
Performance Analysis
Methodology

Lead Performance Engineer

brendan@joyent.com

Brendan Gregg

@brendangregg
LISA’12
December, 2012

Thursday, December 13, 12

mailto:rod@joyent.com
mailto:rod@joyent.com

In particular, the USE Method

For each resource,
check:

1. Utilization
2. Saturation
3. Errors

CPU
1

CPU
2

DRAM DRAM

I/O
Bridge

I/O
Controller

Disk Disk Port

Network
Controller

Port

CPU
InterconnectMemory

Bus

Expander Interconnect

I/O Bus

Interface
Transports

Thursday, December 13, 12

whoami

• Lead Performance Engineer

• Work/Research: tools, visualizations, methodologies

• Was Brendan@Sun Microsystems, Oracle, now Joyent

Thursday, December 13, 12

Joyent

• High-Performance Cloud Infrastructure

• Public/private cloud provider

• OS-Virtualization for bare metal performance

• KVM for Linux guests

• Core developers of SmartOS and node.js

Thursday, December 13, 12

LISA10: Performance Visualizations

• Included latency heat maps

Beak Head Neck

Wing Shoulders BodyBuldge

http://dtrace.org/blogs/brendan/2012/12/10/usenix-lisa-2010-visualizations-for-performance-analysis/

Thursday, December 13, 12

http://dtrace.org/blogs/brendan/2012/12/10/usenix-lisa-2010-visualizations-for-performance-analysis/
http://dtrace.org/blogs/brendan/2012/12/10/usenix-lisa-2010-visualizations-for-performance-analysis/

LISA12: Performance Methodologies

Systems
Performance

ENTERPRISE
AND THE CLOUD

Brendan Gregg

Prentice Hall, 2013

• Also a focus of my next book

Thursday, December 13, 12

Agenda

• Performance Issue Example
• Ten Performance Methodologies and Anti-Methodologies:

• 1. Blame-Someone-Else Anti-Method
• 2. Streetlight Anti-Method
• 3. Ad Hoc Checklist Method
• 4. Problem Statement Method
• 5. Scientific Method
• 6. Workload Characterization Method
• 7. Drill-Down Analysis Method
• 8. Latency Analysis Method
• 9. USE Method
• 10. Stack Profile Method

Thursday, December 13, 12

Agenda, cont.

• Content based on:

• Thinking Methodically About Performance. ACMQ
http://queue.acm.org/detail.cfm?id=2413037

• Systems Performance. Prentice Hall, 2013

• A focus on systems performance; also applicable to apps

Thursday, December 13, 12

http://queue.acm.org/detail.cfm?id=2413037
http://queue.acm.org/detail.cfm?id=2413037

Performance Issue

• An example cloud-based performance issue:

• They tested the network using traceroute, which showed some
packet drops

“Database response time sometimes
take multiple seconds.
Is the network dropping packets?”

Thursday, December 13, 12

Performance Issue, cont.

• Performance Analysis

1st Level

2nd Level

Top

Customer: “network drops?”

Thursday, December 13, 12

Performance Issue, cont.

• Performance Analysis

1st Level

2nd Level

Top

Customer: “network drops?”

“ran traceroute,
can’t reproduce”

“network looks ok,
CPU also ok”

my turn

Thursday, December 13, 12

Performance Issue, cont.

• Could try network packet sniffing

• tcpdump/snoop

• Performance overhead during capture (CPU, storage)
and post-processing (wireshark, etc)

• Time consuming to analyze: not real-time

Thursday, December 13, 12

Performance Issue, cont.

• Could try dynamic tracing

• Efficient: only drop/retransmit paths traced

• Context: kernel state readable

• Real-time: analysis and summaries

./tcplistendrop.d
TIME SRC-IP PORT DST-IP PORT
2012 Jan 19 01:22:49 10.17.210.103 25691 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.108 18423 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.116 38883 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.117 10739 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.112 27988 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.106 28824 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.12.143.16 65070 -> 192.192.240.212 80
[...]

Thursday, December 13, 12

Performance Issue, cont.

• Instead of either, I began with the USE method

• In < 5 minutes, I found:

• CPU: ok (light usage)

• network: ok (light usage)

• memory: available memory was exhausted, and the
system was paging!

• disk: periodic bursts of 100% utilization

Thursday, December 13, 12

Performance Issue, cont.

• Customer was surprised. These findings were then
investigated using another methodology – latency analysis:

• memory: using both microstate accounting and dynamic
tracing to confirm that anonymous page-ins were hurting
the database; worst case app thread spent 97% of time
blocked on disk (data faults).

• disk: using dynamic tracing to confirm synchronous latency
at the application / file system interface; included up to
1000 ms fsync() calls.

• These confirmations took about 1 hour

Thursday, December 13, 12

Performance Issue, cont.

• Methodologies can help identify and root-cause issues

• Different methodologies can be used as needed; in this case:

• USE Method: quick system health

• Latency Analysis: root cause

• Faster resolution of issues, frees time for multiple teams

Thursday, December 13, 12

Performance Methodologies

• Not a tool

• Not a product

• Is a procedure (documentation)

Thursday, December 13, 12

Performance Methodologies, cont.

• Not a tool  but tools can be written to help

• Not a product  could be in monitoring solutions

• Is a procedure (documentation)

Thursday, December 13, 12

Performance Methodologies, cont.

• Audience

• Beginners: provides a starting point

• Experts: provides a reminder

• Casual users: provides a checklist

Thursday, December 13, 12

Performance Methodologies, cont.

• Operating system performance analysis circa ‘90s,
metric-orientated:

• Vendor creates metrics and performance tools

• Users develop methods to interpret metrics

• Previously common methodologies:

• Ad hoc checklists: common tuning tips

• Tools-based checklists: for each tool, study useful metrics

• Study kernel internals, then develop your own

• Problematic: vendors often don’t provide the best metrics; can
be blind to issue types

Thursday, December 13, 12

Performance Methodologies, cont.

• Operating systems now provide dynamic tracing

• See anything, not just what the vendor gave you

• Hardest part is knowing what questions to ask

• Methodologies can pose the questions

• What would previously be an academic exercise is now
practical

Thursday, December 13, 12

Performance Methodologies, cont.

• Starting with some anti-methodologies for comparison...

Thursday, December 13, 12

Blame-Someone-Else Anti-Method

Thursday, December 13, 12

Blame-Someone-Else Anti-Method

• 1. Find a system or environment component you are not
responsible for

• 2. Hypothesize that the issue is with that component

• 3. Redirect the issue to the responsible team

• 4. When proven wrong, go to 1

Thursday, December 13, 12

Blame-Someone-Else Anti-Method, cont.

"Maybe it's the network.

Can you check with the network team
if they have had dropped packets

... or something?"

Thursday, December 13, 12

Blame-Someone-Else Anti-Method, cont.

• 1. Find a system or environment component you are not
responsible for

• 2. Hypothesize that the issue is with that component

• 3. Redirect the issue to the responsible team

• 4. When proven wrong, go to 1

... a colleague asked if I could make this into a flow chart

Thursday, December 13, 12

Blame-Someone-Else Anti-Method, cont.

Proven
Wrong?

Pick Someone
Else’s Component

Hypothesize

Redirect

Start

Y

Thursday, December 13, 12

Blame-Someone-Else Anti-Method, cont.

• Wasteful of other team resources

• Identifiable by a lack of data analysis – or any data at all

• Ask for screenshots, then take them for a 2nd opinion

Thursday, December 13, 12

Streetlight Anti-Method

Thursday, December 13, 12

Streetlight Anti-Method

• 1. Pick observability tools that are

• familiar

• found on the Internet

• found at random

• 2. Run tools

• 3. Look for obvious issues

Thursday, December 13, 12

Streetlight Anti-Method, cont.

• Named after an observational bias called the streetlight effect

A policeman sees a drunk looking under a streetlight,
and asks what he is looking for.
The drunk says he has lost his keys.
The policeman can't find them either,
and asks if he lost them under the streetlight.
The drunk replies:
“No, but this is where the light is best.”

Thursday, December 13, 12

Streetlight Anti-Method, cont.

• Why were you running ping?

$ ping 10.2.204.2
PING 10.2.204.2 (10.2.204.2) 56(84) bytes of data.
64 bytes from 10.2.204.2: icmp_seq=1 ttl=254 time=0.654 ms
64 bytes from 10.2.204.2: icmp_seq=2 ttl=254 time=0.617 ms
64 bytes from 10.2.204.2: icmp_seq=3 ttl=254 time=0.660 ms
64 bytes from 10.2.204.2: icmp_seq=4 ttl=254 time=0.641 ms
64 bytes from 10.2.204.2: icmp_seq=5 ttl=254 time=0.629 ms
64 bytes from 10.2.204.2: icmp_seq=6 ttl=254 time=0.606 ms
64 bytes from 10.2.204.2: icmp_seq=7 ttl=254 time=0.588 ms
64 bytes from 10.2.204.2: icmp_seq=8 ttl=254 time=0.653 ms
64 bytes from 10.2.204.2: icmp_seq=9 ttl=254 time=0.618 ms
64 bytes from 10.2.204.2: icmp_seq=10 ttl=254 time=0.650 ms
^C
--- 10.2.204.2 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 8994ms
rtt min/avg/max/mdev = 0.588/0.631/0.660/0.035 ms

Thursday, December 13, 12

Streetlight Anti-Method, cont.

• Why are you still running top?

top - 15:09:38 up 255 days, 16:54, 10 users, load average: 0.00, 0.03, 0.00
Tasks: 274 total, 1 running, 273 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.7%us, 0.0%sy, 0.0%ni, 99.1%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 8181740k total, 7654228k used, 527512k free, 405616k buffers
Swap: 2932728k total, 125064k used, 2807664k free, 3826244k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
16876 root 20 0 57596 17m 1972 S 4 0.2 3:00.60 python
 3947 brendan 20 0 19352 1552 1060 R 0 0.0 0:00.06 top
15841 joshw 20 0 67144 23m 908 S 0 0.3 218:21.70 mosh-server
16922 joshw 20 0 54924 11m 920 S 0 0.1 121:34.20 mosh-server
 1 root 20 0 23788 1432 736 S 0 0.0 0:18.15 init
 2 root 20 0 0 0 0 S 0 0.0 0:00.61 kthreadd
 3 root RT 0 0 0 0 S 0 0.0 0:00.11 migration/0
 4 root 20 0 0 0 0 S 0 0.0 18:43.09 ksoftirqd/0
 5 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/0
[...]

Thursday, December 13, 12

Streetlight Anti-Method, cont.

• Tools-based approach

• Inefficient:

• can take time before the right tool is found

• can be wasteful when investigating false positives

• Incomplete:

• tools are difficult to find or learn

• tools are incomplete or missing

Thursday, December 13, 12

Ad Hoc Checklist Method

Thursday, December 13, 12

Ad Hoc Checklist Method

• 1..N. Run A, if B, do C

Thursday, December 13, 12

Ad Hoc Checklist Method, cont.

• 1..N. Run A, if B, do C

• Each item can include:

• which tool to run

• how to interpret output

• suggested actions

• Can cover common and recent issues

Thursday, December 13, 12

Ad Hoc Checklist Method, cont.

• Page 1 of Sun Performance and Tuning [Cockcroft 95], has
“Quick Reference for Common Tuning Tips”

• disk bottlenecks
• run iostat with 30 second intervals; look for more than 30%

busy disks with +50ms service times; increasing the inode
cache size can help; stripe file systems over multiple disks

• NFS response times
• run nfsstat -m, follow similar strategy as with disk bottlenecks

• memory checks
• don’t worry about where RAM has gone, or page-ins and -outs;

run vmstat and look at the page scanner: over 200 for 30 secs

• etc.

Thursday, December 13, 12

Ad Hoc Checklist Method, cont.

• Pros:

• Easy to follow

• Can also be fast

• Consistent check of all items – including egregious issues

• Can be prescriptive

• Cons:

• Limited to items on list

• Point-in-time recommendations – needs regular updates

• Pragmatic: a process for all staff on a support team to check a
minimum set of issues, and deliver a practical result.

Thursday, December 13, 12

Problem Statement Method

Thursday, December 13, 12

Problem Statement Method

• 1. What makes you think there is a performance problem?

• 2. Has this system ever performed well?

• 3. What has changed recently? (Software? Hardware? Load?)

• 4. Can the performance degradation be expressed in terms of
latency or run time?

• 5. Does the problem affect other people or applications
(or is it just you)?

• 6. What is the environment? What software and hardware is
used? Versions? Configuration?

Thursday, December 13, 12

Problem Statement Method, cont.: Examples

• 1. What makes you think there is a performance problem?
• “I saw 1000 disk IOPS”

• 2. Has this system ever performed well?
• “The system has never worked”

• 3. What has changed recently?
• “We’re on slashdot/HN/reddit right now”

• 4. Can the performance degradation be expressed ... latency?
• “Query time is 10%/10x slower”

• 5. Does the problem affect other people or applications?
• “All systems are offline”

• 6. What is the environment? ...
• “We are on an ancient software version”

Thursday, December 13, 12

Problem Statement Method, cont.: Examples

• 1. What makes you think there is a performance problem?
• “I saw 1000 disk IOPS” – not a problem by itself

• 2. Has this system ever performed well?
• “The system has never worked” – good to know!

• 3. What has changed recently?
• “We’re on slashdot/HN/reddit right now” – scalability?

• 4. Can the performance degradation be expressed ... latency?
• “Query time is 10%/10x slower” – quantify

• 5. Does the problem affect other people or applications?
• “All systems are offline” – power/network?

• 6. What is the environment? ...
• “We are on an ancient software version” – known issue?

Thursday, December 13, 12

Problem Statement Method, cont.

• Often used by support staff for collecting information,
and entered into a ticketing system

• Can be used first before other methodologies

• Pros:

• Fast

• Resolves a class of issues without further investigation

• Cons:

• Limited scope (but this is obvious)

Thursday, December 13, 12

Scientific Method

Thursday, December 13, 12

Scientific Method

• 1. Question

• 2. Hypothesis

• 3. Prediction

• 4. Test

• 5. Analysis

Thursday, December 13, 12

Scientific Method, cont.

• Observation tests:

• Run a tool, read a metric

• Experimental tests:

• Change a tunable parameter

• Increase/decrease load

Thursday, December 13, 12

Scientific Method, cont.

• Experimental tests can either increase or decrease
performance

• Examples:

• A) Observational

• B) Observational

• C) Experimental: increase

• D) Experimental: decrease

• E) Experimental: decrease

Thursday, December 13, 12

Scientific Method, cont.

• Example A, observational:

• 1. Question: what is causing slow database queries?

• 2. Hypothesis: noisy neighbors (cloud) performing disk I/O,
contending with database disk I/O (via the file system)

• 3. Prediction:

Thursday, December 13, 12

Scientific Method, cont.

• Example A, observational:

• 1. Question: what is causing slow database queries?

• 2. Hypothesis: noisy neighbors (cloud) performing disk I/O,
contending with database disk I/O (via the file system)

• 3. Prediction: if file system I/O latency is measured during
a query, it will show that it is responsible for slow queries

• 4. Test: dynamic tracing of database FS latency as a ratio
of query latency shows less than 5% is FS

• 5. Analysis: FS, and disks, are not responsible for slow
queries. Go to 2 and develop a new hypothesis

Thursday, December 13, 12

Scientific Method, cont.

• Example B, observational:

• 1. Question: why is an app slower after moving it to a multi-
processor system?

• 2. Hypothesis: NUMA effects – remote memory I/O, CPU
interconnect contention, less cache warmth, cross calls, ...

• 3. Prediction:

Thursday, December 13, 12

Scientific Method, cont.

• Example B, observational:

• 1. Question: why is an app slower after moving it to a multi-
processor system?

• 2. Hypothesis: NUMA effects – remote memory I/O, CPU
interconnect contention, less cache warmth, cross calls, ...

• 3. Prediction: increase in memory stall cycles, an increase
in CPI, and remote memory access

• 4. Test: perf events / cpustat, quality time with the vendor
processor manuals

• 5. Analysis: consistent with predictions

• time consuming; experimental?
Thursday, December 13, 12

Scientific Method, cont.

• Example C, experimental:

• 1. Question: why is an app slower after moving it to a multi-
processor system?

• 2. Hypothesis: NUMA effects – remote memory I/O, CPU
interconnect contention, less cache warmth, cross calls, ...

• 3. Prediction:

Thursday, December 13, 12

Scientific Method, cont.

• Example C, experimental:

• 1. Question: why is an app slower after moving it to a multi-
processor system?

• 2. Hypothesis: NUMA effects – remote memory I/O, CPU
interconnect contention, less cache warmth, cross calls, ...

• 3. Prediction: perf improved by disabling extra processors;
partially improved by off-lining them (easier; still has
remote memory I/O)

• 4. Test: disabled all CPUs on extra processors, perf
improved by 50%

• 5. Analysis: magnitude consistent with perf reduction

Thursday, December 13, 12

Scientific Method, cont.

• Example D, experimental:

• 1. Question: degraded file system perf as the cache grows

• 2. Hypothesis: file system metadata overheads, relative to
the record size – more records, more lock contention on
hash tables for the record lists

• 3. Prediction:

Thursday, December 13, 12

Scientific Method, cont.

• Example D, experimental:

• 1. Question: degraded file system perf as the cache grows

• 2. Hypothesis: file system metadata overheads, relative to
the record size – more records, more lock contention on
hash tables for the record lists

• 3. Prediction: making the record size progressively smaller,
and therefore more records in memory, should make perf
progressively worse

• 4. Test: same workload with record size /2, /4, /8, /16

• 5. Analysis: results consistent with prediction

Thursday, December 13, 12

Scientific Method, cont.

• Example E, experimental:

• 1. Question: why did write throughput drop by 20%?

• 2. Hypothesis: disk vibration by datacenter alarm

• 3. Prediction: any loud noise will reduce throughput

• 4. Test: ?

Thursday, December 13, 12

Scientific Method, cont.

• Test

• Shouting in the Datacenter: http://www.youtube.com/watch?v=tDacjrSCeq4

Thursday, December 13, 12

http://www.youtube.com/watch?v=tDacjrSCeq4
http://www.youtube.com/watch?v=tDacjrSCeq4

Scientific Method, cont.

• Analysis

Thursday, December 13, 12

Scientific Method, cont.

• Pros:

• Good balance of theory and data

• Generic methodology

• Encourages thought, develops understanding

• Cons:

• Hypothesis requires expertise

• Time consuming – more suited for harder issues

Thursday, December 13, 12

Workload Characterization Method

Thursday, December 13, 12

Workload Characterization Method

• 1. Who is causing the load? PID, UID, IP addr, ...

• 2. Why is the load called? code path

• 3. What is the load? IOPS, tput, type

• 4. How is the load changing over time?

Thursday, December 13, 12

Workload Characterization Method, cont.

• Example:

• System log checker is much slower after system upgrade

• Who: grep(1) is on-CPU for 8 minutes

• Why: UTF8 encoding, as LANG=en_US.UTF-8

• LANG=C avoided UTF8 encoding – 2000x faster

Thursday, December 13, 12

Workload Characterization Method, cont.

• Identifies issues of load

• Best performance wins are from eliminating unnecessary work

• Don’t assume you know what the workload is – characterize

Thursday, December 13, 12

Workload Characterization Method, cont.

• Pros:

• Potentially largest wins

• Cons:

• Only solves a class of issues – load

• Time consuming, and can be discouraging – most
attributes examined will not be a problem

Thursday, December 13, 12

Drill-Down Analysis Method

Thursday, December 13, 12

Drill-Down Analysis Method

• 1. Start at highest level

• 2. Examine next-level details

• 3. Pick most interesting breakdown

• 4. If problem unsolved, go to 2

Thursday, December 13, 12

Drill-Down Analysis Method, cont.

• For a distributed environment [McDougall 06]:

• 1. Monitoring: environment-wide, and identifying or
alerting when systems have issues (eg, SNMP)

• 2. Identification: given a system, examining resources
and applications for location of issue (eg, mpstat)

• 3. Analysis: given a suspected source, drilling down to
identify root cause or causes (eg, dtrace)

• Analysis stage was previously limited to the given toolset;
now can be explored in arbitrary detail using dynamic tracing

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• For example, ZFS

VFS

ZFS ...

Process
User-Land
Kernel

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• For example, ZFS

VFS

ZFS ...

Process
User-Land
Kernel

Disks

Device Drivers

Block Device Interface

Syscall Interface

Drill-Down Analysis

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• Using DTrace

VFS

ZFS ...

Process
User-Land
Kernel

mysql_pid_fslatency.d

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• Drill...

VFS

ZFS ...

Process
User-Land
Kernel

mysql_pid_fslatency.d

syscall with
fi_fs == zfs

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• Drill...

VFS

ZFS ...

Process
User-Land
Kernel

*vfssnoop.d
fswho.d

mysql_pid_fslatency.d

syscall with
fi_fs == zfs

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• Drill...

VFS

ZFS ...

Process
User-Land
Kernel

*vfssnoop.d
fswho.dzioslower.d

mysql_pid_fslatency.d

syscall with
fi_fs == zfs

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• Drill...

VFS

ZFS ...

Process
User-Land
Kernel

*vfssnoop.d
fswho.dzioslower.d

spasync.d
ziosnoop.d
metaslab_free.d
arcaccess.d

mysql_pid_fslatency.d

syscall with
fi_fs == zfs

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• Drill...

VFS

ZFS ...

Process
User-Land
Kernel

iostacks.d

iosnoop
disklatency.d
seeksize.d
bitesize.d

*vfssnoop.d
fswho.dzioslower.d

spasync.d
ziosnoop.d
metaslab_free.d
arcaccess.d

mysql_pid_fslatency.d

syscall with
fi_fs == zfs

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.: Example

• Drill...

VFS

ZFS ...

Process
User-Land
Kernel

iostacks.d

iosnoop
disklatency.d
seeksize.d
bitesize.d

*vfssnoop.d
fswho.dzioslower.d

spasync.d
ziosnoop.d
metaslab_free.d
arcaccess.d

mysql_pid_fslatency.d

syscall with
fi_fs == zfs

kernel drivers: see
DTrace Book Chap 4
eg, scsilatency.d

Disks

Device Drivers

Block Device Interface

Syscall Interface

Thursday, December 13, 12

Drill-Down Analysis Method, cont.

• Moves from higher- to lower-level details based on findings:
environment-wide down to metal

• Peels away layers of software and hardware to locate cause

• Pros:

• Will identify root cause(s)

• Cons:

• Time consuming – especially when drilling in the wrong
direction

Thursday, December 13, 12

Latency Analysis Method

Thursday, December 13, 12

Latency Analysis Method, cont.

• 1. Measure operation time (latency)

• 2. Divide into logical synchronous components

• 3. Continue division until latency origin is identified

• 4. Quantify: estimate speedup if problem fixed

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Example, logging of slow query time with file system latency:

./mysqld_pid_fslatency_slowlog.d 29952
2011 May 16 23:34:00 filesystem I/O during query > 100 ms: query 538 ms, fs 509 ms, 83 I/O
2011 May 16 23:34:11 filesystem I/O during query > 100 ms: query 342 ms, fs 303 ms, 75 I/O
2011 May 16 23:34:38 filesystem I/O during query > 100 ms: query 479 ms, fs 471 ms, 44 I/O
2011 May 16 23:34:58 filesystem I/O during query > 100 ms: query 153 ms, fs 152 ms, 1 I/O
2011 May 16 23:35:09 filesystem I/O during query > 100 ms: query 383 ms, fs 372 ms, 72 I/O
2011 May 16 23:36:09 filesystem I/O during query > 100 ms: query 406 ms, fs 344 ms, 109 I/O
2011 May 16 23:36:44 filesystem I/O during query > 100 ms: query 343 ms, fs 319 ms, 75 I/O
2011 May 16 23:36:54 filesystem I/O during query > 100 ms: query 196 ms, fs 185 ms, 59 I/O
2011 May 16 23:37:10 filesystem I/O during query > 100 ms: query 254 ms, fs 209 ms, 83 I/O
[...]

Operation Time FS Component

Thursday, December 13, 12

Latency Analysis Method, cont.: Types

• Drill-down analysis of latency

• many of the previous ZFS examples were latency-based

• Latency binary search, eg:

• 1. Operation latency is A

• 2. Measure A

• 3. Measure synchronous components: B, C (can be sums)

• 4. if B > C, A = B. else A = C

• 5. If problem unsolved, go to 2
• Spot-the-outlier from multiple layers – correlate latency

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
./zfsstacklatency.d
dtrace: script './zfsstacklatency.d' matched 25 probes
^C
CPU ID FUNCTION:NAME
 15 2 :END
 zfs_read time (ns)
 value ------------- Distribution ------------- count
 512 | 0
 1024 |@@@@ 424
 2048 |@@@@@@@@ 768
 4096 |@@@@ 375
 8192 |@@@@@@@@@@@@@@@@ 1548
 16384 |@@@@@@@@ 763
 32768 | 35
 65536 | 4
 131072 | 12
 262144 | 1
 524288 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
 zfs_write time (ns)
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@@ 718
 8192 |@@@@@@@@@@@@@@@@@@@ 5152
 16384 |@@@@@@@@@@@@@@@ 4085
 32768 |@@@ 731
 65536 |@ 137
 131072 | 23
 262144 | 3
 524288 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
 zio_wait time (ns)
 value ------------- Distribution ------------- count
 512 | 0
 1024 |@@@@@@@@@@@@@ 6188
 2048 |@@@@@@@@@@@@@@@@@@@@@@@ 11459
 4096 |@@@@ 2026
 8192 | 60
 16384 | 37
 32768 | 8
 65536 | 2
 131072 | 0
 262144 | 0
 524288 | 1
 1048576 | 0
 2097152 | 0
 4194304 | 0
 8388608 | 0
 16777216 | 0
 33554432 | 0
 67108864 | 0
 134217728 | 0
 268435456 | 1
 536870912 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
 zio_vdev_io_done time (ns)
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@ 8
 8192 |@@@@ 56
 16384 |@ 17
 32768 |@ 13
 65536 | 2
 131072 |@@ 24
 262144 |@@ 23
 524288 |@@@ 44
 1048576 |@@@ 38
 2097152 | 1
 4194304 | 4
 8388608 | 4
 16777216 | 4
 33554432 |@@@ 43
 67108864 |@@@@@@@@@@@@@@@@@@@@@ 315
 134217728 | 0
 268435456 | 2
 536870912 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
 vdev_disk_io_done time (ns)
 value ------------- Distribution ------------- count
 65536 | 0
 131072 |@ 12
 262144 |@@ 26
 524288 |@@@@ 47
 1048576 |@@@ 40
 2097152 | 1
 4194304 | 4
 8388608 | 4
 16777216 | 4
 33554432 |@@@ 43
 67108864 |@@@@@@@@@@@@@@@@@@@@@@@@@ 315
 134217728 | 0
 268435456 | 2
 536870912 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
 io:::start time (ns)
 value ------------- Distribution ------------- count
 32768 | 0
 65536 | 3
 131072 |@@ 19
 262144 |@@ 21
 524288 |@@@@ 45
 1048576 |@@@ 38
 2097152 | 0
 4194304 | 4
 8388608 | 4
 16777216 | 4
 33554432 |@@@ 43
 67108864 |@@@@@@@@@@@@@@@@@@@@@@@@@ 315
 134217728 | 0
 268435456 | 2
 536870912 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
 scsi time (ns)
 value ------------- Distribution ------------- count
 16384 | 0
 32768 | 2
 65536 | 3
 131072 |@ 18
 262144 |@@ 20
 524288 |@@@@ 46
 1048576 |@@@ 37
 2097152 | 0
 4194304 | 4
 8388608 | 4
 16777216 | 4
 33554432 |@@@ 43
 67108864 |@@@@@@@@@@@@@@@@@@@@@@@@@ 315
 134217728 | 0
 268435456 | 2
 536870912 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.: Example

• Drill-down: Latency distributions
 mega_sas time (ns)
 value ------------- Distribution ------------- count
 16384 | 0
 32768 | 2
 65536 | 5
 131072 |@@ 20
 262144 |@ 16
 524288 |@@@@ 50
 1048576 |@@@ 33
 2097152 | 0
 4194304 | 4
 8388608 | 4
 16777216 | 4
 33554432 |@@@ 43
 67108864 |@@@@@@@@@@@@@@@@@@@@@@@@@ 315
 134217728 | 0
 268435456 | 2
 536870912 | 0

Thursday, December 13, 12

Latency Analysis Method, cont.

• Latency matters – potentially solve most issues

• Similar pros & cons as drill-down analysis

• Also see Method R: latency analysis initially developed for
Oracle databases [Millsap 03]

Thursday, December 13, 12

USE Method

Thursday, December 13, 12

USE Method

• For every resource, check:

• 1. Utilization

• 2. Saturation

• 3. Errors

Thursday, December 13, 12

USE Method, cont.

• For every resource, check:

• 1. Utilization: time resource was busy, or degree used

• 2. Saturation: degree of queued extra work

• 3. Errors: any errors

Saturation

Utilization

Errors

X

Thursday, December 13, 12

USE Method, cont.

• Process:

• Errors are often easier to interpret, and can be checked first

Errors?

Choose Resource

High
Utilization?

Saturation? A Problem
Identified

Y

Y

Y
N

N

N

Thursday, December 13, 12

USE Method, cont.

• Hardware Resources:

• CPUs

• Main Memory

• Network Interfaces

• Storage Devices

• Controllers

• Interconnects

Thursday, December 13, 12

USE Method, cont.

• A great way to determine resources is to find or draw the
server functional diagram

• Vendor hardware teams have these

• Analyze every component in the data path

Thursday, December 13, 12

USE Method, cont.: Functional Diagram

CPU
1

CPU
2

DRAM DRAM

I/O
Bridge

I/O
Controller

Disk Disk Port

Network
Controller

Port

CPU
InterconnectMemory

Bus

Expander Interconnect

I/O Bus

Interface
Transports

Thursday, December 13, 12

USE Method, cont.

• Definition of utilization depends on the resource type:

• I/O resource (eg, disks) – utilization is time busy

• Capacity resource (eg, main memory) – utilization is space
consumed

• Storage devices can act as both

Thursday, December 13, 12

USE Method, cont.

• Utilization

• 100% usually a bottleneck

• 60%+ often a bottleneck for I/O resources, especially when
high priority work cannot easily interrupt lower priority work
(eg, disks)

• Beware of time intervals. 60% utilized over 5 minutes may
mean 100% utilized for 3 minutes then idle

• Best examined per-device (unbalanced workloads)

Thursday, December 13, 12

USE Method, cont.

• Saturation

• Any sustained non-zero value adds latency

• Errors

• Should be obvious

Thursday, December 13, 12

USE Method, cont.: Examples

Resource Type Metric

CPU utilization

CPU saturation

Memory utilization

Memory saturation

Network Interface utilization

Storage Device I/O utilization

Storage Device I/O saturation

Storage Device I/O errors

Thursday, December 13, 12

USE Method, cont.: Examples

Resource Type Metric

CPU utilization CPU utilization

CPU saturation run-queue length, sched lat.

Memory utilization available memory

Memory saturation paging or swapping

Network Interface utilization RX/TX tput/bandwidth

Storage Device I/O utilization device busy percent

Storage Device I/O saturation wait queue length

Storage Device I/O errors device errors

Thursday, December 13, 12

USE Method, cont.: Harder Examples

Resource Type Metric

CPU errors

Network saturation

Storage Controller utilization

CPU Interconnect utilization

Mem. Interconnect saturation

I/O Interconnect utilization

Thursday, December 13, 12

USE Method, cont.: Harder Examples

Resource Type Metric

CPU errors eg, correctable CPU cache
ECC events

Network saturation “nocanputs”, buffering

Storage Controller utilization active vs max controller
IOPS and tput

CPU Interconnect utilization per port tput / max
bandwidth

Mem. Interconnect saturation memory stall cycles, high
cycles-per-instruction (CPI)

I/O Interconnect utilization bus throughput / max
bandwidth

Thursday, December 13, 12

USE Method, cont.

• Some software resources can also be studied:

• Mutex Locks

• Thread Pools

• Process/Thread Capacity

• File Descriptor Capacity

• Consider possible USE metrics for each

Thursday, December 13, 12

USE Method, cont.

• This process may reveal missing metrics – those not provided
by your current toolset

• They are your known unknowns

• Much better than unknown unknowns

• More tools can be installed and developed to help

• Please, no more top variants!
unless it is interconnect-top or bus-top

Thursday, December 13, 12

USE Method, cont.: Example Linux Checklist

Resource Type Metric

CPU Utilization

per-cpu: mpstat -P ALL 1, “%idle”; sar -P ALL,
“%idle”; system-wide: vmstat 1, “id”; sar -u, “%idle”;
dstat -c, “idl”; per-process:top, “%CPU”; htop, “CPU
%”; ps -o pcpu; pidstat 1, “%CPU”; per-kernel-
thread: top/htop (“K” to toggle), where VIRT == 0
(heuristic). [1]

CPU Saturation

system-wide: vmstat 1, “r” > CPU count [2]; sar -q,
“runq-sz” > CPU count; dstat -p, “run” > CPU count;
per-process: /proc/PID/schedstat 2nd field
(sched_info.run_delay); perf sched latency (shows
“Average” and “Maximum” delay per-schedule); dynamic
tracing, eg, SystemTap schedtimes.stp “queued(us)” [3]

CPU Errors
perf (LPE) if processor specific error events (CPC) are
available; eg, AMD64′s “04Ah Single-bit ECC Errors
Recorded by Scrubber” [4]

http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist

... etc for all combinations (would fill a dozen slides)

Thursday, December 13, 12

http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/

USE Method, cont.: illumos/SmartOS Checklist

http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist

... etc for all combinations (would fill a dozen slides)

Resource Type Metric

CPU Utilization
per-cpu: mpstat 1, “idl”; system-wide: vmstat 1, “id”;
per-process:prstat -c 1 (“CPU” == recent), prstat -
mLc 1 (“USR” + “SYS”); per-kernel-thread: lockstat -
Ii rate, DTrace profile stack()

CPU Saturation
system-wide: uptime, load averages; vmstat 1, “r”;
DTrace dispqlen.d (DTT) for a better “vmstat r”; per-
process: prstat -mLc 1, “LAT”

CPU Errors fmadm faulty; cpustat (CPC) for whatever error
counters are supported (eg, thermal throttling)

Memory Saturation
system-wide: vmstat 1, “sr” (bad now), “w” (was very
bad); vmstat -p 1, “api” (anon page ins == pain),
“apo”; per-process: prstat -mLc 1, “DFL”; DTrace
anonpgpid.d (DTT), vminfo:::anonpgin on execname

Thursday, December 13, 12

http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2011/06/24/load-average-video/
http://dtrace.org/blogs/brendan/2011/06/24/load-average-video/

USE Method, cont.

• To be thorough, you will need to use:

• CPU performance counters (CPC)

• For bus and interconnect activity; eg, perf events, cpustat

• Dynamic Tracing

• For missing saturation and error metrics; eg, DTrace

Thursday, December 13, 12

USE Method, cont.: CPC Example

• Quad-processor AMD w/HyperTransport, functional diagram:

CPU
Socket 2

CPU
Socket 3

CPU
Socket 0

CPU
Socket 1

I/O
MCP55

I/O
IO55

PCIe PCIe

DRAM DRAM

DRAM DRAMHT0

HT1

HT2

HyperTransport
Memory Bus
PCIe Bus

Thursday, December 13, 12

USE Method, cont.: CPC Example

• Per-port HyperTransport TX throughput:

• Decoder Matrix:

./amd64htcpu 1
 Socket HT0 TX MB/s HT1 TX MB/s HT2 TX MB/s HT3 TX MB/s
 0 3170.82 595.28 2504.15 0.00
 1 2738.99 2051.82 562.56 0.00
 2 2218.48 0.00 2588.43 0.00
 3 2193.74 1852.61 0.00 0.00
 Socket HT0 TX MB/s HT1 TX MB/s HT2 TX MB/s HT3 TX MB/s
 0 3165.69 607.65 2475.84 0.00
 1 2753.18 2007.22 570.70 0.00
 2 2216.62 0.00 2577.83 0.00
 3 2208.27 1878.54 0.00 0.00
[...]

 Socket HT0 TX MB/s HT1 TX MB/s HT2 TX MB/s HT3 TX MB/s
 0 CPU0-1 MCP55 CPU0-2 0.00
 1 CPU1-0 CPU1-3 IO55 0.00
 2 CPU2-3 CPU2-3 CPU2-0 0.00
 3 CPU3-2 CPU3-1 CPU3-2 0.00

Thursday, December 13, 12

USE Method, cont.: CPC Example

• Currently not that
easy to write –
takes time to study
the processor
manuals

• Intel® 64 and IA-32
Architectures
Software
Developer’s
Manual
Volume 3B,
page 535 of 1,026:

• I’ve written and shared CPC-based tools before. It takes a lot
of maintenance to stay current; getting better with PAPI.

Thursday, December 13, 12

USE Method, cont.: Products

• Supported products can be developed to help

• Joyent Cloud Analytics includes metrics to support USE

Thursday, December 13, 12

USE Method, cont.: Products

• Supported products can be developed to help

• Joyent Cloud Analytics includes metrics to support USE

Cloud-wide Per-CPU
Utilization Heat Map Hot CPU

Hostname

Thursday, December 13, 12

USE Method, cont.: Products

• Do you develop a monitoring product?

• Suggestion: add USE Method wizard

• For docs, refer to this talk and:
http://queue.acm.org/detail.cfm?id=2413037

• Do you pay for a monitoring product?

• Ask for the USE Method

Thursday, December 13, 12

http://queue.acm.org/detail.cfm?id=2413037
http://queue.acm.org/detail.cfm?id=2413037

USE Method, cont.

• Resource-based approach

• Quick system health check, early in an investigation

• Pros:

• Complete: all resource bottlenecks and errors

• Not limited in scope by your current toolset

• No unknown unknowns – at least known unknowns

• Efficient: picks three metrics for each resource –
from what may be dozens available

• Cons:

• Limited to a class of issues

Thursday, December 13, 12

Stack Profile Method

Thursday, December 13, 12

Stack Profile Method

• 1. Profile thread stack traces (on- and off-CPU)

• 2. Coalesce

• 3. Study stacks bottom-up

Thursday, December 13, 12

Stack Profile Method, cont.

• Profiling thread stacks:

• On-CPU: often profiled by sampling (low overhead)

• eg, perf, oprofile, dtrace

• Off-CPU (sleeping): not commonly profiled

• no PC or pinned thread stack for interrupt-profiling

• with static/dynamic tracing, you can trace stacks on scheduler
off-/on-cpu events, and, stacks don’t change while off-cpu

• I’ve previously called this: Off-CPU Performance Analysis

• Examine both

Thursday, December 13, 12

Stack Profile Method, cont.

• Eg, using DTrace (easiest to demo both), for PID 191:

• On-CPU:
• dtrace -n ’profile-97 /pid == 191/ { @[ustack()] =
count(); }’

• output has stacks with sample counts (97 Hertz)

• Off-CPU:
• dtrace -n ’sched:::off-cpu /pid == 191/ { self->ts =
timestamp; } sched:::on-cpu /self->ts/ { @[ustack()]
= sum(timestamp - self->ts); self->ts = 0; }’

• output has stacks with nanosecond times

Thursday, December 13, 12

Stack Profile Method, cont.

• One stack:
libc.so.1`mutex_trylock_adaptive+0x112
libc.so.1`mutex_lock_impl+0x165
libc.so.1`mutex_lock+0xc
mysqld`key_cache_read+0x741
mysqld`_mi_fetch_keypage+0x48
mysqld`w_search+0x84
mysqld`_mi_ck_write_btree+0xa5
mysqld`mi_write+0x344
mysqld`_ZN9ha_myisam9write_rowEPh+0x43
mysqld`_ZN7handler12ha_write_rowEPh+0x8d
mysqld`_ZL9end_writeP4JOINP13st_join_tableb+0x1a3
mysqld`_ZL20evaluate_join_recordP4JOINP13st_join_tablei+0x11e
mysqld`_Z10sub_selectP4JOINP13st_join_tableb+0x86
mysqld`_ZL9do_selectP4JOINP4ListI4ItemEP5TABLEP9Procedure+0xd9
mysqld`_ZN4JOIN4execEv+0x482
mysqld`_Z12mysql_selectP3THDPPP4ItemP10TABLE_LISTjR4ListIS1_ES2_...
mysqld`_Z13handle_selectP3THDP3LEXP13select_resultm+0x17d
mysqld`_ZL21execute_sqlcom_selectP3THDP10TABLE_LIST+0xa6
mysqld`_Z21mysql_execute_commandP3THD+0x124b
mysqld`_Z11mysql_parseP3THDPcjP12Parser_state+0x3e1
mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1619
mysqld`_Z24do_handle_one_connectionP3THD+0x1e5
mysqld`handle_one_connection+0x4c
libc.so.1`_thrp_setup+0xbc
libc.so.1`_lwp_start

Thursday, December 13, 12

Stack Profile Method, cont.

• Study, bottom-up:
libc.so.1`mutex_trylock_adaptive+0x112
libc.so.1`mutex_lock_impl+0x165
libc.so.1`mutex_lock+0xc
mysqld`key_cache_read+0x741
mysqld`_mi_fetch_keypage+0x48
mysqld`w_search+0x84
mysqld`_mi_ck_write_btree+0xa5
mysqld`mi_write+0x344
mysqld`_ZN9ha_myisam9write_rowEPh+0x43
mysqld`_ZN7handler12ha_write_rowEPh+0x8d
mysqld`_ZL9end_writeP4JOINP13st_join_tableb+0x1a3
mysqld`_ZL20evaluate_join_recordP4JOINP13st_join_tablei+0x11e
mysqld`_Z10sub_selectP4JOINP13st_join_tableb+0x86
mysqld`_ZL9do_selectP4JOINP4ListI4ItemEP5TABLEP9Procedure+0xd9
mysqld`_ZN4JOIN4execEv+0x482
mysqld`_Z12mysql_selectP3THDPPP4ItemP10TABLE_LISTjR4ListIS1_ES2_...
mysqld`_Z13handle_selectP3THDP3LEXP13select_resultm+0x17d
mysqld`_ZL21execute_sqlcom_selectP3THDP10TABLE_LIST+0xa6
mysqld`_Z21mysql_execute_commandP3THD+0x124b
mysqld`_Z11mysql_parseP3THDPcjP12Parser_state+0x3e1
mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1619
mysqld`_Z24do_handle_one_connectionP3THD+0x1e5
mysqld`handle_one_connection+0x4c
libc.so.1`_thrp_setup+0xbc
libc.so.1`_lwp_start

Thursday, December 13, 12

Stack Profile Method, cont.

• Profiling, 27,053 unique stacks (already aggregated):

60 seconds of on-CPU MySQL

Thursday, December 13, 12

Stack Profile Method, cont.

• Profiling, 27,053 unique stacks (already aggregated):

60 seconds of on-CPU MySQL

First
Stack

Last
Stack

Size of
One Stack

Thursday, December 13, 12

Stack Profile Method, cont.

• Coalesce: Flame Graphs for on-CPU (DTrace/perf/...)

same dataset

Thursday, December 13, 12

Stack Profile Method, cont.

• Coalesce: perf events for on-CPU (also has interactive mode)
perf report | cat
[...]
Overhead Command Shared Object Symbol
........
#
 72.98% swapper [kernel.kallsyms] [k] native_safe_halt
 |
 --- native_safe_halt
 default_idle
 cpu_idle
 rest_init
 start_kernel
 x86_64_start_reservations
 x86_64_start_kernel

 9.43% dd [kernel.kallsyms] [k] acpi_pm_read
 |
 --- acpi_pm_read
 ktime_get_ts
 |
 |--87.75%-- __delayacct_blkio_start
 | io_schedule_timeout
 | balance_dirty_pages_ratelimited_nr
 | generic_file_buffered_write
[...]

Thursday, December 13, 12

Stack Profile Method, cont.: Example Toolset

• 1. Profile thread stack traces

• DTrace on-CPU sampling, off-CPU tracing

• 2. Coalesce

• Flame Graphs

• 3. Study stacks bottom-up

Thursday, December 13, 12

Stack Profile Method, cont.

• Pros:

• Can identify a wide range of issues, both on- and off-CPU

• Cons:

• Doesn’t identify issues with dependancies – eg, when
blocked on a mutex or CV

• If stacks aren’t obvious, can be time consuming to browse
code (assuming you have source access!)

Thursday, December 13, 12

Methodology Ordering

• A suggested order for applying previous methodologies:

• 1. Problem Statement Method

• 2. USE Method

• 3. Stack Profile Method

• 4. Workload Characterization Method

• 5. Drill-Down Analysis Method

• 6. Latency Analysis Method

Thursday, December 13, 12

Final Remarks

• Methodologies should:

• solve real issues quickly

• not mislead or confuse

• be easily learned by others

• You may incorporate elements from multiple methodologies
while working an issue

• methodologies don’t need to be followed strictly –
they are a means to an end

Thursday, December 13, 12

Final Remarks, cont.

• Be easily learned by others:

• Try tutoring/teaching – if students don’t learn it and solve
issues quickly, it isn’t working

• This was the inspiration for the USE Method – I was
teaching performance classes several years ago

• I’ve been teaching again recently, which inspired me to
document the Stack Profile Method (more classes in 2013)

Thursday, December 13, 12

References

• Gregg, B. 2013. Thinking Methodically About Performance. ACMQ
http://queue.acm.org/detail.cfm?id=2413037

• Streetlight Effect; http://en.wikipedia.org/wiki/Streetlight_effect
• Cockcroft, A. 1995. Sun Performance and Tuning. Prentice Hall.
• Hargreaves, A. 2011. I have a performance problem; http://

alanhargreaves.wordpress.com/2011/06/27/i-have-a-performance-problem

• McDougall, R., Mauro, J., Gregg, B. 2006. Solaris Performance and
Tools. Prentice Hall.

• Gregg, B., Mauro, J., 2011. DTrace: Dynamic Tracing in Oracle Solaris,
Mac OS X and FreeBSD, Prentice Hall

• Millsap, C., Holt, J. 2003. Optimizing Oracle Performance. O’Reilly.
• Pacheco, D. 2011. Welcome to Cloud Analytics. http://dtrace.org/blogs/

dap/2011/03/01/welcome-to-cloud-analytics/
• Gregg, B. 2013. Systems Performance, Prentice Hall (upcoming!) –

includes more methodologies

Thursday, December 13, 12

http://queue.acm.org/detail.cfm?id=2413037
http://queue.acm.org/detail.cfm?id=2413037
http://en.wikipedia.org/wiki/Streetlight_effect
http://en.wikipedia.org/wiki/Streetlight_effect
http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/

Methodology Origins

• Anti-Methodologies – Bryan Cantrill encouraged me to write these up,
and named them, while I was documenting other methodologies

• Problem Statement Method – these have been used by support teams
for a while; Alan Hargreaves documented it for performance

• Scientific Method – science!

• Latency Analysis Method – Cary Millsap has popularized latency
analysis recently with Method R

• USE Method – myself; inspired to write about methodology from Cary
Millsap’s work, while armed with the capability to explore methodology
due to team DTrace’s work

• Stack Profile Method (incl. flame graphs & off-CPU analysis) – myself

• Ad Hoc Checklist, Workload Characterization, and Drill-Down Analysis
have been around in some form for a while, as far as I can tell

Thursday, December 13, 12

Thank you!

• email: brendan@joyent.com

• twitter: @brendangregg

• blog: http://dtrace.org/blogs/brendan

• blog resources:
• http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/

• http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-
performance-checklist/

• http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-
checklist/

• http://dtrace.org/blogs/brendan/2011/05/18/file-system-latency-part-3/

• http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/

• http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/

Thursday, December 13, 12

mailto:brendan@joyent.com
mailto:brendan@joyent.com
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/
http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2011/05/18/file-system-latency-part-3/
http://dtrace.org/blogs/brendan/2011/05/18/file-system-latency-part-3/
http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/
http://dtrace.org/blogs/brendan/2011/07/08/off-cpu-performance-analysis/
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/

