
Analyzing
OS X Systems Performance

with the
USE Method

Brendan Gregg, Senior Performance Architect, Netflix	

March, 2014	

Device Interconnect (PCIe/USB)

Interface
Transports

I/O Controller Network Controller

FSB

Memory!
Bus

CPU

Northbridge

Darwin Operating System Hardware
XN

U
 K

er
ne

l
Applications

OSFMKBSD

Ethernet
IP

TCP/UDP

Block Devices

HFS+/...
VFS Sockets

System Libraries

System Call Interface Scheduler
Virtual!

Memory

I/O Kit

Find the Bottleneck

Disk Disk Port Port

DRAM

Southbridge

DMI

GPU

Other Devices

Device Drivers

This Talk

• Summarizes casual to serious performance analysis of OS X	

• From the systems perspective, not the application	

• Many application issues can be found easily this way	

• Covering not just current tools, but suggestions for future work	

• May change how you think about performance! 

whoami

• Senior Performance Architect at Netflix	

• Primary author of the DTrace book	

• Wrote many DTrace scripts included with OS X.  
Eg: dtruss, iosnoop, iotop, opensnoop, execsnoop,  
procsystime, bitesize.d, seeksize.d, setuids.d, etc...	

• These were ported and enhanced by Apple engineering (thanks!)	

• Created the USE method and USE method checklist for OS X

• The Tools Method	

• The USE Method	

• Future work

Agenda

The Tools Method

The Tools Method

• A tool-based performance analysis approach, commonly followed
today. For reference, I've called it the "Tools Method".	

• 1. List available performance tools	

• 2. For each tool, list its useful metrics	

• 3. For each metric, list possible interpretation	

• Simple, useful, but analysis is limited to what the tools provide easily

Tool Examples

• Activity Monitor	

• atMonitor, Temperature Monitor Lite	

• Command Line	

• DTrace	

• Instruments

Activity Monitor

• High level process and 
system sumaries. A GUI  
version of top(1)	

• Table shows processes 
by %CPU, memory	

• CPU load over time	

• Quit, info, and system  
diagnosis buttons

Activity Monitor
Network

• Quick way to see current  
and recent network 
throughput	

• Like the CPU summary,  
shows aggregate device 
stats, and not per-device

Activity Monitor
CPU Usage

• Per-CPU utilization from previous 0.5 - 5 seconds (tunable)	

• Handy to leave running. Look for single hot CPUs/threads

Activity Monitor
Floating CPU Window

• Earlier OS X also had a compact version (gone in Mavericks)	

• Was nice, but what I really want is a compact visualization for both
per-CPU and historical data

Activity Monitor
CPU/Disk Suggestion

• Could show both per-device and history using a utilization heat map:

• http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/

http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/

Activity Monitor
Sample Process

• The cog button ("System 
diagnostics options") has a 
"Sample process" option for 
profiling CPU code paths	

• Explains %CPU usage	

• Although output usually very 
long and time consuming to 
read (see scroll bar):

Activity Monitor
Flame Graphs ?

• Suggestion: include a 
Flame Graph view	

• Visualizes entire  
profile output in  
one screen	

• http://github.com/ 
brendangregg/ 
FlameGraph

https://github.com/brendangregg/FlameGraph

atMonitor

• 3rd party app. Version 2.7b crashes for me if "Top Window" is visible.	

• Shows many useful metrics: per-CPU, RAM, GPU, per-disk, and per-
network interface utilization perentages with histories.	

• Currently the easiest way to see GPU, disk, and network utilization. 	

• Utilization is easy to interpret. I/O per second is not.

Temperature Monitor Lite

• Another 3rd party application	

• Easy way to infer GPU utilization	

• Normal:	

• Video:

Command Line

• Accessed via the Terminal application	

• Numerous performance tools available, from UNIX/BSD/OSX	

• Eg, the uptime(1) command shows recent and historic CPU load:
$ uptime
14:36 up 43 days, 2:39, 30 users, load averages: 0.72 1.02 1.29

• There numbers are the 1, 5, and 15 minute load averages. Values are
really constants in an exponential decay moving sum.

• Interpret: if average > number of CPUs, then CPUs are overloaded

Command Line: top

$ top -o cpu
Processes: 272 total, 4 running, 268 sleeping, 1546 threads 14:47:36
Load Avg: 1.14, 0.75, 0.95 CPU usage: 13.95% user, 2.78% sys, 83.26% idle
SharedLibs: 12M resident, 5112K data, 0B linkedit.
MemRegions: 339218 total, 6689M resident, 184M private, 2153M shared.
PhysMem: 3429M wired, 6502M active, 5910M inactive, 15G used, 537M free.
VM: 552G vsize, 1052M framework vsize, 111312590(1) pageins, 1437348(0) pageouts
Networks: packets: 120030109/127G in, 70582570/38G out.
Disks: 22089197/1050G read, 26756359/1163G written.
!
PID COMMAND %CPU TIME #TH #WQ #PORT #MREGS RPRVT RSHRD RSIZE
602 bash 100.0 47:42.28 1/1 0 21 27 236K 816K 760K
94370 top 17.2 00:03.77 1/1 0 24 39 4368K 216K 5116K
52617 firefox 6.3 47:30:58 45/1 2 576- 177307+ 1984M+ 200M 2530M+
92489- Google Chrom 2.2 13:31.85 34 2 530 2454 273M 271M 734M
[...]

• top(1): high level process and system summary:

hey...

Command Line: vm_stat

$ vm_stat 1
Mach Virtual Memory Statistics: (page size of 4096 bytes, cache hits 0%)
 free active spec inactive wire faults copy 0fill reactive pageins pageout
101297 1662K 29920 1509998 888520 17650M 106072K 15926M 6833792 111312K 1437348
100919 1658K 29920 1509998 893230 2851 0 2043 0 0 0
101183 1658K 29918 1509998 893169 143 0 87 0 1 0
100517 1658K 29921 1509998 893354 396 3 136 0 2 0
 96590 1657K 29923 1514414 894426 5888 94 5146 0 2 0
 93184 1662K 28486 1514414 894484 14183 117 12521 0 0 0
 91224 1663K 28486 1514414 894886 5683 0 3454 0 0 0
 89195 1649K 29924 1514413 909225 11570 199 10050 0 4 0
 87550 1636K 29917 1514155 923179 24486 1432 12009 0 2134 0
 61596 1644K 28309 1515551 941688 49395 1446 46127 0 4941 0
 52932 1669K 28442 1515663 925755 70618 1731 53131 0 1221 0
 76395 1681K 28417 1515685 889983 30514 0 28072 0 428 0
 73520 1679K 28449 1515777 894905 20082 17 18077 0 107 0
 60335 1684K 29073 1515560 903152 39696 38 35535 0 1309 0
[...]

• vm_stat(1): virtual memory statistics, including free memory, paging

Command Line: iostat

$ iostat 1
 disk0 disk2 cpu load average
 KB/t tps MB/s KB/t tps MB/s us sy id 1m 5m 15m
 47.03 13 0.60 96.67 0 0.00 5 2 92 0.94 1.01 0.99
 972.42 19 18.02 128.00 141 17.60 2 3 95 0.94 1.01 0.99
 315.60 10 3.08 128.00 24 3.00 6 2 92 0.94 1.01 0.99
 4.00 1 0.00 0.00 0 0.00 6 2 92 0.94 1.01 0.99
 1024.00 8 7.99 128.00 69 8.61 6 2 92 0.94 1.01 0.99
 1024.00 18 17.97 128.00 143 17.85 2 2 95 0.86 0.99 0.99
 1024.00 17 16.98 128.00 142 17.72 2 2 96 0.86 0.99 0.99
 165.27 272 43.84 127.13 146 18.10 6 5 89 0.95 1.01 0.99
 1024.00 18 17.98 128.00 143 17.85 2 2 96 0.95 1.01 0.99
[...]

• iostat(1): block device I/O statistics. Disks, USB drives.

• No percent utilization/busy, like other OSes? Makes it hard to interpret.

Command Line: netstat

$ netstat -iI en0 1
 input (en0) output
 packets errs bytes packets errs bytes colls
 237 0 296232 167 0 18555 0
 26 0 19374 16 0 4617 0
 5 0 661 1 0 2020 0
 1601 0 2231882 535 0 50072 0
 3519 0 5027348 1005 0 62086 0
 1362 0 1923223 627 0 39699 0
 1338 0 1866404 296 0 17166 0
 878 0 1203230 182 0 14803 0
 8 0 1302 11 0 2900 0
[...]

• netstat(1): various network statistics. -i for interface stats:

• No percent utilization, but can figure it out: throughput / known max

Command Line: tcpdump

$ tcpdump -n
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en0, link-type EN10MB (Ethernet), capture size 65535 bytes
18:00:55.228744 IP 10.0.1.92.53 > 10.0.1.148.49228: 26359 1/0/0 A 69.192.253.15 (81)
18:00:55.311056 ARP, Reply 10.0.1.162 is-at 2c:54:2d:a4:25:4c, length 28
18:00:55.342793 IP 74.125.28.189.443 > 10.0.1.148.62998: Flags [P.], seq
3544891232:3544891287, ack 3832081572, win 661, options [nop,nop,TS val 2936982235 ecr
2331923799], length 55
18:00:55.342933 IP 10.0.1.148.62998 > 74.125.28.189.443: Flags [.], ack 55, win 8188,
options [nop,nop,TS val 2331932237 ecr 2936982235], length 0
18:00:56.477029 IP 10.0.1.148.50359 > 67.195.141.201.443: Flags [P.], seq
696365506:696365533, ack 1903095540, win 16384, length 27
18:00:56.477158 IP 10.0.1.148.50359 > 67.195.141.201.443: Flags [F.], seq 27, ack 1, win
16384, length 0
[...]

• tcpdump(1): sniff and examine network packets:

• Also dump to a file and examine later. Does incur overhead.

Observability So Far...

• We can see all the things!	

• Not really...

Device Interconnect (PCIe/USB)

Interface
Transports

I/O Controller Network Controller

FSB

Memory!
Bus

CPU

Northbridge

Darwin Operating System Hardware

XN
U

 K
er

ne
l

Applications

OSFMKBSD

Ethernet
IP

TCP/UDP

Block Devices

HFS+/...
VFS Sockets

System Libraries

System Call Interface Scheduler
Virtual!

Memory

Device Drivers
I/O Kit

Disk Disk Port Port

DRAM

Southbridge

DMI

GPU

Other Devices

Observability So Far...

iostat

netstat

netstat
ActivityMonitor

atMonitor

vm_stat

top
ActivityMonitor

atMonitor

top
ActivityMonitor

Temp.Monitor

tcpdump

DTrace

• Programmable, real-time, dynamic  
and static tracing	

• Write your own one-liners and 
scripts, or use other people's; 
including those in /usr/bin	

• There is a great book about it...

DTrace: Scripts

$ man -k dtrace
bitesize.d(1m) - analyse disk I/O size by process. Uses DTrace
cpuwalk.d(1m) - Measure which CPUs a process runs on. Uses DTrace
creatbyproc.d(1m) - snoop creat()s by process name. Uses DTrace
dappprof(1m) - profile user and lib function usage. Uses DTrace
dapptrace(1m) - trace user and library function usage. Uses DTrace
diskhits(1m) - disk access by file offset. Uses DTrace
dispqlen.d(1m) - dispatcher queue length by CPU. Uses DTrace
dtrace(1) - generic front-end to the DTrace facility
dtruss(1m) - process syscall details. Uses DTrace
errinfo(1m) - print errno for syscall fails. Uses DTrace
execsnoop(1m) - snoop new process execution. Uses DTrace
[...]

• Over 40 DTrace scripts are shipped with OS X (which I mostly wrote
originally). Listing them:

DTrace: iosnoop

$ iosnoop
 UID PID D BLOCK SIZE COMM PATHNAME
 503 176 R 148471184 8192 SystemUIServer ??/vm/swapfile10
 503 176 R 835310312 4096 SystemUIServer ??/vm/swapfile4
 503 92489 W 746204600 61440 Google Chrome ??/Chrome/.com.google.Chrome.hw1Inp
 503 92489 W 746204720 23472 Google Chrome ??/Default/.com.google.Chrome.76k4tG
 0 19 W 425711304 4096 syslogd ??/DiagnosticMessages/2014.02.14.asl
 0 19 W 57246896 4096 syslogd ??/DiagnosticMessages/StoreData
 0 19 W 425710304 4096 syslogd ??/DiagnosticMessages/2014.02.14.asl
 503 52617 W 214894232 4096 firefox ??/iw4rbel9.default/_CACHE_CLEAN_
 0 19 W 57246896 4096 syslogd ??/DiagnosticMessages/StoreData
 0 19 W 425710304 4096 syslogd ??/DiagnosticMessages/2014.02.14.asl
[...]

• iosnoop(1m): trace block device I/O

• Identify processes and files causing disk I/O

DTrace: hfsslower.d

$ ~/dtbook_scripts/Chap5/hfsslower.d 10
TIME PROCESS D KB ms FILE
2014 Feb 14 17:35:59 Terminal R 5751 16 data.data
2014 Feb 14 17:35:59 Terminal R 6166 17 data.data
2014 Feb 14 17:35:59 Terminal W 11921 15 data.data
[...]

• hfsslower.d: trace HFS calls slower than a threshold. Eg, 10 ms:

• Traces all application I/O to the file system, not just disk I/O	

• Script is on http://www.dtracebook.com

DTrace: execsnoop

$ execsnoop -v
STRTIME UID PID PPID ARGS
2014 Feb 14 19:40:55 503 94835 551 man
2014 Feb 14 19:40:55 503 94835 551 man
2014 Feb 14 19:40:55 503 94841 94837 groff
2014 Feb 14 19:40:55 503 94839 94837 tbl
2014 Feb 14 19:40:55 503 94840 94838 cat
2014 Feb 14 19:40:56 503 94845 94841 grotty
2014 Feb 14 19:40:56 503 94844 94841 troff
2014 Feb 14 19:40:56 503 94843 94842 less
2014 Feb 14 19:40:58 503 94846 92489 Google Chrome He
2014 Feb 14 19:41:03 503 94847 92489 Google Chrome He
[...]

• execsnoop(1m): trace process execution

• Shows what programs are launched

DTrace: dtruss

$ dtruss -en bash
 PID/THRD ELAPSD SYSCALL(args) = return
 475/0x1199: 87917 read(0x0, "a\0", 0x1) = 1 0
 475/0x1199: 12 write_nocancel(0x2, "a\0", 0x1) = 1 0
 475/0x1199: 3 sigprocmask(0x1, 0x0, 0x7FFF55F898E0) = 0x0 0
 475/0x1199: 2 sigaltstack(0x0, 0x7FFF55F898D0, 0x0) = 0 0
 475/0x1199: 48163 read(0x0, "t\0", 0x1) = 1 0
 475/0x1199: 10 write_nocancel(0x2, "t\0", 0x1) = 1 0
 475/0x1199: 3 sigprocmask(0x1, 0x0, 0x7FFF55F898E0) = 0x0 0
 475/0x1199: 2 sigaltstack(0x0, 0x7FFF55F898D0, 0x0) = 0 0
 475/0x1199: 12 write_nocancel(0x2, "m\0", 0x1) = 1 0
 475/0x1199: 2 sigprocmask(0x1, 0x0, 0x7FFF55F898E0) = 0x0 0
[...]

• dtruss(1m): trace system calls, from one or many processes

• dtruss is a script - edit it to add/modify it as desired

DTrace: sotop

$ sotop
 PROCESS PID READS WRITES READ_KB WRITE_KB CPU
 kernel_task 0 0 0 0 0 475
 firefox 52617 205 14 84 22 118
 Terminal 165 0 0 0 0 35
 WindowServer 89 0 0 0 0 34
 SIDPLAY 51232 0 0 0 0 31
 Google Chrome H 92513 6 12 0 1 14
 Google Chrome H 94477 2 1 0 0 13
 clear 94909 0 0 0 0 13
 Google Chrome 92489 16 5 0 0 12
 sh 94909 0 0 0 0 12
[...]

• sotop: summarize socket I/O by-process, top-style:

• Also from the DTrace book.

Instruments

• Advanced analysis GUI	

• Includes many 
"Instruments", which  
profile applications 
in different ways:	

• Data sources include 
DTrace, CPU counters

Instruments
Thread States

Instruments
Low Level CPU Counters

• Performance monitor 
counter (PMC) and 
performance monitor 
interrupts can be  
instrumented	

• Hard work, but can be 
used to understand 
bus and interconnect 
activity

Device Interconnect (PCIe/USB)

Interface
Transports

I/O Controller Network Controller

FSB

Memory!
Bus

CPU

Northbridge

XN
U

 K
er

ne
l

Applications

OSFMKBSD

Ethernet
IP

TCP/UDP

Block Devices

HFS+/...
VFS Sockets

System Libraries

System Call Interface Scheduler
Virtual!

Memory

Device Drivers
I/O Kit

Disk Disk Port Port

DRAM

Southbridge

DMI

GPU

Other Devices

Observability So Far...

iostat

netstat

netstat
ActivityMonitor

atMonitor

vm_stat

top
ActivityMonitor

atMonitor

top
ActivityMonitor

Temp.Monitor

dtruss

hfsslower

iosnoop

execsnoopsotop

tcpdump

Instruments

d
t
r
a
c
e

In
st

ru
m

en
ts

Tools Method in Practice

• Tools Method provides reasonable coverage	

• Some observability gaps, some uneven coverage	

• Can improve coverage by adding more tools: ps, ping, traceroute,
latency, df, sysctl, plockstat, opensnoop, dispqlen.d, runocc.d, nfsstat,
iopending, soconnect_mac.d, httpdstat.d, sc_usage, fs_usage, ...	

• I could keep covering tools for the rest of this talk...

Device Interconnect (PCIe/USB)

Interface
Transports

I/O Controller Network Controller

FSB

Memory!
Bus

CPU

Northbridge

XN
U

 K
er

ne
l

Applications

OSFMKBSD

Ethernet
IP

TCP/UDP

Block Devices

HFS+/...
VFS Sockets

System Libraries

System Call Interface Scheduler
Virtual!

Memory

Disk Disk Port

DRAM

Southbridge

DMI

GPU

Other Devicesiostat

netstat

netstat
ActivityMonitor

atMonitor

vm_stat

top
ActivityMonitor

atMonitor

top,ps
ActivityMonitor

Temp.Monitor

opensnoop

hfsslower.d
df,nfstat

iosnoop
iopending

execsnoopsotop

tcpdump

dapptrace

ping

Port

traceroute

plockstat

dtruss,sc_usage
errinfo,kill.d

dispqlen.d
runocc.d
latency

soconnect_mac.d,soaccept_mac.d

httpdstat.d

fs_usage

priclass.d
pridist.d

bitesize.d
seeksize.d

maclife.d
macvfssnoop.d

Most DTrace scripts are in /usr/bin
Some are from my DTrace book

and are available online

d
t
r
a
c
e

In
st

ru
m

en
ts

Instruments

Custom Instruments using 
CPU counters/interrupts can 

be added for bus observability

I/O Kit
Device Drivers

The Focus on Tools

• Useful, however, learning tools & metrics becomes laborious.	

• Still limited by what the tools provide, or provide easily.	

• You can try to approach this in a different way...

 Instead of starting with the tools, start with the questions

The USE Method

The USE Method

• For every resource, check:	

• 1. Utilization	

• 2. Saturation	

• 3. Errors

The USE Method

• For every resource, check:	

• 1. Utilization: time resource was busy, or degree used	

• 2. Saturation: degree of queued extra work	

• 3. Errors: any errors

Queueing System

Saturation

Utilization

Errors

X

• If it helps, consider  
all resources as a 
a queueing system:	

• Also check errors

Hardware Resources

• CPUs	

• Main Memory	

• Network Interfaces	

• Storage Devices	

• Controllers, Interconnects	

• Find the functional diagram and examine every item in the data path...

Device Interconnect (PCIe/USB)

Interface
Transports

I/O Controller Network Controller

FSB

Memory!
Bus

CPU

Northbridge

Hardware
Functional Diagram

Disk Disk Port Port

DRAM

Southbridge

DMI

GPU

Other Devices

• For each check:	

• 1. Utilization	

• 2. Saturation	

• 3. Errors

USE Method Checklists

• Build a checklist for all combinations, identifying tools/metrics to use

OS X Checklist

Resource Type Metric

CPU Utilization

CPU Saturation

CPU Errors

OS X Checklist

Resource Type Metric

CPU Utilization
system-wide: iostat 1, "us" + "sy"; per-cpu: DTrace [1]; Activity
Monitor → CPU Usage or Floating CPU Window; per-process:top
-o cpu, "%CPU"; Activity Monitor → Activity Monitor, "%CPU"; ...

CPU Saturation
system-wide: uptime, "load averages" > CPU count; latency,
"SCHEDULER" and "INTERRUPTS"; per-cpu: dispqlen.d (DTT),
non-zero "value"; runocc.d (DTT), non-zero "%runocc"; per-
process: Instruments → Thread States, "On run queue"; DTrace [2]

CPU Errors dmesg; /var/log/system.log; Instruments → Counters, for PMC and
whatever error counters are supported (eg, thermal throttling)

OS X Checklist

Resource Type Metric

CPU Utilization
system-wide: iostat 1, "us" + "sy"; per-cpu: DTrace [1]; Activity
Monitor → CPU Usage or Floating CPU Window; per-process:top
-o cpu, "%CPU"; Activity Monitor → Activity Monitor, "%CPU"; ...

CPU Saturation
system-wide: uptime, "load averages" > CPU count; latency,
"SCHEDULER" and "INTERRUPTS"; per-cpu: dispqlen.d (DTT),
non-zero "value"; runocc.d (DTT), non-zero "%runocc"; per-
process: Instruments → Thread States, "On run queue"; DTrace [2]

CPU Errors dmesg; /var/log/system.log; Instruments → Counters, for PMC and
whatever error counters are supported (eg, thermal throttling)

OS X Checklist, cont.

Resource Type Metric

Memory	

Capacity

Utilization

Memory	

Capacity Saturation

" Errors

OS X Checklist, cont.

Resource Type Metric

Memory	

Capacity

Utilization

system-wide: vm_stat 1, main memory free = "free" + "inactive", in
units of pages; Activity Monitor → Activity Monitor → System
Memory, "Free" for main memory; per-process: top -o rsize,
"RSIZE" is resident main memory size, "VSIZE" is virtual memory
size; ps -alx, "RSS" is resident set size, "SZ" is virtual memory size;
ps aux similar (legacy format)

Memory	

Capacity Saturation

system-wide: vm_stat 1, "pageout"; per-process: anonpgpid.d
(DTT), DTrace vminfo:::anonpgin [3] (frequent anonpgin == pain);
Instruments → Memory Monitor, high rate of "Page Ins" and "Page
Outs"; sysctl vm.memory_pressure [4]	

!

" Errors System Information → Hardware → Memory, "Status" for physical
failures; DTrace failed malloc()s

OS X Checklist, cont.

Resource Type Metric

Memory	

Capacity

Utilization

system-wide: vm_stat 1, main memory free = "free" + "inactive", in
units of pages; Activity Monitor → Activity Monitor → System
Memory, "Free" for main memory; per-process: top -o rsize,
"RSIZE" is resident main memory size, "VSIZE" is virtual memory
size; ps -alx, "RSS" is resident set size, "SZ" is virtual memory size;
ps aux similar (legacy format)

Memory	

Capacity Saturation

system-wide: vm_stat 1, "pageout"; per-process: anonpgpid.d
(DTT), DTrace vminfo:::anonpgin [3] (frequent anonpgin == pain);
Instruments → Memory Monitor, high rate of "Page Ins" and "Page
Outs"; sysctl vm.memory_pressure [4]	

!

" Errors System Information → Hardware → Memory, "Status" for physical
failures; DTrace failed malloc()s

OS X Checklist, cont.
• Full list: http://www.brendangregg.com/USEmethod/use-macosx.html	

• Includes 
references 
from earlier  
tables 

Software Resources

• Can be studied using USE metrics as well, if possible	

• OS X Checklist includes some example software resources:	

• Processes, file descriptors, kernel mutexes, user-level mutexes

Mutex Lock

• Can you think of what these could mean for a mutex lock?:	

• Utilization	

• Saturation	

• Errors

Mutex Lock

• Can you think of what these could mean for a mutex lock?:	

• Utilization: held time per second	

• Saturation: measure of contention time or waiters	

• Errors: EDEADLK, EINVAL

Future Work

Future Work

• Tools/Metrics for USE Method	

• More methodologies, and then tools

USE Method Tools

• Tools can be developed to fetch USE metrics more easily	

• Especially for busses and interconnects	

• Would love to see USE metrics in Activity Monitor

USE Method New Uses

• Can be applied new areas, developing new metrics	

• May not always work, but worth trying	

• Find a functional diagram of your system, application, or environment,
and look for U.S.E. metrics for each component

Device Interconnect (PCIe/USB)

Interface
Transports

I/O Controller Network Controller

FSB

Memory!
Bus

CPU

Northbridge

Darwin Operating System Hardware
XN

U
 K

er
ne

l

Disk Disk Port Port

DRAM

Southbridge

DMI

GPU

Other!
Devices

USE Metrics for all of:
Applications

OSFMKBSD

Ethernet
IP

TCP/UDP

Block Devices

HFS+/...
VFS Sockets

System Libraries

System Call Interface Scheduler
Virtual!

Memory

I/O Kit
Device Drivers

Stranger Example: TCP
$ netstat -s
tcp:
 80444499 packets sent
 28706719 data packets (3613656050 bytes)
 76599 data packets (65712152 bytes) retransmitted
 68 resends initiated by MTU discovery
 41687640 ack-only packets (248964 delayed)
 0 URG only packets
 0 window probe packets
 9286129 window update packets
 707685 control packets
 0 data packets sent after flow control
 177149270 packets received
 16296459 acks (for 3602941580 bytes)
 556237 duplicate acks
 0 acks for unsent data
 154775303 packets (1214952475 bytes) received in-sequence
 200501 completely duplicate packets (151553377 bytes)
 1884 old duplicate packets
 79 packets with some dup. data (17270 bytes duped)
 6102493 out-of-order packets (4236017281 bytes)
 67 packets (0 bytes) of data after window
 0 window probes
 14180 window update packets
 72825 packets received after close
 85 bad resets
 0 discarded for bad checksums
 0 discarded for bad header offset fields
 0 discarded because packet too short
 378961 connection requests
 613 connection accepts
 37 bad connection attempts
 0 listen queue overflows
 332688 connections established (including accepts)
 381180 connections closed (including 13038 drops)
 14527 connections updated cached RTT on close
 14527 connections updated cached RTT variance on close
 5495 connections updated cached ssthresh on close
 1721 embryonic connections dropped
 16204052 segments updated rtt (of 8674926 attempts)
 374184 retransmit timeouts
 4465 connections dropped by rexmit timeout
 0 connections dropped after retransmitting FIN
 91 persist timeouts
 0 connections dropped by persist timeout
 12784 keepalive timeouts
 262 keepalive probes sent
 1214 connections dropped by keepalive
 1312411 correct ACK header predictions
 152849516 correct data packet header predictions
 17244 SACK recovery episodes
 21329 segment rexmits in SACK recovery episodes
 25852298 byte rexmits in SACK recovery episodes
 180630 SACK options (SACK blocks) received
 5682514 SACK options (SACK blocks) sent
 0 SACK scoreboard overflow
[...]

• "netstat -s" output has over 50 metrics 
for TCP	

• Do you understand them all?	

• Could USE metrics provide a high level  
summary, treating TCP as a software 
resource? (might be a stretch)

USE Method: TCP

• TCP as a software resource metrics:	

• Utilization	

• Saturation	

• Errors

USE Method: TCP

• TCP as a software resource metrics:	

• Utilization: time data was buffered per second	

• Saturation: listen queue overflows	

• Errors: bad connection attempts, bad resets, bad checksums, ...	

• I think I'd classify retransmits and duplicates as errors.

Other Methodologies

• Other methodologies include:	

• Drill Down Analysis Method	

• Workload Characterization	

• Thread State Analysis (TSA) Method	

• These too can pose questions that tools then answer

References

• http://www.brendangregg.com/USEmethod/use-macosx.html	

• http://www.brendangregg.com/usemethod.html	

• http://dtracebook.com - has DTrace book scripts online	

• http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtrace-scripts-for-mac-os-x/	

• http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/ - utilization
heat maps	

• http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html - flame graphs

http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtrace-scripts-for-mac-os-x/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Thanks

• http://www.brendangregg.com	

• bgregg@netflix.com	

• @brendangregg

