis, ideally that can be developed and run in-situ by

Friday. No restarts.

eBPF is a kernel superpower that makes this possible.
(e.g., show me how much workload A queued behind workload B: This is not just queue latency

histograms, but needs programmatic filters.)

Ftrace/perf/perf+eBPF also have kernel superpowers in the
hands of wizards.

New observability tools often need kernel superpowers

23

eBPF
Ftrace

perf

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Tuesday (cont.): eBPF Tools

Current eBPF tools
*snoop, *top, *stat, *count, *slower, *dist
Supports later methodologies

Workload characterization, latency analysis, off-CPU
analysis, USE method, etc.

Future elimination tools
*health, *diagnosis
Supports "fast by friday"
Analyzes existing dynamic workload
Open source & in the target code repo

E.g., Linux subsystem tools should be in Linux, like unit
tests, accepted by maintainers, and ideally written by
the developers! E.g., dctcphealth should ideally be
written by the dctcp author: Daniel Borkmann!
This ensures they are accurate and maintained.
They should not be in bcc/bpftrace or proprietary.

Current eBPF performance tools
Source: BPF Performance Tools, cover art [Gregg 2019]

24

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Tuesday (cont.): Health Tool Example 1/2

I wrote the ZFS L2ARC (second level cache) so I should write the
health check tool, or at least share thoughts for others to follow:

- I designed it to either help or do nothing, so shouldn’t be an issue, but... It could burn CPU for
scanning, memory for metadata, and disk I/O throughput for caching, and not providing a net
win, especially if someone set the record size to very small. Plus there could be outright bugs
by new: There was that ARC bug I talked about at the last KR.

- Experimental is easiest: It’s a cache, so turn it off! Are things now faster or slower?
- Accurate observability is hard: Measure CPU burn (profiling or eBPF tracing), disk I/O, and

impact of L2ARC kernel metadata preventing app WSS from caching, but measuring WSS is
hard, and my website is overdue an update www.brendangregg.com/wss.html

- Rough observability: From kernel counters: Is the L2ARC in use? Is the recsize <32k? Is it
constantly scanning (CPU)? Is there heavy disk I/O (contention)? Then “maybe”.

- I have more thoughts and this should become a bcc tool request ticket. When it’s your own
code, you know a lot of “however”s!

25

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Tuesday (cont.): Health Tool Example 2/2

I wrote the ZFS L2ARC (second level cache) so I should write the
health check tool, or at least share thoughts for others to follow:

- I designed it to either help or do nothing, so shouldn’t be an issue, but... It could burn CPU for
scanning, memory for metadata, and disk I/O throughput for caching, and not providing a net
win, especially if someone set the record size to very small. Plus there could be outright bugs
by new: There was that ARC bug I talked about at the last KR.

- Experimental is easiest: It’s a cache, so turn it off! Are things now faster or slower?
- Accurate observability is hard: Measure CPU burn (profiling or eBPF tracing), disk I/O, and

impact of L2ARC kernel metadata preventing app WSS from caching, but measuring WSS is
hard, and my website is overdue an update www.brendangregg.com/wss.html

- Rough observability: From kernel counters: Is the L2ARC in use? Is the recsize <32k? Is it
constantly scanning (CPU)? Is there heavy disk I/O (contention)? Then “maybe”.

- I have more thoughts and this should become a bcc tool request ticket. When it’s your own
code, you know a lot of “however”s!

26

In summary, a practical L2ARC health tool could:
1. Use kernel counters to check for possible resource contention

versus handpicked thresholds, and report “good” or “maybe issue”.
2. If maybe, prompt for an invasive test that disables the L2ARC while

monitoring systemic throughput. Report “good” or “bad” and quantify.
If needed can measure contention via kprobe/kfunc tracing and eBPF.
The tool should be in ZFS and its logic and thresholds maintained.

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Tuesday (cont.): Health Tool Points

A. An ugly half-good tool is better than nothing
B. Sharing thoughts can let others write it (Documentation/*/health.txt)
C. Reporting "maybe" is ok
D. Not an C64 diagnostics cart: Has to analyze exsiting workloads
E. Test hierarchy: safe -> violent, only progress if needed, can prompt
F. Be pragmatic: eBPF, perf, Ftrace, /proc, use anything

Current tools: "Here's data, you figure it out"
Health tools: "I figured it out"

27

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Tuesday (cont.): End-of-day Status

If still unsolved, we now know:
- It’s a real issue, of this magnitude, affecting these systems
- It’s not just config
- It’s not just load
- It’s not a recent issue
- It’s caused by these components

28

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Wednesday: Profiling

1. CPU Flame Graphs
○ More efficient with eBPF
○ eBPF runtime stack walkers

2. CPI Flame Graphs
○ Needs PMCs PEBS on Intel for accuracy

3. Off-CPU Flame Graphs
○ Impractical without eBPF

Solves most performance issues
Needs preparation!

Current industry status: 3 out of 5

CPU flame graph

Off-CPU/waker time flame graph

29

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Wednesday (cont.): End-of-day Status

If still unsolved, we now know:
- It’s a real issue, of this magnitude, affecting these systems
- It’s not just config
- It’s not just load
- It’s not a recent issue
- It’s caused by these components
- It’s caused by these codepaths

30

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Thursday: Latency, logs, critical path, HW

1. Latency drilldowns
○ Latency histograms
○ Latency heat maps
○ Latency outliers

2. Logs, event tracing
○ Custom event logs

3. Critical path analysis
○ Multi-threaded tracing
○ Distributed tracing across a distributed

environment

4. Hardware counters

Distributed tracing
Source: https://www.brendangregg.com/Slides/Monitorama2015_NetflixInstanceAnalysis

Latency heat maps
Source: https://www.brendangregg.com/HeatMaps/latency.html

Current industry status: 3 out of 5

31

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Thursday: Latency, logs, critical path, HW

1. Latency drilldowns
○ Latency histograms
○ Latency heat maps
○ Latency outliers

2. Logs, event tracing
○ Custom event logs

3. Critical path analysis
○ Multi-threaded tracing
○ Distributed tracing across a distributed

environment

4. Hardware counters

Distributed tracing
Source: https://www.brendangregg.com/Slides/Monitorama2015_NetflixInstanceAnalysis

Latency heat maps
Source: https://www.brendangregg.com/HeatMaps/latency.html

eBPF Tools

*dist

*slower

*snoop, bpftrace

"Zero instrumentation"
(when faster uprobes is done;
currently: https://dont-ship.it)

Current industry status: 3 out of 5

32

perf & its
subcommands

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Thursday (cont.): End-of-day Status

If still unsolved, we now know:
- It’s a real issue, of this magnitude, affecting these systems
- It’s not just config
- It’s not just load
- It’s not a recent issue
- It’s caused by these components
- It’s caused by these codepaths
- Latency has this distribution, over time, and these outliers
- Latency is coming from this specific component
- It's not a low-level hardware issue

33

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Friday: Efficiency, algorithms

1. Is the target efficient?
○ A largely unsolved problem
○ Cycles/carbon per request
○ Compare with similar products
○ New efficiency tools (eBPF?)
○ System efficiency equals the

least efficient component
○ Modeling, theory

2. Use faster algorithms?
○ Big O Notation

Current industry status: 1 out of 5 Source: Systems Performance 2nd Edition, page 175

Protocol CIFS iSCSI FTP NFSv3 NFSv4

Cycles(k)
per 1k read

2241 1843 970 395 485

Example efficiency comparisons (made up)

34

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Friday (cont.): End-of-day Status

If still unsolved, we now know:
- It’s a real issue, of this magnitude, affecting these systems
- It’s not just config
- It’s not just load
- It’s not a recent issue
- It’s caused by this component
- It’s caused by these codepaths
- Latency has this distribution, over time, and these outliers
- Latency is coming from this specific component
- It's not a low-level hardware issue
- The code is efficient already. There is no “problem”!

35

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Post weeks: Case study, retrospective

1. Document as a case study
○ JIRA, wiki, gist
○ External blog/talk

Including (redacted) flame graphs is great: You may
find overlooked perf issues years later from them.

○ Repetition?
Add to Tuesday's "Recent issue checklist"

2. Retrospective
○ How to debug it faster by friday?

Example blog post: https://www.brendangregg.com/blogCurrent industry status: 1 out of 5

36

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Prior weeks: Preparation 1

Monday: Quantify, static tuning, load 4
Tuesday: Checklists, elimination 2
Wednesday: Profiling 3
Thursday: Latency, logs, critical path 3
Friday: Efficiency, algorithms 1

Post weeks: Case study, retrospective 1

"Fast by Friday": My current industry ratings (5 == best)

We are not currently good at this

37

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Prior weeks: Preparation

Monday: Quantify, static tuning, load
Tuesday: Checklists, elimination
Wednesday: Profiling
Thursday: Latency, logs, critical path
Friday: Efficiency, algorithms

Post weeks: Case study, retrospective

"Fast by Friday": Linux Kernel Superpowers

eBPF
perf
Ftrace

38

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

What Needs to Change

39

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Consider perf wins that took weeks as room for improvement
New tracing tools needed: *diagnose, *health
Crisis tools should be installed by default in enterprise distros
Stack walking should work by default for everything

A way of thinking, a call for action

40

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Frame pointers already enabled at major companies.
Fedora first distro to offer it?

Can't we be smarter if needed?
NOP/__fentry__ style rewrites (Rostedt)? Options with LD/ELF.

eBPF custom runtime
stack walkers (Java, etc.)

Yes, multiple people are
doing this. They should ship
as open source with the
runtime code.

Stack walking, frame pointers, and eBPF walking

41

https://gcc.gnu.org/legacy-ml/gcc-patches/2004-08/msg01033.html

Reasons FPs were
disabled in 2004:

- i386
- gdb doesn't

need them
- gcc vs icc

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Summary

42

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Prior weeks: Preparation

Day 1: Quantify, static tuning, load
Day 2: Checklists, elimination
Day 3: Profiling
Day 4: Latency, logs, critical path
Day 5: Efficiency, algorithms

Post weeks: Case study, retrospective

"Fast by Friday" Summary

Fast by Friday:
Any computer performance
issue reported on Monday
should be solved by Friday

(or sooner)

43

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Performance Mantras:

1. Don't do it
2. Do it, but don't do it again
3. Do it less
4. Do it later
5. Do it when they're not looking
6. Do it concurrently
7. Do it cheaper

AFAIK these mantras are from Craig Hanson and Pat Crain (I'm still looking for a reference)

"Fixed by Friday" (a different talk) sample

Fixed by Friday:
Any known performance bug

reported on Monday
should have a fix by Friday

(or sooner)

44

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

"Fast by Friday": Any computer performance issue reported on
 Monday should be solved by Friday (or sooner)

Kernel superpowers, especially eBPF, are essential for such
fast in-situ production analysis

It will take all of us many years: OS changes, kernel support,
new tools, methodologies. How can you help? One step at a time!

Take Aways

45

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Q&A

46

Fast by Friday: Why Kernel Superpowers are EssentialKernel Recipes 2023

Jesper Dangaard Brouer
eBPF: Alexei Starovoitov (Meta), Daniel Borkmann (Isovalent), David S. Miller (Red Hat),

Jakub Kicinski (Meta), Yonghong Song (Meta), Andrii Nakryiko (Meta), Thomas Graf
(Isovalent), Martin KaFai Lau (Meta), John Fastabend (Isovalent), Quentin Monnet
(Isovalent), Jesper Dangaard Brouer (Red Hat), Andrey Ignatov (Meta), Stanislav
Fomichev (Google), Joe Stringer (Isolavent), KP Singh (Google), Dave Thaler
(Microsoft), Liz Rice (Isovalent), Chris Wright (Red Hat), Linus Torvalds, and many
more in the BPF community

Ftrace: Steven Rostedt (Google) and the Ftrace community
Perf: Arnaldo Carvalho de Melo (Red Hat) and the

perf community
Kernel Recipes 10th edition!

Thanks

47

