
Blazing Performance
with

Flame Graphs
 Brendan Gregg

An Interactive Visualization for Stack Traces

My Previous Visualizations Include

• Latency Heat Maps (and other heat map types), including:

• Quotes from LISA'13 yesterday:
• "Heat maps are a wonderful thing, use them" – Caskey Dickson

• "If you do distributed systems, you need this" – Theo Schlossnagle

• I did heat maps and visualizations in my LISA'10 talk

Audience

• This is for developers, sysadmins, support staff, and
performance engineers

• This is a skill-up for everyone: beginners to experts

• This helps analyze all software: kernels and applications

• G’Day, I’m Brendan

• Recipient of the LISA 2013 Award
for Outstanding Achievement
in System Administration!
(Thank you!)

• Work/Research: tools,
methodologies, visualizations

• Author of Systems Performance,
primary author of DTrace
(Prentice Hall, 2011)

• Lead Performance Engineer
@joyent; also teach classes:
Cloud Perf coming up: http://www.joyent.com/developers/training-services

whoami

http://www.joyent.com/developers/training-services/cloud-performance
http://www.joyent.com/developers/training-services/cloud-performance

Joyent

• High-Performance Cloud Infrastructure

• Public/private cloud provider

• OS-Virtualization for bare metal performance

• KVM for Linux guests

• Core developers of
SmartOS and node.js

• Office walls decorated
with Flame Graphs:

Agenda: Two Talks in One

• 1. CPU Flame Graphs

• Example

• Background

• Flame Graphs

• Generation

• Types: CPU

• 2. Advanced Flame Graphs

• Types: Memory, I/O, Off-CPU, Hot/Cold, Wakeup

• Developments

• SVG demos: https://github.com/brendangregg/FlameGraph/demos

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph

CPU Flame Graphs

Example

Example

• As a short example, I’ll describe the real world performance
issue that led me to create flame graphs

• Then I’ll explain them in detail

Example: The Problem

• A production MySQL database had poor performance

• It was a heavy CPU consumer, so I used a CPU profiler to see
why. It sampled stack traces at timed intervals

• The profiler condensed its output by only printing unique
stacks along with their occurrence counts, sorted by count

• The following shows the profiler command and the two most
frequently sampled stacks...

Example: CPU Profiling

dtrace -x ustackframes=100 -n 'profile-997 /execname == "mysqld"/ {
 @[ustack()] = count(); } tick-60s { exit(0); }'
dtrace: description 'profile-997 ' matched 2 probes
CPU ID FUNCTION:NAME
 1 75195 :tick-60s
[...]
 libc.so.1`__priocntlset+0xa
 libc.so.1`getparam+0x83
 libc.so.1`pthread_getschedparam+0x3c
 libc.so.1`pthread_setschedprio+0x1f
 mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x9ab
 mysqld`_Z10do_commandP3THD+0x198
 mysqld`handle_one_connection+0x1a6
 libc.so.1`_thrp_setup+0x8d
 libc.so.1`_lwp_start
 4884

 mysqld`_Z13add_to_statusP17system_status_varS0_+0x47
 mysqld`_Z22calc_sum_of_all_statusP17system_status_var+0x67
 mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1222
 mysqld`_Z10do_commandP3THD+0x198
 mysqld`handle_one_connection+0x1a6
 libc.so.1`_thrp_setup+0x8d
 libc.so.1`_lwp_start
 5530

Example: CPU Profiling

dtrace -x ustackframes=100 -n 'profile-997 /execname == "mysqld"/ {
 @[ustack()] = count(); } tick-60s { exit(0); }'
dtrace: description 'profile-997 ' matched 2 probes
CPU ID FUNCTION:NAME
 1 75195 :tick-60s
[...]
 libc.so.1`__priocntlset+0xa
 libc.so.1`getparam+0x83
 libc.so.1`pthread_getschedparam+0x3c
 libc.so.1`pthread_setschedprio+0x1f
 mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x9ab
 mysqld`_Z10do_commandP3THD+0x198
 mysqld`handle_one_connection+0x1a6
 libc.so.1`_thrp_setup+0x8d
 libc.so.1`_lwp_start
 4884

 mysqld`_Z13add_to_statusP17system_status_varS0_+0x47
 mysqld`_Z22calc_sum_of_all_statusP17system_status_var+0x67
 mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1222
 mysqld`_Z10do_commandP3THD+0x198
 mysqld`handle_one_connection+0x1a6
 libc.so.1`_thrp_setup+0x8d
 libc.so.1`_lwp_start
 5530

Stack
Trace

of occurrences

Profiling
Command

(DTrace)

Example: Profile Data

• Over 500,000 lines were elided from that output (“[...]”)

• Full output looks like this...

Example: Profile Data

60 seconds of on-CPU MySQL

Example: Profile Data

60 seconds of on-CPU MySQL

First
Stack

Last
Stack

Size of
One Stack

27,053 Unique Stacks

Example: Profile Data

• The most frequent stack, printed last, shows CPU usage in
add_to_status(), which is from the “show status” command.
Is that to blame?

• Hard to tell – it only accounts for < 2% of the samples

• I wanted a way to quickly understand stack trace profile data,
without browsing 500,000+ lines of output

• To understand this profile data quickly, I created visualization
that worked very well, named “Flame Graph” for its
resemblance to fire (also as it was showing a “hot” CPU issue)

Example: Visualizations

Profile Data.txt Flame Graph.svg

some
Perl

Example: Flame Graph

Same profile data

Example: Flame Graph

All Stack Samples

Where CPU is
really consumed

The
"show
status"
Stack

One Stack
Sample

Same profile data

Example: Flame Graph

• All data in one picture

• Interactive using JavaScript and a browser: mouse overs

• Stack elements that are frequent can be seen, read, and
compared visually. Frame width is relative to sample count

• CPU usage was now understood properly and quickly,
leading to a 40% performance win

Background

• A stack frame shows a location in code

• Profilers usually show them on a single line. Eg:

Background: Stack Frame

libc.so.1`mutex_trylock_adaptive+0x112

module function instruction
offset

Background: Stack Trace

• A stack trace is a list of frames. Their index is the stack depth:

libc.so.1`mutex_trylock_adaptive+0x112

libc.so.1`mutex_lock_impl+0x165

libc.so.1`mutex_lock+0xc

current

parent

grand
parent

[...]

24

23

22

Stack
Depth

parent

parent

libc.so.1`_lwp_start 0

Background: Stack Trace

• One full stack:
libc.so.1`mutex_trylock_adaptive+0x112
libc.so.1`mutex_lock_impl+0x165
libc.so.1`mutex_lock+0xc
mysqld`key_cache_read+0x741
mysqld`_mi_fetch_keypage+0x48
mysqld`w_search+0x84
mysqld`_mi_ck_write_btree+0xa5
mysqld`mi_write+0x344
mysqld`ha_myisam::write_row+0x43
mysqld`handler::ha_write_row+0x8d
mysqld`end_write+0x1a3
mysqld`evaluate_join_record+0x11e
mysqld`sub_select+0x86
mysqld`do_select+0xd9
mysqld`JOIN::exec+0x482
mysqld`mysql_select+0x30e
mysqld`handle_select+0x17d
mysqld`execute_sqlcom_select+0xa6
mysqld`mysql_execute_command+0x124b
mysqld`mysql_parse+0x3e1
mysqld`dispatch_command+0x1619
mysqld`do_handle_one_connection+0x1e5
mysqld`handle_one_connection+0x4c
libc.so.1`_thrp_setup+0xbc
libc.so.1`_lwp_start

Background: Stack Trace

• Read top-down or bottom-up, and look for key functions
libc.so.1`mutex_trylock_adaptive+0x112
libc.so.1`mutex_lock_impl+0x165
libc.so.1`mutex_lock+0xc
mysqld`key_cache_read+0x741
mysqld`_mi_fetch_keypage+0x48
mysqld`w_search+0x84
mysqld`_mi_ck_write_btree+0xa5
mysqld`mi_write+0x344
mysqld`ha_myisam::write_row+0x43
mysqld`handler::ha_write_row+0x8d
mysqld`end_write+0x1a3
mysqld`evaluate_join_record+0x11e
mysqld`sub_select+0x86
mysqld`do_select+0xd9
mysqld`JOIN::exec+0x482
mysqld`mysql_select+0x30e
mysqld`handle_select+0x17d
mysqld`execute_sqlcom_select+0xa6
mysqld`mysql_execute_command+0x124b
mysqld`mysql_parse+0x3e1
mysqld`dispatch_command+0x1619
mysqld`do_handle_one_connection+0x1e5
mysqld`handle_one_connection+0x4c
libc.so.1`_thrp_setup+0xbc
libc.so.1`_lwp_start

Ancestry

Code Path

Background: Stack Modes

• Two types of stacks can be profiled:

• user-level for applications (user mode)

• kernel-level for the kernel (kernel mode)

• During a system call, an application may have both

Background: Software Internals

• You don’t need to be a programmer to understand stacks.

• Some function names are self explanatory, others require
source code browsing (if available). Not as bad as it sounds:

• MySQL has ~15,000 functions in > 0.5 million lines of code

• The earlier stack has 20 MySQL functions. To understand
them, you may need to browse only 0.13%
(20 / 15000) of the code. Might take hours, but it is doable.

• If you have C++ signatures, you can use a demangler first:
mysqld`_ZN4JOIN4execEv+0x482

gc++filt, demangler.com
mysqld`JOIN::exec()+0x482

• Stack frames can be visualized as rectangles (boxes)

• Function names can be truncated to fit

• In this case, color is chosen randomly (from a warm palette)
to differentiate adjacent frames

• A stack trace becomes a column of colored rectangles

Background: Stack Visualization

libc.so.1`mutex_trylock_adaptive+0x112

libc.so.1`mutex_lock_impl+0x165

libc.so.1`mutex_lock+0xc

libc.so.1`mutex_trylock_...

libc.so.1`mutex_lock_imp...

libc.so.1`mutex_lock+0xc

mysqld`key_cache_read+0x741 mysqld`key_cache_read+0x741

Background: Time Series Stacks

• Time series ordering allows time-based pattern identification

• However, stacks can change thousands of times per second

Stack
Depth

Time (seconds)

Background: Time Series Stacks

• Time series ordering allows time-based pattern identification

• However, stacks can change thousands of times per second

One Stack
Sample

Stack
Depth

Time (seconds)

• When zoomed out, stacks appear as narrow stripes

• Adjacent identical functions can be merged to improve
readability, eg:

• This sometimes works: eg, a repetitive single threaded app

• Often does not (previous slide already did this), due to code
execution between samples or parallel thread execution

Background: Frame Merging

mu...

mu...

mu...

ke...

mutex_lock()

mutex_lock_impl()

muex_tryl...

key_cache_read()

mu...

mu...

mu...

ke...

mu...

mu...

ke...

ge...ge...

Background: Frame Merging

• Time-series ordering isn’t necessary for the primary use case:
identify the most common (“hottest”) code path or paths

• By using a different x-axis sort order, frame merging can be
greatly improved...

Flame Graphs

Flame Graphs

• Flame Graphs sort stacks alphabetically. This sort is applied
from the bottom frame upwards. This increases merging and
visualizes code paths.

Stack
Depth

Alphabet

Flame Graphs: Definition

• Each box represents a function (a merged stack frame)

• y-axis shows stack depth

• top function led directly to the profiling event

• everything beneath it is ancestry (explains why)

• x-axis spans the sample population, sorted alphabetically

• Box width is proportional to the total time a function was
profiled directly or its children were profiled

• All threads can be shown in the same Flame Graph (the
default), or as separate per-thread Flame Graphs

• Flame Graphs can be interactive: mouse over for details

Flame Graphs: Variations

• Profile data can be anything: CPU, I/O, memory, ...

• Naming suggestion: [event] [units] Flame Graph

• Eg: "FS Latency Flame Graph"

• By default, Flame Graphs == CPU Sample Flame Graphs

• Colors can be used for another dimension

• by default, random colors are used to differentiate boxes

• --hash for hash-based on function name

• Distribution applications can be shown in the same Flame
Graph (merge samples from multiple systems)

• A CPU Sample Flame Graph:

• I’ll illustrate how these are read by posing various questions

Flame Graphs: A Simple Example

b()

c()

d()

a()

g()

e()

f()

h()

• A CPU Sample Flame Graph:

• Q: which function is on-CPU the most?

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

• A CPU Sample Flame Graph:

• Q: which function is on-CPU the most?

• A: f()

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

top edge shows
who is on-CPU

directly

e() is on-CPU a
little, but its runtime

is mostly spent in f(),
which is on-CPU directly

• A CPU Sample Flame Graph:

• Q: why is f() on-CPU?

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

• A CPU Sample Flame Graph:

• Q: why is f() on-CPU?

• A: a() → b() → c() → e() → f()

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

ancestry

f() was called by e()
e() was called by c()
...

• A CPU Sample Flame Graph:

• Q: how does b() compare to g()?

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

• A CPU Sample Flame Graph:

• Q: how does b() compare to g()?

• A: b() looks like it is running (present) about 10 times more
often than g()

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

visually compare
lengths

• A CPU Sample Flame Graph:

• Q: how does b() compare to g()?

• A: for interactive Flame Graphs, mouse over shows b() is
90%, g() is 10%

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()
status line
or tool tip:
b() is 90%

... or mouse over

• A CPU Sample Flame Graph:

• Q: how does b() compare to g()?

• A: for interactive Flame Graphs, mouse over shows b() is
90%, g() is 10%

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

g() is 10%

status line
or tool tip:

... or mouse over

• A CPU Sample Flame Graph:

• Q: why are we running f()?

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

• A CPU Sample Flame Graph:

• Q: why are we running f()?

• A: code path branches can reveal key functions:

• a() choose the b() path

• c() choose the e() path

Flame Graphs: How to Read

b()

c()

d()

a()

g()

e()

f()

h()

look for
branches

Flame Graphs: Example 1

• Customer alerting software periodically checks a log, however,
it is taking too long (minutes).

• It includes grep(1) of an ~18 Mbyte log file, which takes
around 10 minutes!

• grep(1) appears to be on-CPU for this time. Why?

Flame Graphs: Example 1

• CPU Sample Flame Graph for grep(1) user-level stacks:

Flame Graphs: Example 1

• CPU Sample Flame Graph for grep(1) user-level stacks:

• 82% of samples are in check_multibyte_string() or its children.
This seems odd as the log file is plain ASCII.

• And why is UTF8 on the scene? ... Oh, LANG=en_US.UTF-8

UTF8?

Flame Graphs: Example 1

• CPU Sample Flame Graph for grep(1) user-level stacks:

• Switching to LANG=C improved performance by 2000x

• A simple example, but I did spot this from the raw profiler text
before the Flame Graph. You really need Flame Graphs when
the text gets too long and unwieldy.

UTF8?

Flame Graphs: Example 2

• A potential customer benchmarks disk I/O on a cloud instance.
The performance is not as fast as hoped.

• The host has new hardware and software. Issues with the new
type of disks is suspected.

Flame Graphs: Example 2

• A potential customer benchmarks disk I/O on a cloud instance.
The performance is not as fast as hoped.

• The host has new hardware and software. Issues with the new
type of disks is suspected.

• I take a look, and notice CPU time in the kernel is modest.

• I’d normally assume this was I/O overheads and not profile it
yet, instead beginning with I/O latency analysis.

• But Flame Graphs make it easy, and it may be useful to see
what code paths (illumos kernel) are on the table.

Flame Graphs: Example 2

Flame Graphs: Example 2

• 24% in tsc_read()? Time Stamp Counter? Checking ancestry...

Flame Graphs: Example 2

• 62% in zfs_zone_io_throttle? Oh, we had forgotten that this
new platform had ZFS I/O throttles turned on by default!

Flame Graphs: Example 3

• Application performance is about half that of a competitor

• Everything is believed identical (H/W, application, config,
workload) except for the OS and kernel

• Application is CPU busy, nearly 100% in user-mode. How can
the kernel cause a 2x delta when the app isn't in kernel-mode?

• Flame graphs on both platforms for user-mode were created:

• Linux, using perf

• SmartOS, using DTrace

• Added flamegraph.pl --hash option for consistent function
colors (not random), aiding comparisons

Flame Graphs: Example 3

• Function label formats are different, but that's just due to
different profilers/stackcollapse.pl's (should fix this)

• Widths slighly different, but we already know perf differs

• Extra function? This is executing different application software!

• Actually, a different compiler option was eliding this function

Extra Function:
UnzipDocid()

Linux SmartOS

 SphDocID_t UnzipDocid () { return UnzipOffset(); }

Flame Graphs: More Examples

• Flame Graphs are typically
more detailed, like the earlier
MySQL example

• Next, how to generate them,
then more examples

Generation

Generation

• I’ll describe the original Perl version I wrote and shared on
github:

• https://github.com/brendangregg/FlameGraph

• There are other great Flame Graph implementations with
different features and usage, which I’ll cover in the last section

Generation: Steps

• 1. Profile event of interest

• 2. stackcollapse.pl

• 3. flamegraph.pl

Generation: Overview

• Full command line example. This uses DTrace for CPU
profiling of the kernel:

• Then, open out.svg in a browser

• Intermediate files could be avoided (piping), but they can be
handy for some manual processing if needed (eg, using vi)

dtrace -x stackframes=100 -n 'profile-997 /arg0/ {
 @[stack()] = count(); } tick-60s { exit(0); }' -o out.stacks

stackcollapse.pl < out.stacks > out.folded

flamegraph.pl < out.folded > out.svg

Generation: Profiling Data

• The profile data, at a minimum, is a series of stack traces

• These can also include stack trace counts. Eg:

• This example is from DTrace, which prints a series of these.
The format of each group is: stack, count, newline

• Your profiler needs to print full (not truncated) stacks, with
symbols. This may be step 0: get the profiler to work!

 mysqld`_Z13add_to_statusP17system_status_varS0_+0x47
 mysqld`_Z22calc_sum_of_all_statusP17system_status_var+0x67
 mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1222
 mysqld`_Z10do_commandP3THD+0x198
 mysqld`handle_one_connection+0x1a6
 libc.so.1`_thrp_setup+0x8d
 libc.so.1`_lwp_start
 5530 # of occurrences for this stack

Generation: Profiling Tools

• Solaris/FreeBSD/SmartOS/...:

• DTrace

• Linux:

• perf, SystemTap

• OS X:

• Instruments

• Windows:

• Xperf.exe

Generation: Profiling Examples: DTrace

• CPU profile kernel stacks at 997 Hertz, for 60 secs:

• CPU profile user-level stacks for PID 12345 at 99 Hertz, 60s:

• Should also work on Mac OS X, but is pending some fixes
preventing stack walking (use Instruments instead)

• Should work for Linux one day with the DTrace ports

dtrace -x stackframes=100 -n 'profile-997 /arg0/ {
 @[stack()] = count(); } tick-60s { exit(0); }' -o out.kern_stacks

dtrace -x ustackframes=100 -n 'profile-97 /PID == 12345 && arg1/ {
 @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks

Generation: Profiling Examples: perf

• CPU profile full stacks at 97 Hertz, for 60 secs:

• Need debug symbol packages installed (*dbgsym), otherwise
stack frames may show as hexidecimal

• May need compilers to cooperate (-fno-omit-frame-pointer)

• Has both user and kernel stacks, and the kernel idle thread.
Can filter the idle thread after stackcollapse-perf.pl using:

perf record -a -g -F 97 sleep 60
perf script > out.stacks

stackcollapse-perf.pl < out.stacks | grep -v cpu_idle | ...

Generation: Profiling Examples: SystemTap

• CPU profile kernel stacks at 100 Hertz, for 60 secs:

• Need debug symbol packages installed (*dbgsym), otherwise
stack frames may show as hexidecimal

• May need compilers to cooperate (-fno-omit-frame-pointer)

stap -s 32 -D MAXTRACE=100 -D MAXSTRINGLEN=4096 -D MAXMAPENTRIES=10240 \
 -D MAXACTION=10000 -D STP_OVERLOAD_THRESHOLD=5000000000 --all-modules \
 -ve 'global s; probe timer.profile { s[backtrace()] <<< 1; }
 probe end { foreach (i in s+) { print_stack(i);
 printf("\t%d\n", @count(s[i])); } } probe timer.s(60) { exit(); }' \
 > out.kern_stacks

Generation: Dynamic Languages

• C or C++ are usually easy to profile, runtime environments
(JVM, node.js, ...) are usually not, typically a way to show
program stacks and not just runtime internals.

• Eg, DTrace’s ustack helper for node.js:

0xfc618bc0
0xfc61bd62
0xfe870841
0xfc61c1f3
0xfc617685
0xfe870841
0xfc6154d7
0xfe870e1a
[...]

libc.so.1`gettimeofday+0x7
Date at position
<< adaptor >>
<< constructor >>
(anon) as exports.active at timers.js position 7590
(anon) as Socket._write at net.js position 21336
(anon) as Socket.write at net.js position 19714
<< adaptor >>
(anon) as OutgoingMessage._writeRaw at http.js p...
(anon) as OutgoingMessage._send at http.js posit...
<< adaptor >>
 (anon) as OutgoingMessage.end at http.js pos...
[...]

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

Generation: stackcollapse.pl

• Converts profile data into a single line records

• Variants exist for DTrace, perf, SystemTap, Instruments, Xperf

• Eg, DTrace:

unix`thread_start;unix`idle;unix`cpu_idle_mwait;unix`i86_mwait 19486

 unix`i86_mwait+0xd
 unix`cpu_idle_mwait+0xf1
 unix`idle+0x114
 unix`thread_start+0x8
 19486

stackcollapse.pl < out.stacks > out.folded

Generation: stackcollapse.pl

• Converts profile data into a single line records

• Variants exist for DTrace, perf, SystemTap, Instruments, Xperf

• Eg, DTrace:

unix`thread_start;unix`idle;unix`cpu_idle_mwait;unix`i86_mwait 19486

 unix`i86_mwait+0xd
 unix`cpu_idle_mwait+0xf1
 unix`idle+0x114
 unix`thread_start+0x8
 19486

stackcollapse.pl < out.stacks > out.folded

stack trace, frames are ‘;’ delimited count

Generation: stackcollapse.pl

• Full output is many lines, one line per stack

• Bonus: can be grepped

• That shows all stacks containing ext4fs_dirhash(); useful
debug aid by itself

• grep can also be used to filter stacks before Flame Graphs

• eg: grep -v cpu_idle

./stackcollapse-stap.pl out.stacks | grep ext4fs_dirhash
system_call_fastpath;sys_getdents;vfs_readdir;ext4_readdir;ext4_htree_fill_
tree;htree_dirblock_to_tree;ext4fs_dirhash 100
system_call_fastpath;sys_getdents;vfs_readdir;ext4_readdir;ext4_htree_fill_
tree;htree_dirblock_to_tree;ext4fs_dirhash;half_md4_transform 505
system_call_fastpath;sys_getdents;vfs_readdir;ext4_readdir;ext4_htree_fill_
tree;htree_dirblock_to_tree;ext4fs_dirhash;str2hashbuf_signed 353
[...]

Generation: Final Output

• Desires:

• Full control of output

• High density detail

• Portable: easily viewable

• Interactive

Generation: Final Output

• Desires:

• Full control of output

• High density detail

• Portable: easily viewable

• Interactive

• SVG+JS: Scalable Vector Graphics with embedded JavaScript

• Common standards, and supported by web browsers

• Can print poster size (scalable); but loses interactivity!

• Can be emitted by a simple Perl program...

PNG
SVG+JS

Generation: flamegraph.pl

• Converts folded stacks into an interactive SVG. Eg:

• Options:
--titletext change the title text (default is “Flame Graph”)
--width width of image (default is 1200)
--height height of each frame (default is 16)
--minwidth omit functions smaller than this width (default is 0.1 pixels)
--fonttype font type (default “Verdana”)
--fontsize font size (default 12)
--countname count type label (default “samples”)
--nametype name type label (default “Function:”)
--colors color palette: "hot", "mem", "io"
--hash colors are keyed by function name hash

flamegraph.pl --titletext="Flame Graph: MySQL" out.folded > graph.svg

Types

Types

• CPU

• Memory

• Off-CPU

• More

CPU

CPU

• Measure code paths that consume CPU

• Helps us understand and optimize CPU usage, improving
performance and scalability

• Commonly performed by sampling CPU stack traces at a
timed interval (eg, 100 Hertz for every 10 ms), on all CPUs

• DTrace/perf/SystemTap examples shown earlier

• Can also be performed by tracing function execution

CPU: Sampling

A(

CPU stack sampling:

B()

)

syscall

X Off-CPU
block interrupt

A A B
A

B
A

A

user-level

kernel

- - - -A

On-CPU

A A

CPU: Tracing

A(

CPU function tracing:

B(

syscall

X Off-CPU
block interrupt

B(B) A)A(

On-CPU

)

)

user-level

kernel

CPU: Profiling

• Sampling:

• Coarse but usually effective

• Can also be low overhead, depending on the stack type
and sample rate, which is fixed (eg, 100 Hz x CPU count)

• Tracing:

• Overheads can be too high, distorting results and hurting
the target (eg, millions of trace events per second)

• Most Flame Graphs are generated using stack sampling

CPU: Profiling Results

• Example results. Could you do this?

As an experiment to investigate the performance of the
resulting TCP/IP implementation ... the 11/750 is CPU
saturated, but the 11/780 has about 30% idle time. The time
spent in the system processing the data is spread out among
handling for the Ethernet (20%), IP packet processing (10%),
TCP processing (30%), checksumming (25%), and user
system call handling (15%), with no single part of the handling
dominating the time in the system.

CPU: Profiling Results

• Example results. Could you do this?

• An impressive report, that even today would be difficult to do

• Flame Graphs make this a lot easier

As an experiment to investigate the performance of the
resulting TCP/IP implementation ... the 11/750 is CPU
saturated, but the 11/780 has about 30% idle time. The time
spent in the system processing the data is spread out among
handling for the Ethernet (20%), IP packet processing (10%),
TCP processing (30%), checksumming (25%), and user
system call handling (15%), with no single part of the handling
dominating the time in the system.

– Bill Joy, 1981, TCP-IP Digest, Vol 1 #6

CPU: Another Example

• A file system is archived using tar(1).

• The files and directories are cached, and the run time is
mostly on-CPU in the kernel (Linux). Where exactly?

CPU: Another Example

CPU: Another Example

• 20% for reading directories

CPU: Another Example

• 54% for file statistics

CPU: Another Example

• Also good for learning kernel internals: browse the active code

CPU: Recognition

• Once you start profiling a target, you begin to recognize the
common stacks and patterns

• Linux getdents() ext4 path:

• The next slides show similar
example kernel-mode CPU
Sample Flame Graphs

CPU: Recognition: illumos localhost TCP

• From a TCP localhost latency issue (illumos kernel):

illumos
fused-TCP

receive

illumos
fused-TCP

send

CPU: Recognition: illumos IP DCE issue

DCE
lookup

DCE
lookup

DCE
lookup

CPU: Recognition: Linux TCP send

• Profiled from a KVM guest:

Linux TCP
sendmsg

CPU: Recognition: Syscall Towers

CPU: Recognition: Syscall Towers

close()

lstat()

open()

pollsys()

read()

stat()

stat64()

write()

writev() bnx
recv

sendfile()

ip fanout
receive

bnx
xmit

CPU: Both Stacks

• Apart from showing either user- or kernel-level stacks, both
can be included by stacking kernel on top of user

• Linux perf does this by default

• DTrace can by aggregating @[stack(), ustack()]

• The different stacks can be highlighted in different ways:

• different colors or hues

• separator: flamegraph.pl will color gray any functions
called "-", which can be inserted as stack separators

• Kernel stacks are only present during syscalls or interrupts

CPU: Both Stacks Example: KVM/qemu

kernel
stack

user
stack

user
only

Advanced Flame Graphs

Other Targets

• Apart from CPU samples, stack traces can be collected for
any event; eg:

• disk, network, or FS I/O

• CPU events, including cache misses

• lock contention and holds

• memory allocation
• Other values, instead of sample counts, can also be used:

• latency

• bytes
• The next sections demonstrate memory allocation, I/O tracing,

and then all blocking types via off-CPU tracing

Memory

Memory

• Analyze memory growth or leaks by tracing one of the
following memory events:

• 1. Allocator functions: malloc(), free()

• 2. brk() syscall

• 3. mmap() syscall

• 4. Page faults

• Instead of stacks and
sample counts,
measure stacks
with byte counts

• Merging shows show total bytes by code path

Memory: Four Targets

Memory: Allocator

• Trace malloc(), free(), realloc(), calloc(), ...

• These operate on virtual memory

• *alloc() stacks show why memory was first allocated (as
opposed to populated): Memory Allocation Flame Graphs

• With free()/realloc()/..., suspected memory leaks during tracing
can be identified: Memory Leak Flame Graphs!

• Down side: allocator functions are frequent, so tracing can
slow the target somewhat (eg, 25%)

• For comparison: Valgrind memcheck is more thorough, but its
CPU simulation can slow the target 20 - 30x

Memory: Allocator: malloc()

• As a simple example, just tracing malloc() calls with user-level
stacks and bytes requested, using DTrace:

• malloc() Bytes Flame Graph:

• The options customize the title, countname, and color palette

dtrace -x ustackframes=100 -n 'pid$target::malloc:entry {
 @[ustack()] = sum(arg0); } tick-60s { exit(0); }' -p 529 -o out.malloc

stackcollapse.pl out.malloc | flamegraph.pl --title="malloc() bytes" \
 --countname="bytes" --colors=mem > out.malloc.svg

Memory: Allocator: malloc()

Memory: Allocator: Leaks

• Yichun Zhang developed Memory Leak Flame Graphs using
SystemTap to trace allocator functions, and applied them to
leaks in Nginx (web server):

Memory: brk()

• Many apps grow their virtual memory size using brk(), which
sets the heap pointer

• A stack trace on brk() shows what triggered growth

• Eg, this script (brkbytes.d) traces brk() growth for “mysqld”:
#!/usr/sbin/dtrace -s

inline string target = "mysqld";
uint brk[int];

syscall::brk:entry /execname == target/ { self->p = arg0; }
syscall::brk:return /arg0 == 0 && self->p && brk[pid]/ {
 @[ustack()] = sum(self->p - brk[pid]);
}
syscall::brk:return /arg0 == 0 && self->p/ { brk[pid] = self->p; }
syscall::brk:return /self->p/ { self->p = 0; }

Memory: brk(): Heap Expansion

./brkbytes.d -n 'tick-60s { exit(0); }' > out.brk

stackcollapse.pl out.brk | flamegraph.pl --countname="bytes" \
 --title="Heap Expansion Flame Graph" --colors=mem > out.brk.svg

Memory: brk()

• brk() tracing has low overhead: these calls are typically
infrequent

• Reasons for brk():

• A memory growth code path

• A memory leak code path

• An innocent application code path, that happened to spill-
over the current heap size

• Asynchronous allocator code path, that grew the
application in response to diminishing free space

Memory: mmap()

• mmap() may be used by the application or it’s user-level
allocator to map in large regions of virtual memory

• It may be followed by munmap() to free the area, which can
also be traced

• Eg, mmap() tracing, similar to brk tracing, to show bytes and
the stacks responsible:

• This should be low overhead – depends on the frequency

dtrace -n 'syscall::mmap:entry /execname == "mysqld"/ {
 @[ustack()] = sum(arg1); }' -o out.mmap

stackcollapse.pl out.mmap | flamegraph.pl --countname="bytes" \
 --title="mmap() bytes Flame Graph" --colors=mem > out.mmap.svg

Memory: Page Faults

• brk() and mmap() expand virtual memory

• Page faults expand physical memory (RSS). This is demand-
based allocation, deferring mapping to the actual write

• Tracing page faults show the stack responsible for consuming
(writing to) memory:

dtrace -x ustackframes=100 -n 'vminfo:::as_fault /execname == "mysqld"/ {
 @[ustack()] = count(); } tick-60s { exit(0); }' > out.fault

stackcollapse.pl out.mysqld_fault01 | flamegraph.pl --countname=pages \
 --title="Page Fault Flame Graph" --colors=mem > mysqld_fault.svg

Memory: Page Faults

I/O

I/O

• Show time spent in I/O, eg, storage I/O

• Measure I/O completion events with stacks and their latency;
merging to show total time waiting by code path

Logical I/O:
Measure here for user stacks,
and real application latency

Physical I/O:
Measure here for kernel stacks,
and disk I/O latency

Application

system calls

VFS

FS

Block Device Interface

Disks

I/O: Logical I/O Laency

• For example, ZFS call latency using DTrace (zfsustack.d):
#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option ustackframes=100

fbt::zfs_read:entry, fbt::zfs_write:entry,
fbt::zfs_readdir:entry, fbt::zfs_getattr:entry,
fbt::zfs_setattr:entry
{
 self->start = timestamp;
}

fbt::zfs_read:return, fbt::zfs_write:return,
fbt::zfs_readdir:return, fbt::zfs_getattr:return,
fbt::zfs_setattr:return
/self->start/
{
 this->time = timestamp - self->start;
 @[ustack(), execname] = sum(this->time);
 self->start = 0;
}

dtrace:::END
{
 printa("%k%s\n%@d\n", @);
}

Timestamp from
function start (entry)

... to function end (return)

I/O: Logical I/O Laency

• Making an I/O Time Flame Graph:

• DTrace script measures all processes, for 10 seconds

• awk to covert ns to ms

./zfsustacks.d -n 'tick-10s { exit(0); }' -o out.iostacks

stackcollapse.pl out.iostacks | awk '{ print $1, $2 / 1000000 }' | \
 flamegraph.pl --title="FS I/O Time Flame Graph" --color=io \
 --countname=ms --width=500 > out.iostacks.svg

I/O: Time Flame Graph: gzip

• gzip(1) waits more time in write()s than read()s

I/O: Time Flame Graph: MySQL

I/O: Flame Graphs

• I/O latency tracing: hugely useful

• But once you pick an I/O type, there usually isn't that many
different code paths calling it

• Flame Graphs are nice, but often not necessary

Off-CPU

Off-CPU

A(

Off-CPU tracing:

)

X Off-CPU X
block interrupt

off-CPU on-CPU

user-level

kernel

On-CPU

syscall

X
A

Off-CPU: Performance Analysis

• Generic approach for all blocking events, including I/O

• An advanced performance analysis methodology:
• http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/

• Counterpart to (on-)CPU profiling

• Measure time a thread spent off-CPU, along with stacks

• Off-CPU reasons:

• Waiting (sleeping) on I/O, locks, timers

• Runnable waiting for CPU

• Runnable waiting for page/swap-ins

• The stack trace will explain which

Off-CPU: Time Flame Graphs

• Off-CPU profiling data (durations and stacks) can be rendered
as Off-CPU Time Flame Graphs

• As this involves many more code paths, Flame Graphs are
usually really useful

• Yichun Zhang created these, and has been using them on
Linux with SystemTap to collect the profile data. See:

• http://agentzh.org/misc/slides/off-cpu-flame-graphs.pdf

• Which describes their uses for Nginx performance analysis

Off-CPU: Profiling

• Example of off-CPU profiling for the bash shell:

• Traces time from when a thread switches off-CPU to when it
returns on-CPU, with user-level stacks. ie, time blocked or
sleeping

• Off-CPU Time Flame Graph:

• This uses awk to convert nanoseconds into milliseconds

dtrace -x ustackframes=100 -n '
 sched:::off-cpu /execname == "bash"/ { self->ts = timestamp; }
 sched:::on-cpu /self->ts/ {
 @[ustack()] = sum(timestamp - self->ts); self->ts = 0; }
 tick-30s { exit(0); }' -o out.offcpu

stackcollapse.pl < out.offcpu | awk '{ print $1, $2 / 1000000 }' | \
 flamegraph.pl --title="Off-CPU Time Flame Graph" --color=io \
 --countname=ms --width=600 > out.offcpu.svg

Off-CPU: Bash Shell

Off-CPU: Bash Shell

waiting for
keystrokes

waiting for
child processes

Off-CPU: Bash Shell

• For that simple example, the trace
data was so short it could have
just been read (54 lines, 4 unique
stacks):

• For multithreaded applications,
idle thread time can dominate

• For example, an idle MySQL
server...

 libc.so.1`__forkx+0xb
 libc.so.1`fork+0x1d
 bash`make_child+0xb5
 bash`execute_simple_command+0xb02
 bash`execute_command_internal+0xae6
 bash`execute_command+0x45
 bash`reader_loop+0x240
 bash`main+0xaff
 bash`_start+0x83
 19052

 libc.so.1`syscall+0x13
 bash`file_status+0x19
 bash`find_in_path_element+0x3e
 bash`find_user_command_in_path+0x114
 bash`find_user_command_internal+0x6f
 bash`search_for_command+0x109
 bash`execute_simple_command+0xa97
 bash`execute_command_internal+0xae6
 bash`execute_command+0x45
 bash`reader_loop+0x240
 bash`main+0xaff
 bash`_start+0x83
 7557782

 libc.so.1`__waitid+0x15
 libc.so.1`waitpid+0x65
 bash`waitchld+0x87
 bash`wait_for+0x2ce
 bash`execute_command_internal+0x1758
 bash`execute_command+0x45
 bash`reader_loop+0x240
 bash`main+0xaff
 bash`_start+0x83
 1193160644

 libc.so.1`__read+0x15
 bash`rl_getc+0x2b
 bash`rl_read_key+0x22d
 bash`readline_internal_char+0x113
 bash`readline+0x49
 bash`yy_readline_get+0x52
 bash`shell_getc+0xe1
 bash`read_token+0x6f
 bash`yyparse+0x4b9
 bash`parse_command+0x67
 bash`read_command+0x52
 bash`reader_loop+0xa5
 bash`main+0xaff
 bash`_start+0x83
 12588900307

Off-CPU: MySQL Idle

Off-CPU: MySQL Idle

Columns from
_thrp_setup
are threads or
thread groups

MySQL gives thread routines
descriptive names (thanks!)
Mouse over each to identify

(profiling time was 30s)

Off-CPU: MySQL Idle

buf_flush_page_cleaner_thread
dict_stats_thread

fts_optimize_thread
io_handler_thread

lock_wait_timeout_thread

mysqld_main
srv_monitor_thread

srv_master_thread
srv_error_monitor_thread

pfs_spawn_thread

mysqld Threads

Off-CPU: MySQL Idle

• Some thread columns are wider than the measurement time:
evidence of multiple threads

• This can be shown a number of ways. Eg, adding process
name, PID, and TID to the top of each user stack:

#!/usr/sbin/dtrace -s

#pragma D option ustackframes=100

sched:::off-cpu /execname == "mysqld"/ { self->ts = timestamp; }

sched:::on-cpu
/self->ts/
{
 @[execname, pid, curlwpsinfo->pr_lwpid, ustack()] =
 sum(timestamp - self->ts);
 self->ts = 0;
}

dtrace:::END { printa("\n%s-%d/%d%k%@d\n", @); }

Off-CPU: MySQL Idle

1 thread

2 threads

many threads

thread ID (TID)

4 threads doing work
(less idle)

Off-CPU: Challenges

• Including multiple threads in one Flame Graph might still be
confusing. Separate Flame Graphs for each can be created

• Off-CPU stacks often don't explain themselves:

• This is blocked on a conditional variable. The real reason it is
blocked and taking time isn't visible here

• Now lets look at a busy MySQL server, which presents
another challenge...

Off-CPU: MySQL Busy

idle threads

net_read_packet() -> pollsys()

Off-CPU: MySQL Busy

random narrow
stacks during
work, with no
reason to
sleep?

Off-CPU: MySQL Busy

• Those were user-level stacks only. The kernel-level stack,
which can be included, will usually explain what happened

• eg, involuntary context switch due to time slice expired

• Those paths are likely hot in the CPU Sample Flame Graph

Hot/Cold

Hot/Cold: Profiling

On-CPU
Profiling

Off-CPU
Profiling

(everything else)

Thread State Transition Diagram

Hot/Cold: Profiling

• Profiling both on-CPU and off-CPU stacks shows everything

• In my LISA'12 talk I called this the Stack Profile Method:
profile all stacks

• Both on-CPU ("hot") and off-CPU ("cold") stacks can be
included in the same Flame Graph, colored differently:
Hot Cold Flame Graphs!

• Merging multiple threads gets even weirder. Creating a
separate graph per-thread makes much more sense, as
comparisons to see how a thread's time is divided between
on- and off-CPU activity

• For example, a single web server thread with kernel stacks...

Hot/Cold: Flame Graphs

Hot/Cold: Flame Graphs

On-CPU (!?)

Off-CPU

Hot/Cold: Challenges

• Sadly, this often doesn't work well for two reasons:

• 1. On-CPU time columns get compressed by off-CPU time

• Previous example dominated by the idle path – waiting for
a new connection – which is not very interesting!

• Works better with zoomable Flame Graphs, but then we've
lost the ability to see key details on first glance

• Pairs of on-CPU and off-CPU Flame Graphs may be the
best approach, giving both the full width

• 2. Has the same challenge from off-CPU Flame Graphs:
real reason for blocking may not be visible

State of the Art

• That was the end of Flame Graphs, but I can't stop here –
we're so close

• On + Off-CPU Flame Graphs can attack any issue

• 1. The compressed problem is solvable via one or more of:

• zoomable Flame Graphs

• separate on- and off-CPU Flame Graphs

• per-thread Flame Graphs

• 2. How do we show the real reason for blocking?

Wakeup Tracing

A(

Wakeup tracing:

)

X Off-CPU X
block wakeup

sleep wakeup

user-level

kernel
On-CPU

B(

Tracing Wakeups

• The systems knows who woke up who

• Tracing who performed the wakeup – and their stack – can
show the real reason for waiting

• Wakeup Latency Flame Graph

• Advanced activity

• Consider overheads – might trace too much

• Eg, consider ssh, starting with the Off CPU Time Flame Graph

Off-CPU Time Flame Graph: ssh

Waiting on a conditional variable
But why did we wait this long? Object sleeping on

Wakeup Latency Flame Graph: ssh

Wakeup Latency Flame Graph: ssh

These code paths,

... woke up
these objects

Tracing Wakeup, Example (DTrace)

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option ustackframes=100
#pragma D option stackframes=100
int related[uint64_t];

sched:::sleep
/execname == "sshd"/
{
 ts[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/ts[args[0]->pr_addr]/
{
 this->d = timestamp - ts[args[0]->pr_addr];
 @[args[1]->pr_fname, args[1]->pr_pid, args[0]->pr_lwpid, args[0]->pr_wchan,
 stack(), ustack(), execname, pid, curlwpsinfo->pr_lwpid] = sum(this->d);
 ts[args[0]->pr_addr] = 0;
}

dtrace:::END
{
 printa("\n%s-%d/%d-%x%k-%k%s-%d/%d\n%@d\n", @);
}

This example targets sshd
(previous example also matched
vmstat, after discovering that
sshd was blocked on vmstat,
which it was: "vmstat 1")

Time from sleep to wakeup

Stack traces of who is doing the waking

Aggregate if possible instead of dumping, to minimize overheads

Following Stack Chains

• 1st level of wakeups often not enough

• Would like to programmatically follow multiple chains of
wakeup stacks, and visualize them

• I've discussed this with others before – it's a hard problem

• The following is in development!: Chain Graph

Chain Graph

Chain Graph

Off CPU Stacks:
why I blocked

Wakeup Stacks
why I waited

Wakeup Thread 1

Wakeup Thread 2

...

I wokeup

I wokeup

Chain Graph Visualization

• New, experimental; check for later improvements

• Stacks associated based on sleeping object address

• Retains the value of relative widths equals latency

• Wakeup stacks frames can be listed in reverse (may be less
confusing when following towers bottom-up)

• Towers can get very tall, tracing wakeups through different
software threads, back to metal

Following Wakeup Chains, Example (DTrace)

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option ustackframes=100
#pragma D option stackframes=100
int related[uint64_t];

sched:::sleep
/execname == "sshd" || related[curlwpsinfo->pr_addr]/
{
 ts[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/ts[args[0]->pr_addr]/
{
 this->d = timestamp - ts[args[0]->pr_addr];
 @[args[1]->pr_fname, args[1]->pr_pid, args[0]->pr_lwpid, args[0]->pr_wchan,
 stack(), ustack(), execname, pid, curlwpsinfo->pr_lwpid] = sum(this->d);
 ts[args[0]->pr_addr] = 0;
 related[curlwpsinfo->pr_addr] = 1;
}

dtrace:::END
{
 printa("\n%s-%d/%d-%x%k-%k%s-%d/%d\n%@d\n", @);
}

Also follow who
wakes up the waker

Developments

Developments

• There have been many other great developments in the world
of Flame Graphs. The following is a short tour.

node.js Flame Graphs

• Dave Pacheco developed the DTrace ustack helper for v8,
and created Flame Graphs with node.js functions

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

OS X Instruments Flame Graphs

http://schani.wordpress.com/2012/11/16/flame-graphs-for-instruments/

• Mark Probst developed a
way to produce Flame
Graphs from Instruments

1. Use the Time Profile instrument
2. Instrument -> Export Track
3. stackcollapse-instruments.pl
4. flamegraphs.pl

Ruby Flame Graphs

• Sam Saffron developed Flame Graphs with the Ruby
MiniProfiler

• These stacks are very
deep (many frames),
so the function names
have been dropped
and only the rectangles
are drawn

• This preserves the
value of seeing the
big picture at first
glance!

http://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler

http://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler
http://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler

Windows Xperf Flame Graphs

• Bruce Dawson developed Flame Graphs from Xperf data, and
an xperf_to_collapsedstacks.py script

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

Visual Studio CPU Usage

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

WebKit Web Inspector Flame Charts

• Available in Google Chrome developer tools, these show
JavaScript CPU stacks as colored rectangles

• Inspired by Flame Graphs but
not the same: they show the
passage of time on the x-axis!

• This generally works here as:

• the target is single threaded
apps often with repetitive
code paths

• ability to zoom

• Can a "Flame Graph" mode be
provided for the same data?

https://bugs.webkit.org/show_bug.cgi?id=111162

http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

Perl Devel::NYTProf Flame Graphs

• Tim Bunce has been adding Flame Graph features, and
included them in the Perl profiler: Devel::NYTProf

http://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/

https://metacpan.org/module/Devel::NYTProf
https://metacpan.org/module/Devel::NYTProf
http://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/
http://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/

Leak and Off-CPU Time Flame Graphs

• Yichun Zhang (agentzh) has created Memory Leak and Off-
CPU Time Flame Graphs, and has given good talks to explain
how Flame Graphs work

http://agentzh.org/#Presentations
http://agentzh.org/misc/slides/yapc-na-2013-flame-graphs.pdf
http://www.youtube.com/watch?v=rxn7HoNrv9A
http://agentzh.org/misc/slides/off-cpu-flame-graphs.pdf
http://agentzh.org/misc/flamegraph/nginx-leaks-2013-10-08.svg
https://github.com/agentzh/nginx-systemtap-toolkit

... these
also provide

examples of using
SystemTap on Linux

http://agentzh.org/#Presentations
http://agentzh.org/#Presentations
http://agentzh.org/misc/slides/yapc-na-2013-flame-graphs.pdf
http://agentzh.org/misc/slides/yapc-na-2013-flame-graphs.pdf
http://www.youtube.com/watch?v=rxn7HoNrv9A
http://www.youtube.com/watch?v=rxn7HoNrv9A
http://agentzh.org/misc/flamegraph/nginx-leaks-2013-10-08.svg
http://agentzh.org/misc/flamegraph/nginx-leaks-2013-10-08.svg
https://github.com/agentzh/nginx-systemtap-toolkit
https://github.com/agentzh/nginx-systemtap-toolkit

Color Schemes

• Colors can be used to convey data, instead of the default
random color scheme. This example from Dave Pacheco
colors each function by its degree of direct on-CPU execution

• A Flame Graph
tool could let you
select different
color schemes

• Another can be:
color by a hash on
the function name,
so colors are
consistent

https://npmjs.org/package/stackvis

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

Zoomable Flame Graphs

• Dave Pacheco has also used d3 to provide click to zoom!

https://npmjs.org/package/stackvis

Zoom

http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

Flame Graph Differentials

• Robert Mustacchi has been experimenting with showing the
difference between two Flame Graphs, as a Flame Graph.
Great potential for non-regression testing, and comparisons!

Flame Graphs as a Service

• Pedro Teixeira has a project for node.js Flame Graphs as a
service: automatically generated for each github push!

http://www.youtube.com/watch?v=sMohaWP5YqA

http://www.youtube.com/watch?v=sMohaWP5YqA
http://www.youtube.com/watch?v=sMohaWP5YqA

References & Acknowledgements

• Neelakanth Nadgir (realneel): developed SVGs using Ruby
and JavaScript of time-series function trace data with stack
levels, inspired by Roch's work

• Roch Bourbonnais: developed Call Stack Analyzer, which
produced similar time-series visualizations

• Edward Tufte: inspired
me to explore
visualizations that show
all the data at once, as
Flame Graphs do

• Thanks to all who have
developed Flame
Graphs further! realneel's function_call_graph.rb visualization

Thank you!

• Questions?

• Homepage: http://www.brendangregg.com (links to everything)

• Resources and further reading:
• http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/: see "Updates"

• http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-
graphs/

• http://dtrace.org/blogs/brendan/2013/08/16/memory-leak-growth-flame-graphs/

• http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/

• http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-
its-time/

http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
http://dtrace.org/blogs/brendan/2013/08/16/memory-leak-growth-flame-graphs/
http://dtrace.org/blogs/brendan/2013/08/16/memory-leak-growth-flame-graphs/
http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/
http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/
http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/

