
Software Engineer

brendan.gregg@joyent.com

Brendan Gregg

Performance
Visualizations

USENIX/LISA’10
November, 2010

mailto:rod@joyent.com
mailto:rod@joyent.com

• G’Day, I’m Brendan

• ... also known as “shouting guy”

2

硬碟也會鬧情緒

•

3

• I do performance analysis

• and I’m a DTrace addict

4

•

5

Agenda

• Performance

• Workload Analysis and Resource Monitoring

• Understanding available and ideal metrics before plotting

• Visualizations

• Current examples

• Latency

• Utilization

• Future opportunities

• Cloud Computing

6

Visualizations like these

• The “rainbow pterodactyl”

• ... which needs quite a bit of explanation

7

Time

Latency

Primary Objectives

• Consider performance metrics before plotting

• See the value of visualizations

• Remember key examples

8

Secondary Objectives

• Consider performance metrics before plotting

• Why studying latency is good

• ... and studying IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

9

Content based on

• “Visualizing System Latency”, Communications of the ACM
July 2010, by Brendan Gregg

• and more

10

Understanding the metrics before we
visualize them

Performance

11

Performance Activities

12

• Workload analysis

• Is there an issue? Is an issue real?

• Where is the issue?

• Will the proposed fix work? Did it work?

• Resource monitoring

• How utilized are the environment components?

• Important activity for capacity planning

Workload Analysis

• Applied during:

• software and hardware development

• proof of concept testing

• regression testing

• benchmarking

• monitoring

13

Workload Performance Issues

• Load

• Architecture

14

Workload Performance Issues

• Load

• Workload applied

• Too much for the system?

• Poorly constructed?

• Architecture

• System configuration

• Software and hardware bugs

15

Workload Analysis Steps

• Identify or confirm if a workload has a performance issue

• Quantify

• Locate issue

• Quantify

• Determine, apply and verify solution

• Quantify

16

Quantify

• Finding a performance issue isn’t the problem ... it’s finding
the issue that matters

17

bugs.mysql.com “performance”

•

18

bugs.opensolaris.org “performance”

•

19

bugs.mozilla.org: “performance”

•

20

“performance” bugs

• ... and those are just the known performance bugs

• ... and usually only of a certain type (architecture)

21

How to Quantify

• Observation based

• Choose a reliable metric

• Estimate performance gain from resolving issue

• Experimentation based

• Apply fix

• Quantify before vs. after using a reliable metric

22

Observation based

• For example:

• Observed: application I/O takes 10 ms

• Observed: 9 ms of which is disk I/O

• Suggestion: replace disks with flash-memory based SSDs, with
an expected latency of ~100 us

• Estimated gain: 10 ms -> 1.1 ms (10 ms - 9 ms + 0.1 ms)
=~ 9x gain

• Very useful - but not possible without accurate quantification

23

Experimentation based

• For example:

• Observed: Application transaction latency average 10 ms

• Experiment: Added more DRAM to increase cache hits and
reduce average latency

• Observed: Application transaction latency average 2 ms

• Gain: 10 ms -> 2 ms = 5x

• Also very useful - but risky without accurate quantification

24

Metrics to Quantify Performance

• Choose reliable metrics to quantify performance:

• IOPS

• transactions/second

• throughput

• utilization

• latency

• Ideally

• interpretation is straightforward

• reliable

25

Metrics to Quantify Performance

• Choose reliable metrics to quantify performance:

• IOPS

• transactions/second

• throughput

• utilization

• latency

• Ideally

• interpretation is straightforward

• reliable

26

generally better suited for:

Capacity Planning

Workload Analysis

Metrics Availability

• Ideally (given the luxury of time):

• design the desired metrics

• then see if they exist, or,

• implement them (eg, DTrace)

• Non-ideally

• see what already exists

• make-do (eg, vmstat -> gnuplot)

27

Assumptions to avoid

• Available metrics are implemented correctly

• all software has bugs

• eg, CR: 6687884 nxge rbytes and obytes kstat are wrong

• trust no metric without double checking from other sources

• Available metrics are designed by performance experts

• sometimes added by the programmer to only debug their code

• Available metrics are complete

• you won’t always find what you really need

28

Getting technical

• This will be explained using two examples:

• Workload Analysis

• Capacity Planning

29

Example: Workload Analysis

• Quantifying performance issues with IOPS vs latency

• IOPS is commonly presented by performance analysis tools

• eg: disk IOPS via kstat, SNMP, iostat, ...

30

IOPS

• Depends on where the I/O is measured

• app -> library -> syscall -> VFS -> filesystem -> RAID -> device

• Depends on what the I/O is

• synchronous or asynchronous

• random or sequential

• size

• Interpretation difficult

• what value is good or bad?

• is there a max?

31

Some disk IOPS problems

• IOPS Inflation

• Library or Filesystem prefetch/read-ahead

• Filesystem metadata

• RAID stripes

• IOPS Deflation

• Read caching

• Write cancellation

• Filesystem I/O aggregation

• IOPS aren’t created equal

32

IOPS example: iostat -xnz 1

• Consider this disk: 86 IOPS == 99% busy

• Versus this disk: 21,284 IOPS == 99% busy

33

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0

IOPS example: iostat -xnz 1

• Consider this disk: 86 IOPS == 99% busy

• Versus this disk: 21,284 IOPS == 99% busy

• ... they are the same disk, different I/O types

• 1) 8 Kbyte random

• 2) 512 byte sequential (on-disk DRAM cache)

34

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0

Using IOPS to quantify issues

• to identify

• is 100 IOPS an problem? Per disk?

• to locate

• 90% of IOPS are random. Is that the problem?

• to verify

• A filesystem tunable caused IOPS to reduce.
Has this fixed the issue?

35

Using IOPS to quantify issues

• to identify

• is 100 IOPS an problem? Per disk? (depends...)

• to locate

• 90% of IOPS are random. Is that the problem? (depends...)

• to verify

• A filesystem tunable caused IOPS to reduce.
Has this fixed the issue? (probably, assuming...)

• We can introduce more metrics to understand these, but standalone
IOPS is tricky to interpret

36

Using latency to quantify issues

• to identify

• is a 100ms I/O a problem?

• to locate

• 90ms of the 100ms is lock contention. Is that the problem?

• to verify

• A filesystem tunable caused the I/O latency to reduce to 1ms.
Has this fixed the issue?

37

Using latency to quantify issues

• to identify

• is a 100ms I/O a problem? (probably - if synchronous to the app.)

• to locate

• 90ms of the 100ms is lock contention. Is that the problem? (yes)

• to verify

• A filesystem tunable caused the I/O latency to reduce to 1ms.
Has this fixed the issue? (probably - if 1ms is acceptable)

• Latency is much more reliable, easier to interpret

38

Latency

• Time from I/O or transaction request to completion

• Synchronous latency has a direct impact on performance

• Application is waiting

• higher latency == worse performance

• Not all latency is synchronous:

• Asynchronous filesystem threads flushing dirty buffers to disk
eg, zfs TXG synchronous thread

• Filesystem prefetch
no one is waiting at this point

• TCP buffer and congestion window: individual packet latency may
be high, but pipe is kept full for good throughput performance

39

Turning other metrics into latency

• Currency converter (* -> ms):

• random disk IOPS == I/O service latency

• disk saturation == I/O wait queue latency

• CPU utilization == code path execution latency

• CPU saturation == dispatcher queue latency

• ...

• Quantifying as latency allows different components to be
compared, ratios examined, improvements estimated.

40

Example: Resource Monitoring

• Different performance activity

• Focus is environment components, not specific issues

• incl. CPUs, disks, network interfaces, memory, I/O bus, memory
bus, CPU interconnect, I/O cards, network switches, etc.

• Information is used for capacity planning

• Identifying future issues before they happen

• Quantifying resource monitoring with IOPS vs utilization

41

IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

42

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

• IOPS (r/s + w/s): ???

• Utilization (%b): yes (even considering NCQ)

43

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

IOPS vs Utilization

• Another look at this disk:

• Q. does this system need more spindles for IOPS capacity?

• IOPS (r/s + w/s): ???

• Utilization (%b): yes (even considering NCQ)

• Latency (wsvc_t): no

• Latency will identify the issue once it is an issue; utilization
will forecast the issue - capacity planning

44

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 c1d0
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 21284.7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1d0

Performance Summary

• Metrics matter - need to reliably quantify performance

• to identify, locate, verify

• try to think, design

• Workload Analysis

• latency

• Resource Monitoring

• utilization

• Other metrics are useful to further understand the nature of
the workload and resource behavior

45

Objectives

• Consider performance metrics before plotting

• Why latency is good

• ... and IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

46

Current Examples

Visualizations

47

Latency

Visualizations

• So far we’ve picked:

• Latency

• for workload analysis

• Utilization

• for resource monitoring

48

Latency

• For example, disk I/O

• Raw data looks like this:

• iosnoop is DTrace based

• examines latency for every disk (back end) I/O

49

iosnoop -o
DTIME UID PID D BLOCK SIZE COMM PATHNAME
125 100 337 R 72608 8192 bash /usr/sbin/tar
138 100 337 R 72624 8192 bash /usr/sbin/tar
127 100 337 R 72640 8192 bash /usr/sbin/tar
135 100 337 R 72656 8192 bash /usr/sbin/tar
118 100 337 R 72672 8192 bash /usr/sbin/tar
108 100 337 R 72688 4096 bash /usr/sbin/tar
87 100 337 R 72696 3072 bash /usr/sbin/tar
9148 100 337 R 113408 8192 tar /etc/default/lu
8806 100 337 R 104738 7168 tar /etc/default/lu
2262 100 337 R 13600 1024 tar /etc/default/cron
76 100 337 R 13616 1024 tar /etc/default/devfsadm
[...many pages of output...]

Latency Data

• tuples

• I/O completion time

• I/O latency

• can be 1,000s of these per second

50

Summarizing Latency

• iostat(1M) can show per second average:

51

$ iostat -xnz 1
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 471.0 7.0 786.1 12.0 0.1 1.2 0.2 2.5 4 90 c1d0
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 631.0 0.0 1063.1 0.0 0.2 1.0 0.3 1.6 9 92 c1d0
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 472.0 0.0 529.0 0.0 0.0 1.0 0.0 2.1 0 94 c1d0
[...]

Per second

• Condenses I/O completion time

• Almost always a sufficient resolution

• (So far I’ve only had one case where examining raw completion
time data was crucial: an interrupt coalescing bug)

52

Average/second

• Average loses latency outliers

• Average loses latency distribution

• ... but not disk distribution:

• only because iostat(1M) prints this per-disk

• but that gets hard to read for 100s of disks, per second!

53

$ iostat -xnz 1
[...]
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 43.9 0.0 351.5 0.0 0.0 0.4 0.0 10.0 0 34 c0t5000CCA215C46459d0
 47.6 0.0 381.1 0.0 0.0 0.5 0.0 9.8 0 36 c0t5000CCA215C4521Dd0
 42.7 0.0 349.9 0.0 0.0 0.4 0.0 10.1 0 35 c0t5000CCA215C45F89d0
 41.4 0.0 331.5 0.0 0.0 0.4 0.0 9.6 0 32 c0t5000CCA215C42A4Cd0
 45.6 0.0 365.1 0.0 0.0 0.4 0.0 9.2 0 34 c0t5000CCA215C45541d0
 45.0 0.0 360.3 0.0 0.0 0.4 0.0 9.4 0 34 c0t5000CCA215C458F1d0
 42.9 0.0 343.5 0.0 0.0 0.4 0.0 9.9 0 33 c0t5000CCA215C450E3d0
 44.9 0.0 359.5 0.0 0.0 0.4 0.0 9.3 0 35 c0t5000CCA215C45323d0
[...]

Latency outliers

• Occasional high-latency I/O

• Can be the sole reason for performance issues

• Can be lost in an average

• 10,000 fast I/O @ 1ms

• 1 slow I/O @ 500ms

• average = 1.05 ms

• Can be seen using max instead of (or as well as) average

54

Maximum/second

• iostat(1M) doesn’t show this, however DTrace can

• can be visualized along with average/second

• does identify outliers

• doesn’t identify latency distribution details

55

Latency distribution

• Apart from outliers and average, it can be useful to examine
the full profile of latency - all the data.

• For such a crucial metric, keep as much details as possible

• For latency, distributions we’d expect to see include:

• bi-modal: cache hit vs cache miss

• tri-modal: multiple cache layers

• flat: random disk I/O

56

Latency Distribution Example

• Using DTrace:

57

./disklatency.d
Tracing... Hit Ctrl-C to end.
^C
 sd4 (28,256), us:

 value ------------- Distribution ------------- count
 16 | 0
 32 | 82
 64 |@@@ 621
 128 |@@@@@ 833
 256 |@@@@ 641
 512 |@@@ 615
 1024 |@@@@@@@ 1239
 2048 |@@@@@@@@@ 1615
 4096 |@@@@@@@@ 1483
 8192 | 76
 16384 | 1
 32768 | 0
 65536 | 2
 131072 | 0

disklatency.d

• not why we are here, but before someone asks...

58

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

io:::start
{
 start_time[arg0] = timestamp;
}

io:::done
/this->start = start_time[arg0]/
{
 this->delta = (timestamp - this->start) / 1000;
 @[args[1]->dev_statname, args[1]->dev_major, args[1]->dev_minor] =
 quantize(this->delta);
 start_time[arg0] = 0;
}

dtrace:::END
{
 printa(" %s (%d,%d), us:\n%@d\n", @);
}

Latency Distribution Example

• ... but can we see this distribution per second?

• ... how do we visualize a 3rd dimension?

59

./disklatency.d
Tracing... Hit Ctrl-C to end.
^C
 sd4 (28,256), us:

 value ------------- Distribution ------------- count
 16 | 0
 32 | 82
 64 |@@@ 621
 128 |@@@@@ 833
 256 |@@@@ 641
 512 |@@@ 615
 1024 |@@@@@@@ 1239
 2048 |@@@@@@@@@ 1615
 4096 |@@@@@@@@ 1483
 8192 | 76
 16384 | 1
 32768 | 0
 65536 | 2
 131072 | 0

65 - 131 ms
outliers

Column Quantized Visualization
aka “heat map”

• For example:

•

60

Heat Map: Offset Distribution

• x-axis: time

• y-axis: offset

• z-axis (color scale): I/O count for that time/offset range

• Identified random vs. sequential very well

• Similar heat maps have been used before by defrag tools

61

Heat Map: Latency Distribution

• For example:

• x-axis: time

• y-axis: latency

• z-axis (color saturation): I/O count for that time/latency range

62

Heat Map: Latency Distribution

• ... in fact, this is a great example:

• reads
served
from:

63

DRAM
 disk

 DRAM
flash-memory based SSD
 disk

ZFS “L2ARC” enabled

Heat Map: Latency Distribution

• ... in fact, this is a great example:

• reads
served
from:

64

DRAM
 disk

 DRAM
flash-memory based SSD
 disk

ZFS “L2ARC” enabled

Latency Heat Map

• A color shaded matrix of pixels

• Each pixel is a time and latency range

• Color shade picked based on number of I/O in that range

• Adjusting saturation seems to work better than color hue.
Eg:

• darker == more I/O

• lighter == less I/O

65

Pixel Size

• Large pixels (and corresponding time/latency ranges)

• increases likelyhood that adjacent pixels
include I/O, have color, and combine to
form patterns

• allows color to be more easily seen

• Smaller pixels (and time/latency ranges)

• can make heat map look like a scatter plot

• of the same color - if ranges are so small
only one I/O is typically included

66

Color Palette

• Linear scale can make subtle details (outliers) difficult to see

• observing latency outliers is usually of high importance

• outliers are usually < 1% of the I/O

• assigning < 1% of the color scale to them will washout patterns

• False color palette can be used to emphasize these details

• although color comparisons become more confusing - non-linear

67

Outliers

• Heat maps show these very well

• However, latency outliers can
compress the bulk of the heat
map data

• eg, 1 second outlier while most
I/O is < 10 ms

• Users should have some control
to be able to zoom/truncate details

• both x and y axis

68

outlier

data bulk

Data Storage

• Since heat-maps are three dimensions, storing this data can
become costly (volume)

• Most of the data points are zero

• and you can prevent storing zero’s by only storing populated
elements: associative array

• You can reduce to a sufficiently high resolution, and
resample lower as needed

• You can also be aggressive at reducing resolution at higher
latencies

• 10 us granularity not as interesting for I/O > 1 second

• non-linear resolution

69

Other Interesting Latency Heat Maps

• The “Icy Lake”

• The “Rainbow Pterodactyl”

• Latency Levels

70

The “Icy Lake” Workload

• About as simple as it gets:

• Single client, single thread, sequential synchronous 8 Kbyte
writes to an NFS share

• NFS server: 22 x 7,200 RPM disks, striped pool

• The resulting latency heat map was unexpected

71

The “Icy Lake”

•

72

“Icy Lake” Analysis: Observation

• Examining single disk latency:

• Pattern match with NFS latency: similar lines

• each disk contributing some lines to the overall pattern

73

Pattern Match?

• We just associated NFS latency with disk device latency,
using our eyeballs

• see the titles on the previous heat maps

• You can programmatically do this (DTrace), but that can get
difficult to associate context across software stack layers
(but not impossible!)

• Heat Maps allow this part of the problem to be offloaded to
your brain

• and we are very good at pattern matching

74

“Icy Lake” Analysis: Experimentation

• Same workload, single disk pool:

• No diagonal lines

• but more questions - see the line (false color palette enhanced) at
9.29 ms? this is < 1% of the I/O. (I’m told, and I believe, that this
is due to adjacent track seek latency.)

75

“Icy Lake” Analysis: Experimentation

• Same workload, two disk striped pool:

• Ah-hah! Diagonal lines.

• ... but still more questions: why does the angle sometimes
change? why do some lines slope upwards and some down?

76

“Icy Lake” Analysis: Experimentation

• ... each disk from that pool:

•

77

“Icy Lake” Analysis: Questions

• Remaining Questions:

• Why does the slope sometimes change?

• What exactly seeds the slope in the first place?

78

“Icy Lake” Analysis: Mirroring

• Trying mirroring the pool disks instead of striping:

79

Another Example: “X marks the spot”

80

The “Rainbow Pterodactyl” Workload

• 48 x 7,200 RPM disks, 2 disk enclosures

• Sequential 128 Kbyte reads to each disk (raw device),
adding disks every 2 seconds

• Goal: Performance analysis of system architecture

• identifying I/O throughput limits by driving I/O subsystem to
saturation, one disk at a time (finds knee points)

81

The “Rainbow Pterodactyl”

82

The “Rainbow Pterodactyl”

83

The “Rainbow Pterodactyl”

84

Beak Head Neck

Wing Shoulders BodyBuldge

The “Rainbow Pterodactyl”: Analysis

• Hasn’t been understood in detail

• Would never be understood (or even known) without heat maps

• It is repeatable

85

The “Rainbow Pterodactyl”: Theories

• “Beak”: disk cache hit vs disk cache miss -> bimodal

• “Head”: 9th disk, contention on the 2 x4 SAS ports

• “Buldge”: ?

• “Neck”: ?

• “Wing”: contention?

• “Shoulders”: ?

• “Body”: PCI-gen1 bus contention

86

Latency Levels Workload

• Same as “Rainbow Pterodactyl”, stepping disks

• Instead of sequential reads, this is repeated 128 Kbyte
reads (read -> seek 0 -> read -> ...), to deliberately hit from
the disk DRAM cache to improve test throughput

87

Latency Levels

•

88

Latency Levels Theories

• ???

89

Bonus Latency Heat Map

• This time we do know the source of the latency...

90

硬碟也會鬧情緒

•

91

Latency Heat Maps: Summary

• Shows latency distribution over time

• Shows outliers (maximums)

• Indirectly shows average

• Shows patterns

• allows correlation with other software stack layers

92

Similar Heat Map Uses

• These all have a dynamic y-axis scale:

• I/O size

• I/O offset

• These aren’t a primary measure of performance (like
latency); they provide secondary information to understand
the workload

93

Heat Map: I/O Offset

94

• y-axis: I/O offset (in this case, NFSv3 file location)

Heat Map: I/O Size

95

• y-axis: I/O size (bytes)

Heat Map Abuse

96

• What can we ‘paint’ by adjusting the workload?

I/O Size

97

• How was this done?

I/O Offset

98

• How was this done?

I/O Latency

99

• How was this done?

Current Examples

Visualizations

100

Utilization

CPU Utilization

• Commonly used indicator of CPU performance

• eg, vmstat(1M)

101

$ vmstat 1 5
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr s0 s1 s2 s3 in sy cs us sy id
 0 0 0 95125264 28022732 301 1742 1 17 17 0 0 -0 -0 -0 6 5008 21927 3886 4 1 94
 0 0 0 91512024 25075924 6 55 0 0 0 0 0 0 0 0 0 4665 18228 4299 10 1 89
 0 0 0 91511864 25075796 9 24 0 0 0 0 0 0 0 0 0 3504 12757 3158 8 0 92
 0 0 0 91511228 25075164 3 163 0 0 0 0 0 0 0 0 0 4104 15375 3611 9 5 86
 0 0 0 91510824 25074940 5 66 0 0 0 0 0 0 0 0 0 4607 19492 4394 10 1 89

CPU Utilization: Line Graph

• Easy to plot:

102

CPU Utilization: Line Graph

• Easy to plot:

• Average across all CPUs:

• Identifies how utilized all CPUs are, indicating remaining
headroom - provided sufficient threads to use CPUs

103

CPU Utilization by CPU

• mpstat(1M) can show utilization by-CPU:

• can identify a single hot CPU (thread)

• and un-balanced configurations

104

$ mpstat 1
[...]
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 2 313 105 315 0 24 4 0 1331 5 1 0 94
 1 0 0 0 65 28 190 0 12 4 0 576 1 1 0 98
 2 0 0 0 64 20 152 0 12 1 0 438 0 1 0 99
 3 0 0 0 127 74 274 1 21 3 0 537 1 1 0 98
 4 0 0 0 32 5 229 0 9 2 0 902 1 1 0 98
 5 0 0 0 46 19 138 0 7 3 0 521 1 0 0 99
 6 2 0 0 109 32 296 0 8 2 0 1266 4 0 0 96
 7 0 0 0 30 8 0 9 0 1 0 0 100 0 0 0
 8 0 0 0 169 68 311 0 22 2 0 847 2 1 0 97
 9 0 0 30 111 54 274 0 16 4 0 868 2 0 0 98
 10 0 0 0 69 29 445 0 13 7 0 2559 7 1 0 92
 11 0 0 0 78 36 303 0 7 8 0 1041 2 0 0 98
 12 0 0 0 74 34 312 0 10 1 0 1250 7 1 0 92
 13 38 0 15 456 285 336 2 10 1 0 1408 5 2 0 93
 14 0 0 0 2620 2497 209 0 10 38 0 259 1 3 0 96
 15 0 0 0 20 8 10 0 4 2 0 2 0 0 0 100

CPU Resource Monitoring

• Monitor overall utilization for capacity planning

• Also valuable to monitor individual CPUs

• can identify un-balanced configurations

• such as a single hot CPU (thread)

• The virtual CPUs on a single host can now reach the 100s

• its own dimension

• how can we display this 3rd dimension?

105

Heat Map: CPU Utilization

• x-axis: time

• y-axis: percent utilization

• z-axis (color saturation): # of CPUs in that time/utilization range

106

60s
0%

100%

Heat Map: CPU Utilization

• Single ‘hot’ CPUs are a common problem due to application
scaleability issues (single threaded)

• This makes identification easy, without reading pages of
mpstat(1M) output

107

60s
0%

100%

idle CPUs single ‘hot’ CPU

Heat Map: Disk Utilization

• Ditto for disks

• Disk Utilization heat map can identify:

• overall utilization

• unbalanced configurations

• single hot disks (versus all disks busy)

• Ideally, the disk utilization heat map is tight (y-axis) and
below 70%, indicating a well balanced config with headroom

• which can’t be visualized with line graphs

108

Back to Line Graphs...

• Are typically used to visualize performance, be it IOPS or
utilization

• Show patterns over time more clearly than text (higher
resolution)

• But graphical environments can do much more

• As shown by the heat maps (to start with); which convey details
line graphs cannot

• Ask: what “value add” does the GUI bring to the data?

109

Resource Utilization Heat Map Summary

• Can exist for any resource with multiple components:

• CPUs

• Disks

• Network interfaces

• I/O busses

• ...

• Quickly identifies single hot component versus all
components

• Best suited for physical hardware resources

• difficult to express ‘utilization’ for a software resource

110

Future Opportunities

Visualizations

111

So far analysis has been for a single server

 What about the cloud?

Cloud Computing

112

From one to thousands of servers

113

Workload Analysis:
latency I/O x cloud

Resource Monitoring:
of CPUs x cloud
of disks x cloud
etc.

Heat Maps for the Cloud

114

• Heat Maps are promising for cloud computing observability:

• additional dimension accommodates the scale of the cloud

• Find outliers regardless of node

• cloud-wide latency heat map just has more I/O

• Examine how applications are load balanced across nodes

• similar to CPU and disk utilization heat maps

• mpstat and iostat’s output are already getting too long

• multiply by 1000x for the number of possible hosts in a large
cloud application

Proposed Visualizations

• Include:

• Latency heat map across entire cloud

• Latency heat maps for cloud application components

• CPU utilization by cloud node

• CPU utilization by CPU

• Thread/process utilization across entire cloud

• Network interface utilization by cloud node

• Network interface utilization by port

• lots, lots more

115

Cloud Latency Heat Map

• Latency at different layers:

• Apache

• PHP/Ruby/...

• MySQL

• DNS

• Disk I/O

• CPU dispatcher queue latency

• and pattern match to quickly identify and locate latency

116

Latency Example: MySQL

• Query latency (DTrace):

117

 query time (ns)
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 2
 4096 |@ 99
 8192 | 20
 16384 |@ 114
 32768 |@ 105
 65536 |@ 123
 131072 |@@@@@@@@@@@@@ 1726
 262144 |@@@@@@@@@@@ 1515
 524288 |@@@@ 601
 1048576 |@@ 282
 2097152 |@ 114
 4194304 | 61
 8388608 |@@@@@ 660
 16777216 | 67
 33554432 | 12
 67108864 | 7
 134217728 | 4
 268435456 | 5
 536870912 | 0

Latency Example: MySQL

• Query latency (DTrace):

118

 query time (ns)
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 2
 4096 |@ 99
 8192 | 20
 16384 |@ 114
 32768 |@ 105
 65536 |@ 123
 131072 |@@@@@@@@@@@@@ 1726
 262144 |@@@@@@@@@@@ 1515
 524288 |@@@@ 601
 1048576 |@@ 282
 2097152 |@ 114
 4194304 | 61
 8388608 |@@@@@ 660
 16777216 | 67
 33554432 | 12
 67108864 | 7
 134217728 | 4
 268435456 | 5
 536870912 | 0

What is this?
(8-16 ms latency)

Latency Example: MySQL

119

 query time (ns)
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 2
 4096 |@ 99
 8192 | 20
 16384 |@ 114
 32768 |@ 105
 65536 |@ 123
 131072 |@@@@@@@@@@@@@ 1726
 262144 |@@@@@@@@@@@ 1515
 524288 |@@@@ 601
 1048576 |@@ 282
 2097152 |@ 114
 4194304 | 61
 8388608 |@@@@@ 660
 16777216 | 67
 33554432 | 12
 67108864 | 7
 134217728 | 4
 268435456 | 5
 536870912 | 0

 innodb srv sleep (ns)
 value ------------- Distribution ------------- count
 4194304 | 0
 8388608 |@@ 841
 16777216 | 0

oh...

Latency Example: MySQL

120

• Spike of MySQL query latency: 8 - 16 ms

• innodb thread concurrency back-off sleep latency: 8 - 16 ms

• Both have a similar magnitude (see “count” column)

• Add the dimension of time as a heat map, for more
characteristics to compare

• ... quickly compare heat maps from different components of
the cloud to pattern match and locate latency

Cloud Latency Heat Map

• Identify latency outliers, distributions, patterns

• Can add more functionality to identify these by:

• cloud node

• application, cloud-wide

• I/O type (eg, query type)

• Targeted observability (DTrace) can be used to fetch this

• Or, we could collect it for everything

• ... do we need a 4th dimension?

121

4th Dimension!

• Bryan Cantrill @Joyent coded this 11 hours ago

• assuming it’s now about 10:30am during this talk

• ... and I added these slides about 7 hours ago

122

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

123

0 ms

100 ms

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• blue == “coreaudiod”

124

0 ms

100 ms

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• green == “iChat”

125

0 ms

100 ms

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• violet == “Chrome”

126

0 ms

100 ms

4th Dimension Example: Thread Runtime

• x-axis: time

• y-axis: thread runtime

• z-axis (color saturation): count at that time/runtime range

• omega-axis (color hue): application

• All colors

127

0 ms

100 ms

“Dimensionality”

• While the data supports the 4th dimension, visualizing this
properly may become difficult (we are eager to find out)

• The image itself is still only 2 dimensional

• May be best used to view a limited set, to limit the number of
different hues; uses can include:

• Highlighting different cloud application types: DB, web server, etc.

• Highlighting one from many components: single node, CPU, disk,
etc.

• Limiting the set also helps storage of data

128

More Visualizations

• We plan much more new stuff

• We are building a team of engineers to work on it; including Bryan
Cantrill, Dave Pacheo, and mysqlf

• Dave and I have only been at Joyent for 2 1/2 weeks

129

Beyond Performance Analysis

• Visualizations such as heat maps could also be applied to:

• Security, with pattern matching for:

• robot identification based on think-time latency analysis

• inter-keystroke-latency analysis

• brute force username latency attacks?

• System Administration

• monitoring quota usage by user, filesystem, disk

• Other multi-dimensional datasets

130

Objectives

• Consider performance metrics before plotting

• Why latency is good

• ... and IOPS can be bad

• See the value of visualizations

• Why heat maps are needed

• ... and line graphs can be bad

• Remember key examples

• I/O latency, as a heat map

• CPU utilization by CPU, as a heat map

131

Heat Map: I/O Latency

• Latency matters

• synchronous latency has a direct impact on performance

• Heat map shows

• outliers, balance, cache layers, patterns

132

Heat Map: CPU Utilization

• Identify single threaded issues

• single CPU hitting 100%

• Heat map shows

• fully utilized components, balance, overall headroom, patterns

133

100%

0%
60s

Tools Demonstrated

134

• For Reference:

• DTraceTazTool

• 2006; based on TazTool by Richard McDougall 1995. Open
source, unsupported, and probably no longer works (sorry).

• Analytics

• 2008; Oracle Sun ZFS Storage Appliance

• “new stuff” (not named yet)

• 2010; Joyent; Bryan Cantrill, Dave Pacheco, Brendan Gregg

Question Time

• Thank you!

• How to find me on the web:

• http://dtrace.org/blogs/brendan

• http://blogs.sun.com/brendan <-- is my old blog

• twitter @brendangregg

135

