’
- 27t Large Installation System Administration Conference
I November 3-8, 2013 ¢ Washington, D.C.

Blazing Performance
with

Flame Graphs

Brendan Gregg

|
Il O B
. |
ysqld .. L-

|
| | 10
B o "
B
FEI SN | ysaias
oty | s I _ ' |
10 | 90) mysqld row_se.. mysqgld row_.. | usenix

[mysqld’_ZN7handler21read_multi_ran.. | mysald..] mysqld_ZN11ha_innobase13general_f. B i s
[MySqldNZNISQUICKIRANGENSELECTEGEEMI mysald.. mysqld'_ZN1lha_innobase1Oindex_pre..
mysqld’ _Z14join_read_prevP11READ_R.. ’ i

Flame Graph

T . S — T — B
..
bt —+ 4
T I e N ER ORI IR S
1 -
-
- ..
- -
-
-
— . .
= .
L
s
-4 =
= _l
o =3
b =
.nnn.. T
, : F- D
e -
-t e =
o
\.l\— .
= =
— o Y

An Interactive Visualization for Stack Traces

Function: mysqld ' filesort (108,672 samples, 31.19%)

My Previous Visualizations Include

» Latency Heat Maps (and other heat map types), including:

< Disk: VO operations per second broken down by latency
e« QA AAHER AR HF @dn

Range average:

122s
107 s
913 ms
761 ms

2008-12-31

* Quotes from LISA'13 yesterday:

* "Heat maps are a wonderful thing, use them" — Caskey Dickson

 "If you do distributed systems, you need this" — Theo Schlossnagle

* | did heat maps and visualizations in my LISA'10 talk

Audience

* This is for developers, sysadmins, support staff, and
performance engineers

* This is a skill-up for everyone: beginners to experts

* This helps analyze all software: kernels and applications

whoami

G’Day, I'm Brendan

Recipient of the LISA 2013 Award

for Outstanding Achievement SYStGIIlS
in System Administration!

Tk youl Performance

ENTERPRISE AND THE CLOUD

Work/Research: tools,
methodologies, visualizations

Author of Systems Performance,
primary author of DTrace
(Prentice Hall, 2011)

Lead Performance Engineer
@joyent; also teach classes:
Cloud Perf Coming UP: http://www.joyent.com/developers/training-services

http://www.joyent.com/developers/training-services/cloud-performance
http://www.joyent.com/developers/training-services/cloud-performance

Joyent

» High-Performance Cloud Infrastructure

* Public/private cloud provider
* OS-Virtualization for bare metal performance
* KVM for Linux guests

» Core developers of
SmartOS and node.js

« Office walls decorated
with Flame Graphs:

Agenda: Two Talks in One

* 1. CPU Flame Graphs
 Example
* Background
* Flame Graphs
* Generation
* Types: CPU
» 2. Advanced Flame Graphs
» Types: Memory, 1/0O, Off-CPU, Hot/Cold, Wakeup

* Developments

* SVG demos: https://github.com/brendangregg/FlameGraph/demos

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph

CPU Flame Graphs

Example

Example

* As a short example, I'll describe the real world performance
iIssue that led me to create flame graphs

* Then I'll explain them in detall

Example: The Problem

A production MySQL database had poor performance

* |t was a heavy CPU consumer, so | used a CPU profiler to see
why. It sampled stack traces at timed intervals

* The profiler condensed its output by only printing unique
stacks along with their occurrence counts, sorted by count

* The following shows the profiler command and the two most
frequently sampled stacks...

Example: CPU Profiling

dtrace -x ustackframes=100 -n 'profile-997 /execname == "mysqld"/ {
@[ustack()] = count(); } tick-60s { exit(0); }'
dtrace: description 'profile-997 ' matched 2 probes
CPU ID FUNCTION : NAME
1 75195 :tick-60s
-]
libc.so.1l priocntlset+0xa
libc.so.1l getparam+0x83
libc.so.l pthread getschedparam+0x3c
libc.so.l pthread setschedprio+0x1f
mysqgld Zlédispatch commandl9enum server commandP3THDPcj+0x9ab
mysqgld Z10do commandP3THD+0x198
mysqld handle one connection+0xlaé6
libc.so.1l thrp setup+0x8d
libc.so.1l lwp start
4884

mysqgld Zl3add to statusPl7system status varS0 +0x47

mysqld" 222calc sum of all statusP17system status _var+0x67
mysqld" ZlGdlspatch command19enum server commandP3THDPc;+0x1222
mysqgld® Z10do commandP3THD+0x198

mysqgld handle one connection+0xlaé6

libc.so.1l thrp setup+0x8d

libc.so.1l lwp start

5530

Example: CPU Profiling

dtrace -x ustackframes=100 -n 'profile-997 /execname == "mysqgld"/ {

@[ustack()] = count(); } tick-60s { exit(0); }'
dtrace: description 'profile-997 ' matched 2 probes *\\\\
CPU ID FUNCTION: NAME
1 75195 :tick-60s

-]

Profiling
Command

libc.so.l’ priocntlset+0xa (DTrace)
libc.so.1l getparam+0x83

libc.so.l pthread getschedparam+0x3c

libc.so.l pthread setschedprio+0x1f

mysqgld Zlédispatch commandl9enum server commandP3THDPcj+0x9ab
mysqgld Z10do commandP3THD+0x198

mysqld handle one connection+0xlaé6

libc.so.1l thrp setup+0x8d

libc.so.1l lwp start

4884

mysqgld Zl3add to statusPl7system status varS0 +0x47
mysqld" 222calc sum of all statusP17system status _var+0x67
mysqld" ZlGdlspatch command19enum server commandP3THDPc;+0x1222
mysqgld® Z10do commandP3THD+0x198
mysqgld handle one connection+0xlaé6
libc.so.1l thrp setup+0x8d

 libc.so.1l lwp start

5530 < # of occurrences

Example: Profile Data

* Over 500,000 lines were elided from that output (“[...J)

 Full output looks like this...

Example: Profile Data

Example: Profile Data

/ ««— Sjze of

One Stack

27,053 Unique Stacks

Example: Profile Data

* The most frequent stack, printed last, shows CPU usage in
add_to_status(), which is from the “show status” command.
Is that to blame?

» Hard to tell — it only accounts for < 2% of the samples

* | wanted a way to quickly understand stack trace profile data,
without browsing 500,000+ lines of output

Example:Visualizations

* To understand this profile data quickly, | created visualization
that worked very well, named “Flame Graph” for its
resemblance to fire (also as it was showing a “hot” CPU issue)

Profile Data.txt Flame Graph.svg

i
aR
S
C

O
D
=

©

L

Example

Flame Graph

Same profile data

mysqld " ha_innobase::index_prev
d’join_read_prev

TV

T-u_uEanes

One Stack

Where CPU is
really consumed
/] A\
mysald " ha_innobase: :index_prev
mysqld’ join_read_prev

||““W.m-__--m.

Flame Graph

All Stack Samples

e
o
S

O
e
=

s

T

o
o
=
S
X

LL]

Same profile data

Example: Flame Graph

* All data in one picture
* Interactive using JavaScript and a browser: mouse overs

» Stack elements that are frequent can be seen, read, and
compared visually. Frame width is relative to sample count

* CPU usage was now understood properly and quickly,
leading to a 40% performance win

Background

Background: Stack Frame

* A stack frame shows a location in code

* Profilers usually show them on a single line. Eq:

libc.so.1l mutex trylock adaptive+0x112

/ T AN

module function Instruction
offset

Background: Stack Trace

* A stack trace is a list of frames. Their index is the stack depth:

current — libc.so.1l mutex trylock adaptive+0x112 24 |

l parent
parent — libc.so.1l mutex lock impl+0x165 23

l parent

grand — libc.so.1l mutex lock+0xc 22
parent l

[...]

l

.1 _lwp start

Background: Stack Trace

* One full stack:

libc.so.1l mutex trylock adaptive+0x112
libc.so.1 mutex lock impl+0x165

libc.so.l mutex

mysqld

mysqld
mysqgld'w
mysqld’
‘mi write+0x344

mysqld

mysqld’
‘handler:
"end write+0xla3

mysqld
mysqld

mysqld’
‘sub select+0x86

*do select+0xd9
“JOIN: :exec+0x482
‘mysql select+0x30e
‘handle select+0x17d

mysqld
mysqld
mysqld
mysqld
mysqld

mysqld’
‘mysql execute command+0x124b

mysqld

mysqld’
"dispatch command+0x1619
"do_handle one connection+0xle5

mysqld
mysqld

mysqld’
libe.so.1"
libec.so.1"

~ lock+0xc

key cache read+0x741

mi fetch keypage+0x48
W search+0x84

mi ck write btree+0xab

ha myisam::write row+0x43
:ha wr1te_row+0x8d

evaluate join record+0Oxlle

execute _sqglcom select+0xa6
mysql;parse+0x3el
handle one connection+0x4c

thrp setup+0xbc
_lwp start

Background: Stack Trace

* Read top-down or bottom-up, and look for key functions

libc.so.1l mutex trylock adaptive+0x112

libc.so.1l mutex lock impl+0x165
libc.so.l mutex lock+0xc

mysqgld"

mysqgld®
mysqgld"
mysqgld®
‘mi write+0x344

"ha myisam::write row+0x43
‘handler:
mysqgld®
mysqgld® B B
"sub select+0x86
"do select+0xd9
"JOIN:

mysqgld
mysqgld
mysqgld

mysqgld
mysqgld
mysqgld

mysqgld® _
"handle select+0x17d
mysqgld®
mysqgld"
mysqgld®
"dispatch command+0x1619

mysqgld

mysqgld

mysqgld"
*handle one connection+0x4c
libc.so.1"

libc.so.1"

mysqgld

key cache read+0x741
_mi fetch keypage+0x48
W search+0x84

mi ck write btree+0xab

:ha wrlte row+0x8d

end write+0xla3
evaluate join record+0xlle

:exect+t0x482

mysql select+0x30e

execute sglcom select+0xa6
mysqgl execute command+0x124b
mysql parse+0x361

do handle ~one connection+0xleb

thrp setup+0xbc
lwp start

Ancestry A

V4

Code Path

Background: Stack Modes

* Two types of stacks can be profiled:

* user-level for applications (user mode)
» kernel-level for the kernel (kernel mode)

* During a system call, an application may have both

Application

v

System Libraries

v v

System Calls

User-Level

Kernel-Level

Kernel- *
: Kernel

v

Devices

Background: Software Internals

* You don’t need to be a programmer to understand stacks.

» Some function names are self explanatory, others require
source code browsing (if available). Not as bad as it sounds:

 MySQL has ~15,000 functions in > 0.5 million lines of code

* The earlier stack has 20 MySQL functions. To understand
them, you may need to browse only 0.13%
(20 / 15000) of the code. Might take hours, but it is doable.

* |f you have C++ signatures, you can use a demangler first:

mysqld ZN4JOIN4execEv+0x482
l gc++filt, demangler.com

mysqld JOIN: :exec () +0x482

Background: Stack Visualization

» Stack frames can be visualized as rectangles (boxes)

* Function names can be truncated to fit

* In this case, color is chosen randomly (from a warm palette)

to differentiate adjacent frames

libc.so.1l mutex trylock adaptive+0x112

libc.so.1l mutex lock impl+0x165
libc.so.1l mutex lock+0xc

mysqgld key cache read+0x741

)

libc.so.l mutex trylock ...

libc.so.l mutex lock imp...

libc.so.l mutex lock+0xc

mysqgld key cache read+0x741

A stack trace becomes a column of colored rectangles

Background: Time Series Stacks

* Time series ordering allows time-based pattern identification

* However, stacks can change thousands of times per second

>

L LN
R
0l

UL AR
000 0 A 0
T RN A
LR
0
00 DAL T
NI O
LR L
DU O 1

il
AURITETO0EE SMARETIIIST RN
(B DI OO e o
OOV OO 0 O A
2N AV A A
LD (O LCETLY TR R
T O OO 1
TSN WO ot
A OO OO O A
LN TRl TR T
A0SO AR o |
LA OO0 00 LTI TR III
U100 OO 00 OO0 OO [
OO0 TR0 0T UMD EE {00 0OIR 0 00010 O T 10 I
VA0 0O A1 AR 0 O RO QNN T DY SOMUA 0 |
L RO M R COMRE: 10 AT 0 Q100 OO OO
B QU A D00 OO A0 000 AT OO e [
000 OO0 A0S A AN O0 MM v Ty

Time (seconds)

| !lllllll WD
|

Stack
Depth

Background: Time Series Stacks

* Time series ordering allows time-based pattern identification

* However, stacks can change thousands of times per second

One Stack

Sample

Stack
Depth

| UL R A
| JOVREN 0N {100 MO I OO |
U M TORTAE UM AOMSREOON DON 00 AT
B 000 AN OO 00 080 O O 1l
MO0 0 NN O AN DO 0000 I
0 000 ORGSO MUM00 O A0 OO e il
VOO R OO 0 AL 0 |
0 AR OW MOS0 0 AN A (1]
00 MDA AT PSRN AL 10 LA i
Q0UTE CUTIDOCOMMUDIINEN RO D LUM IO 00T NI OB LI
AR WSO 0N OGO A1 N Al
llll'lllllll ACCEITTRR N0 0008 00T TN OO0
LAOEIRUIET 0 UON ! L0 UL LN)
JCEIDUARELR TOVOOOIE 0 000010 SOOI 00T O
0O RS9 7 DETARMOOO 010 UM TOEE OMOEE SOAT O I W |
0L A M N FOMRE: 1 AT 000 10O OO OO
0 QEE IR SO0 MO 00 0000 AT OO e [

A
>

Time (seconds)

Background: Frame Merging

* When zoomed out, stacks appear as narrow stripes

* Adjacent identical functions can be merged to improve
readability, eq:

mu. .. mu. .. ge... muex tryl... ge...

mu. .. mu. .. mu. .. mutex lock ()

mu. .. mu. .. mu. .. > mutex lock impl ()

ke...| |ke...| |ke... key cache read()

* This sometimes works: eg, a repetitive single threaded app

» Often does not (previous slide already did this), due to code
execution between samples or parallel thread execution

Background: Frame Merging

* Time-series ordering isn’t necessary for the primary use case:
identify the most common (“hottest”) code path or paths

* By using a different x-axis sort order, frame merging can be
greatly improved...

Flame Graphs

-l

Alphabet

O
-
®
@)

=
(@)
| -
D
S
(7p)
D
7p)
®
O
| -
O

=

B2

L

T
0

d
| -
®
=
(@F
-
O
&
®
| -

—
&
O

=
@

O
D

-

e
&
O
| -

| -

§®
o
o
o
©
D
T
@)
(dp)
D
c
_I
>
I
O
)
D
O
©
c
—
©
(dp)
vz
O
© o
n c
—)
— ©
% o
5B
- @)
O O
55 8
Sot
= ©

-
@© N
LL >
[)

Flame Graphs

Flame Graphs: Definition

* Each box represents a function (a merged stack frame)
* y-axis shows stack depth

* top function led directly to the profiling event
» everything beneath it is ancestry (explains why)

* X-axis spans the sample population, sorted alphabetically

* Box width is proportional to the total time a function was
profiled directly or its children were profiled

 All threads can be shown in the same Flame Graph (the
default), or as separate per-thread Flame Graphs

* Flame Graphs can be interactive: mouse over for details

Flame Graphs:Variations

» Profile data can be anything: CPU, I/O, memory, ...
» Naming suggestion: [event] [units] Flame Graph
* Eg: "FS Latency Flame Graph"
* By default, Flame Graphs == CPU Sample Flame Graphs
» Colors can be used for another dimension
* by default, random colors are used to differentiate boxes
 --hash for hash-based on function name

* Distribution applications can be shown in the same Flame
Graph (merge samples from multiple systems)

Flame Graphs: A Simple Example

A CPU Sample Flame Graph:

£()
e ()

* I'll illustrate how these are read by posing various questions

Flame Graphs: How to Read

A CPU Sample Flame Graph:

£()
e ()

* Q: which function is on-CPU the most?

Flame Graphs: How to Read

A CPU Sample Flame Graph: top edge shows
who is on-CPU

/

£() \ v / directly
|

e ()

I—
h ()

g()

e Q: which function is on-CPU the most?

* A: £()
e() ison-CPU a
little, but its runtime

IS mostly spent in £(),
which is on-CPU directly

Flame Graphs: How to Read

A CPU Sample Flame Graph:

£()
e ()

* Q: why is £ () on-CPU?

Flame Graphs: How to Read

A CPU Sample Flame Graph:

£Q)

f () was called by e ()
e() was called by c ()

e ()

ancestry

* Q: why is £ () on-CPU?

*Ara() =b() =c()—=e()=£()

Flame Graphs: How to Read

A CPU Sample Flame Graph:

£()
e ()

* Q: how does b () compare to g()?

Flame Graphs: How to Read

A CPU Sample Flame Graph: visually compare
lengths

£()
e () // \
i

g()

* Q: how does b () compareto g()?

* A: b() looks like it is running (present) about 10 times more
often than g ()

Flame Graphs: How to Read

A CPU Sample Flame Graph: ... Of mouse over

£()
e ()

status line
or tool tip:

b() is 90%

* Q: how does b () compare to g()?

 A: for interactive Flame Graphs, mouse over shows b () is
90%, g () is 10%

Flame Graphs: How to Read

A CPU Sample Flame Graph: ... Of mouse over

£()
e ()

status line
or tool tip:

g()is 10%

* Q: how does b () compare to g()?

 A: for interactive Flame Graphs, mouse over shows b () is
90%, g () is 10%

Flame Graphs: How to Read

A CPU Sample Flame Graph:

£()
e ()

* Q: why are we running £ ()?

Flame Graphs: How to Read

A CPU Sample Flame Graph:

look for
branches

e();v
4

N 7/

* Q: why are we running £ ()?
* A: code path branches can reveal key functions:

* a() choose the b () path

* c() choose the e () path

Flame Graphs: Example |

» Customer alerting software periodically checks a log, however,
it is taking too long (minutes).

* |t includes grep(1) of an ~18 Mbyte log file, which takes
around 10 minutes!

* grep(1) appears to be on-CPU for this time. Why?

Flame Graphs: Example |

» CPU Sample Flame Graph for grep(1) user-level stacks:

Flame Graph

Flame Graphs: Example |

» CPU Sample Flame Graph for grep(1) user-level stacks:

Flame Graph UTF8?

\

Function: grep’ check_multibyte_string (39,754 samples, 82.11%)

* 82% of samples are in check_multibyte_string() or its children.
This seems odd as the log file is plain ASCII.

* And why is UTF8 on the scene? ... Oh, LANG=en_US.UTF-8

Flame Graphs: Example |

» CPU Sample Flame Graph for grep(1) user-level stacks:

Flame Graph UTF8?

\

Function: grep’ check_multibyte_string (39,754 samples, 82.11%)

» Switching to LANG=C improved performance by 2000x

* A simple example, but | did spot this from the raw profiler text
before the Flame Graph. You really need Flame Graphs when
the text gets too long and unwieldy.

Flame Graphs: Example 2

* A potential customer benchmarks disk /0O on a cloud instance.
The performance is not as fast as hoped.

* The host has new hardware and software. Issues with the new
type of disks is suspected.

Flame Graphs: Example 2

* A potential customer benchmarks disk /0O on a cloud instance.
The performance is not as fast as hoped.

* The host has new hardware and software. Issues with the new
type of disks is suspected.

| take a look, and notice CPU time in the kernel is modest.

* I’'d normally assume this was I/O overheads and not profile it
yet, instead beginning with 1/O latency analysis.

» But Flame Graphs make it easy, and it may be useful to see
what code paths (illumos kernel) are on the table.

Flame Graph

N
<
o
=
S
X
LL]
%
c
o
s
-
O
e
=
o
T

p——
Bl | BN [[|

Flame Graph

()? Time Stamp Counter? Checking ancestry...

N
O
o
=
S
X
LL]
%
c
o
s
-
O
o
=
o
T

Function: unix tsc_read (1,175 samples, 24.33%)

 24% in tsc read

Flame Graphs: Example 2

Flame Graph

IE!':EE:’:._

Function: zfs" zfs_zone_io_throttle (3,003 samples, 62.17%)

* 62% in zfs_zone_io_throttle? Oh, we had forgotten that this
new platform had ZFS I/O throttles turned on by default!

Flame Graphs: Example 3

» Application performance is about half that of a competitor

* Everything is believed identical (H/W, application, config,
workload) except for the OS and kernel

» Application is CPU busy, nearly 100% in user-mode. How can
the kernel cause a 2x delta when the app isn't in kernel-mode?

* Flame graphs on both platforms for user-mode were created:
* Linux, using perf
 SmartOS, using DTrace

* Added flamegraph.pl --hash option for consistent function
colors (not random), aiding comparisons

Flame Graphs: Example 3

Extra Function: sea..

UnzipDocid() —_ [searchd
- searchd’ DiskIndexQword_c
:::GetbocsChunk
-
Linux SmartOS

* Function label formats are different, but that's just due to
different profilers/stackcollapse.pl's (should fix this)

* Widths slighly different, but we already know perf differs
* Extra function? This is executing different application software!

SphDocID t UnzipDocid () { return UnzipOffset(); }

» Actually, a different compiler option was eliding this function

Flame Graphs: More Examples

* Flame Graphs are typically
more detailed, like the earlier
MySQL example

* Next, how to generate them,
then more examples

Generation

Generation

* I’ll describe the original Perl version | wrote and shared on
github:

 https://github.com/brendangregg/FlameGraph

* There are other great Flame Graph implementations with
different features and usage, which I'll cover in the last section

Generation: Steps

* 1. Profile event of interest
2. stackcollapse.pl

* 3. flamegraph.pl

Generation: Overview

* Full command line example. This uses DTrace for CPU
profiling of the kernel:

dtrace -x stackframes=100 -n 'profile-997 /arg0/ {
@Q[stack()] = count(); } tick-60s { exit(0); }' -o out.stacks

stackcollapse.pl < out.stacks > out.folded

flamegraph.pl < out.folded > out.svg

* Then, open out.svg in a browser

* Intermediate files could be avoided (piping), but they can be
handy for some manual processing if needed (eg, using vi)

Generation: Profiling Data

* The profile data, at a minimum, is a series of stack traces

* These can also include stack trace counts. Eg:

mysqld Zl3add to statusPl7system status varS0 +0x47

mysqld Z22calc sum of all statusPl?system status _var+0x67
mysqld._216dlspatch command19enum server commandP3THDPCJ+0x1222
mysqgld' Z10do commandP3THD+0x198
mysqld‘handle_pne_connection+Oxla6

libc.so.1l thrp setup+0x8d

libc.so.1l lwp start

5530 < # of occurrences for this stack

This example is from DTrace, which prints a series of these.
The format of each group is: stack, count, newline

Your profiler needs to print full (not truncated) stacks, with
symbols. This may be step 0: get the profiler to work!

Generation: Profiling Tools

» Solaris/FreeBSD/SmartO$/...:
 DTrace

* Linux:
e perf, SystemTap

« OS X:
* [nstruments

* Windows:

e Xperf.exe

Generation: Profiling Examples: DTrace

» CPU profile kernel stacks at 997 Hertz, for 60 secs:

dtrace -x stackframes=100 -n 'profile-997 /arg0/ ({
@[stack()] = count(); } tick-60s { exit(0); }' -o out.kern stacks

» CPU profile user-level stacks for PID 12345 at 99 Hertz, 60s:

dtrace -x ustackframes=100 -n 'profile-97 /PID == 12345 && argl/ ({
@[ustack()] = count(); } tick-60s { exit(0); }' -o out.user stacks

» Should also work on Mac OS X, but is pending some fixes
preventing stack walking (use Instruments instead)

» Should work for Linux one day with the DTrace ports

Generation: Profiling Examples: perf

» CPU profile full stacks at 97 Hertz, for 60 secs:

perf record -a -g -F 97 sleep 60
perf script > out.stacks

* Need debug symbol packages installed (*dbgsym), otherwise
stack frames may show as hexidecimal

* May need compilers to cooperate (-fno-omit-frame-pointer)

 Has both user and kernel stacks, and the kernel idle thread.
Can filter the idle thread after stackcollapse-perf.pl using:

stackcollapse-perf.pl < out.stacks | grep -v cpu idle | ...

Generation: Profiling Examples: SystemTap

» CPU profile kernel stacks at 100 Hertz, for 60 secs:

stap -s 32 -D MAXTRACE=100 -D MAXSTRINGLEN=4096 -D MAXMAPENTRIES=10240 \
-D MAXACTION=10000 -D STP OVERLOAD THRESHOLD=5000000000 --all-modules \
-ve 'global s; probe timer.profile { s[backtrace()] << 1; }

probe end { foreach (i in s+) { print stack(i);
printf ("\t%d\n", Qcount(s[i])); } } probe timer.s(60) { exit(); }' \

> out.kern_stacks

* Need debug symbol packages installed (*dbgsym), otherwise
stack frames may show as hexidecimal

* May need compilers to cooperate (-fno-omit-frame-pointer)

Generation: Dynamic Languages

* C or C++ are usually easy to profile, runtime environments
(JVM, node.js, ...) are usually not, typically a way to show
program stacks and not just runtime internals.

* Eg, DTrace’s ustack helper for node.js:

Oxfc618bcO
Oxfc61lbd62
Oxfe870841
Oxfc6lclf3
Oxfc617685
Oxfe870841
Oxfc6154d7
Oxfe870ela

[...]

D

libc.so.1l gettimeofday+0x7
Date at position
<< adaptor >>
<< constructor >>
(anon) as exports.active at timers.js position 7590
(anon) as Socket. write at net.]js position 21336
(anon) as Socket.write at net.js position 19714
<< adaptor >>
(anon) as OutgoingMessage. writeRaw at http.]js p...
(anon) as OutgoingMessage. send at http.]js posit...
<< adaptor >>

(anon) as OutgoingMessage.end at http.]js pos...

[...]

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

Generation: stackcollapse.pl

» Converts profile data into a single line records
* Variants exist for DTrace, perf, SystemTap, Instruments, Xperf

* Eqg, DTrace:

unix i86 mwait+0xd

unix cpu idle mwait+0xfl

unix idle+0x114

unix thread start+0x8
19486

stackcollapse.pl < out.stacks > out.folded

N

unix thread start;unix idle;unix cpu idle mwait;unix i86 mwait 19486

Generation: stackcollapse.pl

» Converts profile data into a single line records
* Variants exist for DTrace, perf, SystemTap, Instruments, Xperf

* Eqg, DTrace:

unix i86 mwait+0xd

unix cpu idle mwait+0xfl

unix idle+0x114

unix thread start+0x8
19486

stackcollapse.pl < out.stacks > out.folded

N

unix thread start;unix idle;unix cpu idle mwait;unix i86 mwait 19486

|

stack trace, frames are ‘;’ delimited count

Generation: stackcollapse.pl

 Full output is many lines, one line per stack

* Bonus: can be grepped

./stackcollapse-stap.pl out.stacks | grep ext4fs dirhash

system call fastpath;sys getdents;vfs readdir;ext4 readdir;extd4 htree fill
tree;htree dirblock to tree;extd4dfs dirhash 100

system call fastpath;sys getdents;vfs readdir;extd4 readdir;extd4 htree fill
tree;htree dirblock to tree;extdfs dirhash;half md4 transform 505

system call fastpath;sys getdents;vfs readdir;extd4d readdir;extd4d htree fill
tree;htree dirblock to tree;extdfs dirhash;strZ2hashbuf signed 353

[...]

- That shows all stacks containing ext4fs_dirhash(); useful
debug aid by itself

* grep can also be used to filter stacks before Flame Graphs

* eg: grep -v cpu_idle

Generation: Final Output

* Desires:

* Full control of output
* High density detall
e Portable: easily viewable

e |nteractive

Generation: Final Output

* Desires:

* Full control of output

* High density detall
SVG+JS

» Portable: easily viewable

e |nteractive

 SVG+JS: Scalable Vector Graphics with embedded JavaScript

 Common standards, and supported by web browsers
» Can print poster size (scalable); but loses interactivity!

» Can be emitted by a simple Perl program...

Generation: flamegraph.pl

» Converts folded stacks into an interactive SVG. Eg:

flamegraph.pl --titletext="Flame Graph: MySQL" out.folded > graph.svg

» Options:

--titletext change the title text (default is “Flame Graph”)

—--width width of image (default is 1200)

--height height of each frame (default is 16)

—--minwidth omit functions smaller than this width (default is 0.1 pixels)
--fonttype font type (default “Verdana”)

--fontsize font size (default 12)

——countname count type label (default “samples”)

—--nametype name type label (default “Function:”)

—-colors color palette: "hot", "mem”, "io"

—--hash colors are keyed by function name hash

Types

Types

- CPU
* Memory
» Off-CPU

* More

CPU

CPU

* Measure code paths that consume CPU

* Helps us understand and optimize CPU usage, improving
performance and scalability

* Commonly performed by sampling CPU stack traces at a
timed interval (eg, 100 Hertz for every 10 ms), on all CPUs

* DTrace/perf/SystemTap examples shown earlier

» Can also be performed by tracing function execution

CPU: Sampling

CPU stack sampling:

SR

B

CPU:Tracing

CPU function tracing:

CPU: Profiling

» Sampling:
» Coarse but usually effective

» Can also be low overhead, depending on the stack type
and sample rate, which is fixed (eg, 100 Hz x CPU count)

* Tracing:

» Overheads can be too high, distorting results and hurting
the target (eg, millions of trace events per second)

* Most Flame Graphs are generated using stack sampling

CPU: Profiling Results

» Example results. Could you do this?

As an experiment to investigate the performance of the
resulting TCP/IP implementation ... the |l is CPU
saturated, but the [has about 30% idle time. The time
spent in the system processing the data is spread out among
handling for the Ethernet (20%), IP packet processing (10%),
TCP processing (30%), checksumming (25%), and user
system call handling (15%), with no single part of the handling
dominating the time in the system.

CPU: Profiling Results

» Example results. Could you do this?

As an experiment to investigate the performance of the
resulting TCP/IP implementation ... the 11/750 is CPU
saturated, but the 11/780 has about 30% idle time. The time
spent in the system processing the data is spread out among
handling for the Ethernet (20%), IP packet processing (10%),
TCP processing (30%), checksumming (25%), and user
system call handling (15%), with no single part of the handling
dominating the time in the system.

— Bill Joy, 1981, TCP-IP Digest, Vol 1 #6

* An impressive report, that even today would be difficult to do

* Flame Graphs make this a lot easier

CPU: Another Example

* Afile system is archived using tar(1).

* The files and directories are cached, and the run time is
mostly on-CPU in the kernel (Linux). Where exactly?

-
. -
- 0
—
 —
.
e— —

Flame Graph

R
ol
-
4
X

LL]
G
)

-
s
O
-

<C

CPU

CPU: Another Example

Flame Graph

Function: sys_getdents (592 samples, 20.05%)

» 20% for reading directories

CPU: Another Example

Flame Graph

Function: sys_newfstatat (1,598 samples, 54.13%)

* 549, for file statistics

CPU: Another Example

Flame Graph

Function: sys_newfstatat (1,598 samples, 54.13%)

* Also good for learning kernel internals: browse the active code

CPU: Recognition

* Once you start profiling a target, you begin to recognize the
common stacks and patterns

* Linux getdents() ext4 path:

* The next slides show similar
example kernel-mode CPU
Sample Flame Graphs

CPU: Recognition: illumos localhost TCP

* From a TCP localhost latency issue (illumos kernel):

Flame Graph

IHlumos

. fused-TCP
IHlumos

fused-TCP
receive

D
-
7
2
LL]
O
a
—
7
O
=
=
-
O
2
C
0.0
O
O
D
a'd
)
al
O

Linux TCP

Flame Graph

d
-
0
(%)

al

O

T
X
S

k=

2
c
O

2
C
60
o,
O
Q

a'd

)

al

O

* Profiled from a KVM guest:

cmcmms = - aaell w :

III.IIHIHHMNMNMM_- -

Flame Graph

7
C
O,
:

=

Is
O
7
>N

)
.
O
2
C
0.0
O
O
D

a'd

)

al

O

7]
C
0,
3

T

Ie
9
v
>N

09
x
O

k=
-
0.0
O
O
U

a'd

)

al

O

—————aca gl | u -

Ip fanout
receive

— — e —
——————
| — — —— -
- — e .
L — l"mm-

=== uuuuuwwm:- --

sendfile()

bnx
recv

bnx
xmit

Flame Graph

writev()

read() write()

pollsys|()

open()

—-
e il [--_ -

close()

CPU: Both Stacks

* Apart from showing either user- or kernel-level stacks, both
can be included by stacking kernel on top of user

* Linux perf does this by default
» DTrace can by aggregating @[stack(), ustack()]
* The different stacks can be highlighted in different ways:

e different colors or hues

» separator: flamegraph.pl will color gray any functions
called "-", which can be inserted as stack separators

» Kernel stacks are only present during syscalls or interrupts

O Ilellllllla-m

- —_—— —men
=

kvm'® handle_ept_.. |

Flame Graph

)
&
)
4
2>
>
A4
9
ol
&
S
X
LL]
(V)
\/
O
(q°]
)
V)
i
=)
O
af
)
al
@,

Advanced Flame Graphs

Other Targets

» Apart from CPU samples, stack traces can be collected for
any event; eqg:

 disk, network, or FS I/0
» CPU events, including cache misses
* lock contention and holds
 memory allocation
» Other values, instead of sample counts, can also be used:
* latency
* bytes

* The next sections demonstrate memory allocation, |/O tracing,
and then all blocking types via off-CPU tracing

Memory

Memory

* Analyze memory growth or leaks by tracing one of the
following memory events:

* 1. Allocator functions: malloc (), free()
e 2. brk () syscall 0
* 3. mmap () syscall

* 4. Page faults

RSS (Gbytes)

* |nstead of stacks and
sample counts, L
measure stacks 1
with byte counts

0 200 400 600 800 1000 1200 1400

Time (minutes)

* Merging shows show total bytes by code path

Memory: Four Targets

Virtual Memory Physical Memory

Application

Allocator
(libc)

2.
1. malloc()
free() /

realloc()

calloc()
N
mmap ()

munmap () Mappings
»

brk() //Vl

Process Address Space

Memory:Allocator

» Trace malloc(), free(), realloc(), calloc(), ...
* These operate on virtual memory

 *alloc() stacks show why memory was first allocated (as
opposed to populated): Memory Allocation Flame Graphs

* With free()/realloc()/..., suspected memory leaks during tracing
can be identified: Memory Leak Flame Graphs!

* Down side: allocator functions are frequent, so tracing can
slow the target somewhat (eg, 25%)

* For comparison: Valgrind memcheck is more thorough, but its
CPU simulation can slow the target 20 - 30x

Memory:Allocator: malloc()

* As a simple example, just tracing malloc() calls with user-level
stacks and bytes requested, using DTrace:

dtrace -x ustackframes=100 -n 'pid$target::malloc:entry {
@[ustack()] = sum(arg0); } tick-60s { exit(0); }' -p 529 -o out.malloc

* malloc() Bytes Flame Graph:

stackcollapse.pl out.malloc | flamegraph.pl --title="malloc() bytes" \
—-—-countname="bytes" --colors=mem > out.malloc.svg

* The options customize the title, countname, and color palette

Memory:Allocator: malloc()

malloc() bytes

Function: bash’ command_word_completion_function (20,035 bytes, 39.75%)

Memory:Allocator: Leaks

* Yichun Zhang developed Memory Leak Flame Graphs using
SystemTap to trace allocator functions, and applied them to
leaks in Nginx (web server):

Memory Leak Flame Graph (showing a leak in the Nginx Core)

Memory: brk()

« Many apps grow their virtual memory size using brk(), which
sets the heap pointer

A stack trace on brk() shows what triggered growth

* Eg, this script (brkbytes.d) traces brk() growth for “mysqld”:

#!'/usr/sbin/dtrace -s

inline string target = "mysqld";
uint brk[int];

syscall: :brk:entry /execname == target/ { self->p = arg0; }

syscall: :brk:return /arg0 == 0 && self->p && brk[pid]/ {
@[ustack()] = sum(self->p - brk[pid]);

}

syscall: :brk:return /arg0 == 0 && self->p/ { brk[pid] = self->p; }

syscall: :brk:return /self->p/ { self->p = 0; }

Memory: brk(): Heap Expansion

./brkbytes.d -n 'tick-60s { exit(0); }' > out.brk

stackcollapse.pl out.brk | flamegraph.pl --countname="bytes" \
--title="Heap Expansion Flame Graph'" --colors=mem > out.brk.svg

Heap Expansion Flame Graph

“

Function: all (21,381,120 bytes, 100%)

Memory: brk()

* brk() tracing has low overhead: these calls are typically
infrequent

* Reasons for brk():

A memory growth code path
 Amemory leak code path

* An innocent application code path, that happened to spill-
over the current heap size

* Asynchronous allocator code path, that grew the
application in response to diminishing free space

Memory: mmap()

* mmap() may be used by the application or it’s user-level
allocator to map in large regions of virtual memory

* [t may be followed by munmap() to free the area, which can
also be traced

* Eg, mmap() tracing, similar to brk tracing, to show bytes and
the stacks responsible:

dtrace -n 'syscall::mmap:entry /execname == "mysqld"/ {
@[ustack()] = sum(argl); }' -o out.mmap

stackcollapse.pl out.mmap | flamegraph.pl --countname="bytes" \
--title="mmap () bytes Flame Graph" --colors=mem > out.mmap.svg

* This should be low overhead — depends on the frequency

Memory: Page Faults

* brk() and mmap() expand virtual memory

» Page faults expand physical memory (RSS). This is demand-
based allocation, deferring mapping to the actual write

* Tracing page faults show the stack responsible for consuming
(writing to) memory:

dtrace -x ustackframes=100 -n 'vminfo:::as fault /execname == "mysqld"/ {
@[ustack()] = count(); } tick-60s { exit(0); }' > out.fault

stackcollapse.pl out.mysqld faultOl | flamegraph.pl --countname=pages \
--title="Page Fault Flame Graph" --colors=mem > mysqld fault.svg

Page Fault Flame Graph

all (30,826 pages, 100%)

-
...7—
._.-—'——

Memory: Page Faults

Function:

/O

/O

» Show time spent in I/O, eg, storage 1/0O

* Measure I/O completion events with stacks and their latency;
merging to show total time waiting by code path

Application
I
system calls Logical I/0O:
I Measure here for user stacks,
VES and real application latency
I
FS
I | Physical I/0:
Block Device Interface Measure here for kernel stacks,
| I and disk I/0O latency

Disks

1/O: Logical /O Laency

* For example, ZFS call latency using DTrace (zfsustack.d):

#!'/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option ustackframes=100

fbt::zfs read:entry, fbt::zfs write:entry,

fbt::zfs readdir:entry, fbt::;fs_getattr:entry, -
fbt::zfs setattr:entry TImeStamp from

{ function start (entry)

self->start = timestamp;
}

fbt::zfs read:return, fbt::zfs write:return,
fbt::zfs readdir:return, fbt::zfs getattr:return,
fbt::zfs setattr:return

/self->start/

{ .
this->time = timestamp - self->start; tO funCthn end (return)

@Q[ustack (), execname] = sum(this->time) ;

self->start = 0;

}

dtrace: : :END
{

printa ("%$k%s\n%@d\n", Q);

}

/O: Logical I/O Laency

» Making an I/O Time Flame Graph:

./zfsustacks.d -n 'tick-10s { exit(0); }' -o out.iostacks

stackcollapse.pl out.iostacks | awk '{ print $1, $2 / 1000000 }' | \
flamegraph.pl --title="FS I/O Time Flame Graph" --color=io \
--countname=ms --width=500 > out.iostacks.svg

* DTrace script measures all processes, for 10 seconds

 awk to covert ns to ms

/O: Time Flame Graph: gzip

* gzip(1) waits more time in write()s than read()s

FS I/O Time Flame Graph

Function: gzip flush_block (226 ms, 66.10%)

/O: Time Flame Graph: MySQL

FS 1/O Time Flame Graph

Function: mysqld’ SQL_SELECT::test_quick_select (255 ms, 26.25%)

/O: Flame Graphs

* |/O latency tracing: hugely useful

» But once you pick an /O type, there usually isn't that many
different code paths calling it

* Flame Graphs are nice, but often not necessary

Off-CPU

Off-CPU

Off-CPU tracing:

1 i
user-level
syscall

X Off-CPU X

Off-CPU: Performance Analysis

» Generic approach for all blocking events, including 1/0O

* An advanced performance analysis methodology:

 http://dtrace.org/blogs/brendan/2011/07/08/oftf-cpu-performance-analysis/
» Counterpart to (on-)CPU profiling
» Measure time a thread spent off-CPU, along with stacks
* Off-CPU reasons:

* Waiting (sleeping) on /O, locks, timers
* Runnable waiting for CPU
* Runnable waiting for page/swap-ins

* The stack trace will explain which

Off-CPU: Time Flame Graphs

» Off-CPU profiling data (durations and stacks) can be rendered
as Off-CPU Time Flame Graphs

 As this involves many more code paths, Flame Graphs are
usually really useful

* Yichun Zhang created these, and has been using them on
Linux with SystemTap to collect the profile data. See:

 http://agentzh.org/misc/slides/off-cpu-flame-graphs.pdf

* Which describes their uses for Nginx performance analysis

Off-CPU: Profiling

» Example of off-CPU profiling for the bash shell:

dtrace -x ustackframes=100 -n '
sched: : :0off-cpu /execname == "bash"/ { self->ts timestamp; }
sched: : :on-cpu /self->ts/ {
@[ustack()] = sum(timestamp - self->ts); self->ts = 0; }
tick-30s { exit(0); }' -o out.offcpu
* Traces time from when a thread switches off-CPU to when it
returns on-CPU, with user-level stacks. ie, time blocked or

sleeping
» Off-CPU Time Flame Graph:

stackcollapse.pl < out.offcpu | awk '{ print $1, $2 / 1000000 }' | \
flamegraph.pl --title="Off-CPU Time Flame Graph" --color=io \
—--countname=ms --width=600 > out.offcpu.svg

* This uses awk to convert nanoseconds into milliseconds

Off-CPU: Bash Shell

Off-CPU Time Flame Graph

Function: libc.so.1" waitpid (1,193 ms, 8.65%)

Off-CPU: Bash Shell

waiting for waiting for
child processes keystrokes

l

Off-CPU Time Flame Graph

o
Y

Function: libc.so.1" waitpid (1,193 ms, 8.65%)

Off-CPU: Bash Shell

* For that simple example, the trace
data was so short it could have
just been read (54 lines, 4 unique
stacks):

* For multithreaded applications,
idle thread time can dominate

* For example, an idle MySQL
server...

libc.
libc.
bash’
bash’
bash®
bash’
bash’
bash’
'_start+0x83

bash
19052

libc.
bash’
bash’
bash’
bash’
bash®
bash’
bash’
bash’
bash’
bash’
'_start+0x83

bash
7557782

libc.
libec.
bash®
bash®
bash’
bash’
bash®
bash’
'_start+0x83

bash
1193160644

libc.
bash’
bash’
bash®
bash’
bash®
bash’
bash’
bash’
bash’
bash’
bash®
bash’
' _start+0x83

bash
12588900307

so.1l’_ forkx+0xb

so.1l fork+0xld

make child+0xb5
execute_ simple command+0xb02
execute command internal+0xae6
execute command+0x45

reader_ loop+0x240
main+0xaff

so.1l syscall+0x13

file status+0x19

find in path element+0x3e

find user command in path+0x114
find user command internal+0x6f
search for command+0x109
execute_simple command+0xa97
execute command internal+0Oxae6
execute command+0x45

reader loop+0x240

main+O0xaff

so.l’ waitid+0x15

so.1l waitpid+0x65

waitchld+0x87

wait for+0x2ce

execute command internal+0x1758
execute command+0x45

reader loop+0x240

main+0Oxaff

so.l’ read+0x15

rl getc+0x2b

rl read key+0x22d
readline_internal char+0x113
readline+0x49
yy_readline get+0x52
shell getc+0Oxel

read token+0x6f
yyparse+0x4b9
parse_command+0x67
read command+0x52
reader_ loop+0xa5
main+Oxaff

Off-CPU: MySQL Idle

Off-CPU Time Flame Graph

Off-CPU: MySQL Idle

Off-CPU Time Flame Graph

MySQL gives thread routines
descriptive names (thanks!)
Mouse over each to identify

Columns from
_thrp_setup

are threads or
thread groups

Function: mysqld’ buf_flush_page_cleaner_thread (29,001 ms, 5.52%) «— (profiling time was 308)

Off-CPU: MySQL Idle

Off-CPU Time Flame Graph
buf_flush_page_cleaner_thread mysqgld_main

dict_stats_thread I srv_monitor_thread
fts_optimize_tfﬂread srv_master_thread
io_handlerjhread srv_error_monitor_thread
Iock_wait'Ltimeout_th read pfs_spawn_thread

mysqld Threads

Off-CPU: MySQL Idle

« Some thread columns are wider than the measurement time:
evidence of multiple threads

* This can be shown a number of ways. Eg, adding process
name, PID, and TID to the top of each user stack:

#!'/usr/sbin/dtrace -s
#pragma D option ustackframes=100
sched: : :0ff-cpu /execname == "mysqld"/ { self->ts = timestamp; }

sched: : :on-cpu
/self->ts/
{
@[execname, pid, curlwpsinfo->pr lwpid, ustack()] =
sum(timestamp - self->ts);
self->ts = 0;
}

dtrace:::END { printa("\n%s-%d/%d%k%@d\n", Q@) ; }

Off-CPU: MySQL Idle

Off-CPU Time Flame Graph

1 thread many threads

2 threads 4 threads doing work

/ (less idle)

Function: mysqld-13435/315 (12,678 ms, 3.49%) thread ID (TlD)

Off-CPU: Challenges

* Including multiple threads in one Flame Graph might still be
confusing. Separate Flame Graphs for each can be created

» Off-CPU stacks often don't explain themselves:

* This is blocked on a conditional variable. The real reason it is
blocked and taking time isn't visible here

* Now lets look at a busy MySQL server, which presents
another challenge...

Off-CPU: MySQL Busy

Off-CPU Time Flame Graph

net_read_packet() -> pollsys)

idle threads

..iiil

IIII |

Function: libc.so.1’ __pollsys (289,499 ms, 48.09%)

Off-CPU: MySQL Busy

random narrow Off-CPU Time Flame Graph

stacks during
work, with no
reason to
sleep?

Function: mysqld’ my_ismbchar_utf8 (3,199 ms, 0.53%)

Off-CPU: MySQL Busy

* Those were user-level stacks only. The kernel-level stack,
which can be included, will usually explain what happened

* eg, involuntary context switch due to time slice expired

* Those paths are likely hot in the CPU Sample Flame Graph

Hot/Cold

Hot/Cold: Profiling

preempted or
time quantum expired

anon.
major :
fault Paging
page in
schedule

Runnable Executing

A AN

wakeup I/0 wait On-CPU
Sleep .
Q Profiling
acquire O block
Lock
Off-CPU

work wait for Profiling

arrives dle work (everything else)

Thread State Transition Diagram

Hot/Cold: Profiling

* Profiling both on-CPU and off-CPU stacks shows everything

* In my LISA'12 talk | called this the Stack Profile Method:-
profile all stacks

* Both on-CPU ("hot") and off-CPU ("cold") stacks can be
included in the same Flame Graph, colored differently:
Hot Cold Flame Graphs!

* Merging multiple threads gets even weirder. Creating a
separate graph per-thread makes much more sense, as
comparisons to see how a thread's time is divided between
on- and off-CPU activity

* For example, a single web server thread with kernel stacks...

Hot/Cold: Flame Graphs

Hot Cold Flame Graph

Function: sockfs' so_accept (43413 ms, 88.26%)

Hot/Cold: Flame Graphs

Hot Cold Flame Graph

On-CPU (1?)

Function: sockfs' so_accept (43413 ms, 88.26%)

Hot/Cold: Challenges

» Sadly, this often doesn't work well for two reasons:

* 1. On-CPU time columns get compressed by off-CPU time

* Previous example dominated by the idle path — waiting for
a new connection — which is not very interesting!

* Works better with zoomable Flame Graphs, but then we've
lost the abllity to see key details on first glance

» Pairs of on-CPU and off-CPU Flame Graphs may be the
best approach, giving both the full width

» 2. Has the same challenge from off-CPU Flame Graphs:
real reason for blocking may not be visible

State of the Art

* That was the end of Flame Graphs, but | can't stop here —
we're so close

* On + Off-CPU Flame Graphs can attack any issue
* 1. The compressed problem is solvable via one or more of:
« zoomable Flame Graphs
» separate on- and off-CPU Flame Graphs
 per-thread Flame Graphs

» 2. How do we show the real reason for blocking?

Wakeup Tracing

Wakeup tracing:

)

user-level

Tracing VWakeups

* The systems knows who woke up who

* Tracing who performed the wakeup — and their stack — can
show the real reason for waiting

- Wakeup Latency Flame Graph
* Advanced activity
» Consider overheads — might trace too much

* Eg, consider ssh, starting with the Off CPU Time Flame Graph

Off-CPU Time Flame Graph: ssh

Off-CPU Time Flame Graph

Waiting on a conditional variable

: it 2
But why did we walit this long” Object sleeping on

?
\

Wakeup Latency Flame Graph: ssh

Wakeup Time Flame Graph

Wakeup Latency Flame Graph: ssh

Wakeup Time Flame Graph

These code paths,

... Woke up
these objects

/

Tracing Wakeup, Example (DTrace)

#!'/usr/sbin/dtrace -s

This example targets sshd
#pragma D option quiet .
i B eaen Geelad el (previous example also matched
#pragma D option stackframess C ¥
Rt ralared[ninEeainy vmstat, after discovering that
sshd was blocked on vmestat,
sched: : :sleep

/execname == "sshd"/ WhiCh it WaS: Ilvatat 1")
{
ts[curlwpsinfo->pr addr] = timestamp;

} Time from sleep to wakeup

sched: : :wakeup
/ts[args[0]->pr addr]/
{
this->d = timestamp - ts[args[0]->pr addr];
@[args[1l]->pr fname, args[l]->pr pid, args[0]->pr lwpid, args[0]->pr wchan,
stack () , ustack(), execname, pid, curlwpsinfo->pr lwpid] = sum(this->d);
s[args[0] ->pr addr] =90=

- Stack traces of who is doing the waking

printa ("\n%s-%d/%d-%$x%k-%k%s-%d/%d\n%@d\n", Q) ;
b Aggregate if possible instead of dumping, to minimize overheads

Following Stack Chains

* 1st level of wakeups often not enough

* Would like to programmatically follow multiple chains of
wakeup stacks, and visualize them

* |'ve discussed this with others before — it's a hard problem

* The following is in development!: Chain Graph

Chain Graph

Chain Graph

Chain Graph

Chain Graph

Wakeup Thread 2

| wokeup

Wakeup Thread 1

| wokeup

Wakeup Stacks
why | waited

.. /2

Off CPU Stacks:
why | blocked

Chain Graph Visualization

* New, experimental; check for later improvements
» Stacks associated based on sleeping object address
* Retains the value of relative widths equals latency

* Wakeup stacks frames can be listed in reverse (may be less
confusing when following towers bottom-up)

* Towers can get very tall, tracing wakeups through different
software threads, back to metal

Following Wakeup Chains, Example (D Trace)

#!'/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option ustackframes=100
#pragma D option stackframes=100
int related[uint64_t];

sched: : :sleep
/execname == "sshd" || related[curlwpsinfo->pr addr]/
{
ts[curlwpsinfo->pr addr] = timestamp;
}

sched: : :wakeup
/ts[args[0]->pr addr]/
{
this->d = timestamp - ts[args[0]->pr addr];
@[args[1l]->pr fname, args[l]->pr pid, args[0]->pr lwpid, args[0]->pr wchan,
stack () , ustack(), execname, pid, curlwpsinfo->pr lwpid] = sum(this->d);
ts[args[0]->pr addr] = O;
related[curlwpsinfo->pr addr] = 1;

}
< Also follow who

dtrace: : : END

(wakes up the waker
printa ("\n%s-%d/%d-%x%k-%k%s-%d/%d\n%@d\n", Q)
}

Developments

Developments

* There have been many other great developments in the world
of Flame Graphs. The following is a short tour.

node.js Flame Graphs

* Dave Pacheco developed the DTrace ustack helper for v8,
and created Flame Graphs with node.js functions

Flame Graph

Function: (anon) as caAggrValueRequest.complete at /home/dap/ca-work/cmd/caaggsvce.js position 56314 (24411 samples, 82.20%)

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

OS X Instruments Flame Graphs

* Mark Probst developed a 1. Use the Time Profile instrument
way to produce Flame 2. Instrument -> Export Track
Graphs from Instruments 3. stackcollapse-instruments.pl

4. flamegraphs.pl

;

Function: mono_gc_alloc_obj (142390 samples, 59.79%)

http://schani.wordpress.com/2012/11/16/flame-graphs-for-instruments/

Ruby Flame Graphs

« Sam Saffron developed Flame Graphs with the Ruby
MiniProfiler

* These stacks are very
deep (many frames),
so the function names
have been dropped
and only the rectangles
are drawn

* This preserves the S ey e 57 8 3
value of seeing the
big picture at first
glance!

(248 . 32120048
3 33%)

rack-1 4 5 (147 samples
- 95 68%)

http://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler

http://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler
http://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler

Windows Xperf Flame Graphs

* Bruce Dawson developed Flame Graphs from Xperf data, and
an xperf_to_collapsedstacks.py script

Visual Studio CPU Usage

R
an®ca

T T S e e— ——
_—ma———
| I'Ir ‘ |
L4 & II

-
-
B SEees enTeE @

g e p)
y wad
- s
" on
- ao
;
)
g
~ oC
-
- I 3
WO M o
- - 8 4
H e
|

vsdebugeng.dll!dispatcher:: XapiworkerT.. vsdebugeng.dll'dispatcher::XapiWorkerThread::ProcessSyncTask
ntdll.dll'_RtlUserThreadStart

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

WebKit Web Inspector Flame Charts

* Available in Google Chrome developer tools, these show
JavaScript CPU stacks as colored rectangles

* Inspired by Flame Graphs but
not the same: they show the
passage of time on the x-axis!

* This generally works here as:

* the target is single threaded
apps often with repetitive
code paths

e ability to zoom

* Can a "Flame Graph" mode be
provided for the same data?

https://bugs.webkit.org/show_bug.cgi?id=111162

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

Perl Devel::NYTProf Flame Graphs

* Tim Bunce has been adding Flame Graph features, and
included them in the Perl profiler: Devel::NY TProf

Performance Profile Index Run on Sat Apr 6 15:30:17 2013

For /Users/timbo/periS/peribrew/peris/peri-5.14. 2/bin/pericritic Reported on Sat Apr 6 15:32:30 2013

Profile of /Users/timbo/periS/peribrew/peris/perl-5.14.2/bin/pericritic for 1.11s (of 1.26s), executing 455869 statements and 141979 subroutine calls in 421 source files and 195
string evals.

(/Users/timbo/perlS/perlbrew/perls /perl-5.14.2/bin/perlcritic

Flame Graph

| :
| 0 B imn
| (ORI
1 PenzCrtiam 8 ' 1 10
Y |

http://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/

https://metacpan.org/module/Devel::NYTProf
https://metacpan.org/module/Devel::NYTProf
http://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/
http://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/

Leak and Off-CPU Time Flame Graphs

* Yichun Zhang (agentzh) has created Memory Leak and Off-
CPU Time Flame Graphs, and has given good talks to explain
how Flame Graphs work

~verviv WSues

Flawe Grgh v My Do

http://agentzh.org/#Presentations

http://agentzh.org/misc/slides/yapc-na-2013-flame-graphs.pdf ... these
http://www.youtube.com/watch?v=rxn7HoNrvOA | rOVi
http://agentzh.org/misc/slides/off-cpu-flame-graphs.pdf alSo pro ,de
http://agentzh.org/misc/flamegraph/nginx-leaks-2013-10-08.svg examples of using

https://github.com/agentzh/nginx-systemtap-toolkit SystemTap on Linux

http://agentzh.org/#Presentations
http://agentzh.org/#Presentations
http://agentzh.org/misc/slides/yapc-na-2013-flame-graphs.pdf
http://agentzh.org/misc/slides/yapc-na-2013-flame-graphs.pdf
http://www.youtube.com/watch?v=rxn7HoNrv9A
http://www.youtube.com/watch?v=rxn7HoNrv9A
http://agentzh.org/misc/flamegraph/nginx-leaks-2013-10-08.svg
http://agentzh.org/misc/flamegraph/nginx-leaks-2013-10-08.svg
https://github.com/agentzh/nginx-systemtap-toolkit
https://github.com/agentzh/nginx-systemtap-toolkit

Color Schemes

» Colors can be used to convey data, instead of the default
random color scheme. This example from Dave Pacheco
colors each function by its degree of direct on-CPU execution

A Flame Graph
tool could let you
select different I

post p¢
posty posy

color schemes ST |
postgresget_wlaton b o

postgres builkd_simple_re pos post

A N Ot h er can b e: i posigres'add_base_rels. postgres'm

8 posigres query_planner

P

post

post

post
¢ post i o
¢ post 1 pos

posigres 'grouping_planner

color by a hash on il I

P postgres'standard_planner { ¢ postt 4 pos!

th e fu n Ct i O n n a m e y P postgres'pg_plan_query P po: postgres'E postg

it
it
Pt post postgres’pg._plan_queries P postt pot postgres'st posic i p
pe
pt

Q ©V O
ooonnnnnn

S O COIOrS are pe postgres BuidCachedPlan posigrt postg pot postgres’P postlg
pc postgres GetCachedPlan postgre: postg postgres PortalRu postgr

postgres’ PostgresMain

consistent e E

postgres PostmasterMain
postgres main
postgres’_stan

https://npmjs.org/package/stackvis

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

Zoomable Flame Graphs

* Dave Pacheco has also used d3 to provide click to zoom!

Flame graph

Howver over a block for summary information. Click a biock for detalls. Roset vaw

>
3 >
¢ P el o
PP post posl p
m A post post
1 ZOO e ?‘?"Tﬂk"'f. 1 355 10tal samples e
stac 3% of al samples (1 © 10la) s)
postg postg postg < u_m.' Om otacit: 4.5% of o8 samples (10 of 365 otel sampive) | IERINRE :
posty -M posty —-
posty IBMS | posty postg posty R EEEETE B —
== w— powy postg 3 posigre: postgres€ po poe post
== sy " o — 3 posigret postgres’®» po poe posigres.
asocodinsbenaonton . oo B pot ' postgw posgrRsE po por postpes es
restriction_seloctivty
posy posy_posiyes posiy pod @ p N posgw posgresExmcPocho posigesx G oo
_"“"‘"‘"“M _ post po p [FGENEBE] ' posipe: posigrosstandad_Ext posigesEx Rbsc posy
m‘mmm m‘m posigres got_attavgwicth postgres tansh posigresy [posipter posigres PortalunSel posigressiar posy poslg F
posizres check partal nderns posiessat besew szo ost pospwssetielwen postgrespase_t posigspg P postgres Portalfun postgwsPos posy poslg PO
posgresset elesze
postgres make_one_rel
postgres query_planner
POGS QUuUBNg_planner
posgessbquery plansee
postigros standaxd_planner
Ppostgros pg_plan_query
Pposigres pg_plan_queres
postgres BuidCachedPlan
pastgres GerCachedPian
somgesPosgesMan
posigres Sernverloop
posigros PostmasterMain
posigres man
posigres’_stant

https://npmjs.org/package/stackvis

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

Flame Graph Differentials

* Robert Mustacchi has been experimenting with showing the
difference between two Flame Graphs, as a Flame Graph.
Great potential for non-regression testing, and comparisons!

Flame Graph

.
. ﬂ

Flame Graphs as a Service

* Pedro Teixeira has a project for node.js Flame Graphs as a
service: automatically generated for each github push!

‘AS+CRAFT

http://www.youtube.com/watch?v=sMohaWP5YqgA

http://www.youtube.com/watch?v=sMohaWP5YqA
http://www.youtube.com/watch?v=sMohaWP5YqA

References & Acknowledgements

* Neelakanth Nadgir (realneel): developed SVGs using Ruby
and JavaScript of time-series function trace data with stack
levels, inspired by Roch's work

* Roch Bourbonnais: developed Call Stack Analyzer, which
produced similar time-series visualizations

* Edward Tufte: inspired Call Graph for accept
me to explore
visualizations that show
all the data at once, as
Flame Graphs do

 Thanks to all who have
deveIOped Flame Iiunctlon: accept (257.54us)
Graphs further!

realneel's function_call_graph.rb visualization

Thank you!

* Questions?
* Homepage: http://www.brendangregg.com (links to everything)

* Resources and further reading:

http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/: see "Updates"

http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-
graphs/

http://dtrace.org/blogs/brendan/2013/08/16/memory-leak-growth-flame-graphs/
http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-
its-time/

http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
http://dtrace.org/blogs/brendan/2013/08/16/memory-leak-growth-flame-graphs/
http://dtrace.org/blogs/brendan/2013/08/16/memory-leak-growth-flame-graphs/
http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/
http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

