
RxNetty vs Tomcat
Performance Results

Brendan Gregg; Performance and Reliability Engineering
Nitesh Kant, Ben Christensen; Edge Engineering
updated: Apr 2015



Results based on

● The “Hello Netflix” benchmark (wsperflab)
● Tomcat
● RxNetty
● physical PC

○ Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz: 4 cores, 1 thread per core

● OpenJDK 8
○ with frame pointer patch

● Plus testing in other environments



Hello Netflix



RxNetty vs Tomcat performance

In a variety of tests, RxNetty has been faster than Tomcat. 
This study covers:
1. What specifically is faster?
2. By how much?
3. Why?



1. What specifically is faster?



1. What specifically is faster?

● CPU consumption per request
○ RxNetty consumes less CPU than Tomcat
○ This also means that a given server (with fixed CPU capacity) can 

deliver a higher maximum rate of requests per second
● Latency under load

○ Under high load, RxNetty has a lower latency distribution than Tomcat



2. By how much?



2. By how much?

The following 5 graphs show performance vs load (clients)
1. CPU consumption per request
2. CPU resource usage vs load
3. Request rate
4. Request average latency
5. Request maximum latency

Bear in mind these results are for this environment, and this 
workload



2.1. CPU Consumption Per Request
● RxNetty has 

generally lower 
CPU consumption 
per request (over 
40% lower)

● RxNetty keeps 
getting faster 
under load, 
whereas Tomcat 
keeps getting 
slower



2.2. CPU Resource Usage vs Load
● Load testing drove 

the server’s CPUs 
to near 100% for 
both frameworks



2.3. Request Rate
● RxNetty achieved 

a 46% higher 
request rate

● This is mostly due 
to the lower CPU 
consumption per 
request



2.4. Request Average Latency
● Average latency 

increases past 
the req/sec knee 
point (when CPU 
begins to be 
saturated)

● RxNetty’s 
latency 
breakdown 
happens with 
much higher 
load



2.5. Request Maximum Latency
● The degradation 

in maximum 
latency for 
Tomcat is much 
more severe



3. Why?



3. Why?

1. CPU consumption per request
○ RxNetty is lower due to its framework code and lower object allocation 

rate, which in turn reduces GC overheads
○ RxNetty also trends lower due to its event loop architecture, which 

reduces thread migrations under load, which improves CPU cache 
warmth and memory locality, which improves CPU Instructions Per 
Cycle (IPC), which lowers CPU cycle consumption per request

2. Lower latencies under load
○ Tomcat has higher latencies under load due to its thread pool 

architecture, which involves thread pool locks (and lock contention) 
and thread migrations to service load



3.1. CPU Consumption Per Request

Studied using:
1. Kernel CPU flame graphs
2. User CPU flame graphs
3. Migration rates
4. Last Level Cache (LLC) Loads & IPC
5. IPC & CPU per request



3.1.1. Kernel CPU Flame Graphs



read

futex

write

poll

Tomcat



epoll

writeread

RxNetty



3.1.1. Kernel CPU Time Differences

CPU system time delta per request: 0.07 ms
● Tomcat futex(), for thread pool management (0.05 ms)
● Tomcat poll() vs RxNetty epoll() (0.02 ms extra)



3.1.2. User CPU Flame Graphs



User CPU Flame Graph: Tomcat

(many differences)



User CPU Flame Graph: RxNetty



3.1.2. User CPU Time Differences

CPU user time delta per request: 0.14 ms
Differences include:
● Extra GC time in Tomcat
● Framework code differences
● Socket read library
● Tomcat thread pool calls



3.1.3. Thread Migrations
● As load 

increases, 
RxNetty begins 
to experience 
lower thread 
migrations

● There is enough 
queued work for 
event loop 
threads to keep 
servicing 
requests without 
switching

rxNetty
migrations



3.1.4. LLC Loads & IPC
● … The reduction 

in thread 
migrations keeps 
threads on-CPU, 
which keeps 
caches warm, 
reducing LLC 
loads, and 
improving IPC rxNetty

LLC loads / req

rxNetty IPC



3.1.5. IPC & CPU Per Request
● … A higher IPC 

leads to lower 
CPU usage per 
request

rxNetty CPU / req

rxNetty IPC



3.2. Lower Latencies Under Load

Studied using:
1. Migration rates (previous graph)
2. Context-switch flame graphs
3. Chain graphs



3.2.2. Context Switch Flame Graphs

● These identify the cause of context switches, and 
blocking events.
○ They do not quantify the magnitude of off-CPU time; these are for 

identification of targets for further study
● Tomcat has additional futex context switches from 

thread pool management



Context Switch Flame Graph: Tomcat

ThreadPool
Executor locks



Context Switch Flame Graph: RxNetty

(epoll)



3.2.3. Chain Graphs

● These quantify the magnitude of off-CPU (blocking) 
time, and show the chain of wakeup stacks that the 
blocked thread was waiting on
○ x-axis: blocked time
○ y-axis: blocked stack, then wakeup stacks



Chain Graph: Tomcat

XXX

Normal blocking path: 
server thread waits on 
backend network I/O

Tomcat blocked on 
itself: thread pool locks

Chain Graph: Tomcat
server: java-11516
backend: java-18008



Reasoning

● On a system with more CPUs (than 4), Tomcat will 
perform even worse, due to the earlier effects.

● For applications which consume more CPU, the benefits 
of an architecture change diminish.



Summary



Under light load, both have 
similar performance, with 
RxNetty using less CPU

With increased load, 
RxNetty begins to migrate 
less, improving IPC, and 
CPU usage per request

At high load, RxNetty 
delivers a higher req rate, 
with a lower latency 
distribution due to its 
architecture


