
Stop the Guessing

Performance Methodologies for
Production Systems

Brendan Gregg

Lead Performance Engineer, Joyent

Wednesday, June 19, 13

Audience
 This is for developers, support, DBAs, sysadmins
 When perf isn’t your day job, but you want to:

- Fix common performance issues, quickly
- Have guidance for using performance monitoring tools

 Environments with small to large scale production systems

Wednesday, June 19, 13

whoami
 Lead Performance Engineer: analyze everything from apps to metal
 Work/Research: tools, visualizations, methodologies
 Methodologies is the focus of my next book

Wednesday, June 19, 13

 Joyent
 High-Performance Cloud Infrastructure

- Public/private cloud provider
 OS Virtualization for bare metal performance
 KVM for Linux and Windows guests
 Core developers of SmartOS and node.js

Wednesday, June 19, 13

Performance Analysis
 Where do I start?
 Then what do I do?

Wednesday, June 19, 13

Performance Methodologies
 Provide

- Beginners: a starting point
- Casual users: a checklist
- Guidance for using existing tools: pose questions to ask

 The following six are for production system monitoring

Wednesday, June 19, 13

Production System Monitoring
 Guessing Methodologies

- 1. Traffic Light Anti-Method
- 2. Average Anti-Method
- 3. Concentration Game Anti-Method

 Not Guessing Methodologies
- 4. Workload Characterization Method
- 5. USE Method
- 6. Thread State Analysis Method

Wednesday, June 19, 13

Traffic Light Anti-Method

Wednesday, June 19, 13

Traffic Light Anti-Method
 1. Open monitoring dashboard
 2. All green? Everything good, mate.

= BAD
= GOOD

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Performance is subjective

- Depends on environment, requirements
- No universal thresholds for good/bad

 Latency outlier example:
- customer A) 200 ms is bad
- customer B) 2 ms is bad (an “eternity”)

 Developer may have chosen thresholds by guessing

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Performance is complex

- Not just one threshold required, but multiple different tests
 For example, a disk traffic light:

- Utilization-based: one disk at 100% for less than 2 seconds means green
(variance), for more than 2 seconds is red (outliers or imbalance), but if all
disks are at 100% for more than 2 seconds, that may be green (FS flush)
provided it is async write I/O, if sync then red, also if their IOPS is less than
10 each (errors), that’s red (sloth disks), unless those I/O are actually huge,
say, 1 Mbyte each or larger, as that can be green, ... etc ...

- Latency-based: I/O more than 100 ms means red, except for async writes
which are green, but slowish I/O more than 20 ms can red in combination,
unless they are more than 1 Mbyte each as that can be green ...

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Types of error:

- I. False positive: red instead of green
- Team wastes time

- II. False negative: green insead of red
- Performance issues remain undiagnosed
- Team wastes more time looking elsewhere

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Subjective metrics (opinion):

- utilization, IOPS, latency
 Objective metrics (fact):

- errors, alerts, SLAs
 For subjective metrics, use

weather icons
- implies an inexact science,

with no hard guarantees
- also attention grabbing

 A dashboard can use both as
appropriate for the metric

http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/

Traffic Light Anti-Method, cont.
 Pros:

- Intuitive, attention grabbing
- Quick (initially)

 Cons:
- Type I error (red not green): time wasted
- Type II error (green not red): more time wasted & undiagnosed errors
- Misleading for subjective metrics: green might not mean what you think it

means - depends on tests
- Over-simplification

Wednesday, June 19, 13

Average Anti-Method

Wednesday, June 19, 13

Average Anti-Method
 1. Measure the average (mean)
 2. Assume a normal-like distribution (unimodal)
 3. Focus investigation on explaining the average

Wednesday, June 19, 13

Average Anti-Method: You Have

mean stddevstddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: You Guess

mean stddevstddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: Reality

mean stddevstddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: Reality x50

http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/
http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/

Average Anti-Method: Examine the Distribution
 Many distributions aren’t normal, gaussian, or unimodal
 Many distributions have outliers

- seen by the max; may not be visible in the 99...th percentiles
- influence mean and stddev

Wednesday, June 19, 13

Average Anti-Method: Outliers

mean stddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: Visualizations
 Distribution is best understood by examining it

- Histogram summary
- Density Plot detailed summary (shown earlier)
- Frequency Trail detailed summary, highlights outliers (previous slides)
- Scatter Plot show distribution over time
- Heat Map show distribution over time, and is scaleable

Wednesday, June 19, 13

Average Anti-Method: Heat Map

http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns
http://queue.acm.org/detail.cfm?id=1809426

Time (s)

La
te

nc
y

(u
s)

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://queue.acm.org/detail.cfm?id=1809426
http://queue.acm.org/detail.cfm?id=1809426

Average Anti-Method
 Pros:

- Averages are versitile: time series line graphs, Little’s Law
 Cons:

- Misleading for multimodal distributions
- Misleading when outliers are present
- Averages are average

Wednesday, June 19, 13

Concentration Game Anti-Method

Wednesday, June 19, 13

Concentration Game Anti-Method
 1. Pick one metric
 2. Pick another metric
 3. Do their time series look the same?

- If so, investigate correlation!
 4. Problem not solved? goto 1

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.

App Latency

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.

NO

App Latency

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.

YES!

App Latency

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.
 Pros:

- Ages 3 and up
- Can discover important correlations between distant systems

 Cons:
- Time consuming: can discover many symptoms before the cause
- Incomplete: missing metrics

Wednesday, June 19, 13

Workload Characterization Method

Wednesday, June 19, 13

Workload Characterization Method
 1. Who is causing the load?
 2. Why is the load called?
 3. What is the load?
 4. How is the load changing over time?

Wednesday, June 19, 13

Workload Characterization Method, cont.
 1. Who: PID, user, IP addr, country, browser
 2. Why: code path, logic
 3. What: targets, URLs, I/O types, request rate (IOPS)
 4. How: minute, hour, day

 The target is the system input (the workload)
not the resulting performance

SystemWorkload

Wednesday, June 19, 13

Workload Characterization Method, cont.
 Pros:

- Potentially largest wins: eliminating unnecessary work
 Cons:

- Only solves a class of issues – load
- Can be time consuming and discouraging – most attributes examined will not

be a problem

Wednesday, June 19, 13

USE Method

Wednesday, June 19, 13

USE Method
 For every resource, check:
 1. Utilization
 2. Saturation
 3. Errors

Wednesday, June 19, 13

USE Method, cont.
 For every resource, check:
 1. Utilization: time resource was busy, or degree used
 2. Saturation: degree of queued extra work
 3. Errors: any errors

 Identifies resource bottnecks
quickly

Saturation

Errors

X Utilization

Wednesday, June 19, 13

USE Method, cont.
 Hardware Resources:

- CPUs
- Main Memory
- Network Interfaces
- Storage Devices
- Controllers
- Interconnects

 Find the functional diagram and examine every item in the data path...

Wednesday, June 19, 13

USE Method, cont.: System Functional Diagram

DRAM CPU
1 DRAM

CPU
Interconnect

Memory
Bus

Memory
Bus

I/O Bridge

I/O Controller Network Controller

Disk Disk Port Port

I/O Bus

Expander Interconnect

Interface
Transports

CPU
1

For each check:
1. Utilization
2. Saturation
3. Errors

Wednesday, June 19, 13

USE Method, cont.: Linux System Checklist
Resource Type Metric

CPU Utilization

per-cpu: mpstat -P ALL 1, “%idle”; sar -P ALL, “%idle”;
system-wide: vmstat 1, “id”; sar -u, “%idle”; dstat -c, “idl”;
per-process:top, “%CPU”; htop, “CPU%”; ps -o pcpu; pidstat
1, “%CPU”; per-kernel-thread: top/htop (“K” to toggle), where VIRT
== 0 (heuristic).

CPU Saturation

system-wide: vmstat 1, “r” > CPU count [2]; sar -q, “runq-sz” >
CPU count; dstat -p, “run” > CPU count; per-process: /proc/PID/
schedstat 2nd field (sched_info.run_delay); perf sched latency
(shows “Average” and “Maximum” delay per-schedule); dynamic
tracing, eg, SystemTap schedtimes.stp “queued(us)”

CPU Errors perf (LPE) if processor specific error events (CPC) are available; eg,
AMD64′s “04Ah Single-bit ECC Errors Recorded by Scrubber”

...

http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/

USE Method, cont.: Monitoring Tools
 Average metrics don’t work: individual components can become bottlenecks
 Eg, CPU utilization
 Utilization heat map on the right

shows 5,312 CPUs for 60 secs;
can still identify “hot CPUs”

100

0

U
til

iz
at

io
n

Time

darkness == # of CPUs

hot CPUs

http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/

USE Method, cont.: Other Targets
 For cloud computing, must study any resource limits as well as physical; eg:

- physical network interface U.S.E.
- AND instance network cap U.S.E.

 Other software resources can also be studied with USE metrics:
- Mutex Locks
- Thread Pools

 The application environment can also be studied
- Find or draw a functional diagram
- Decompose into queueing systems

Wednesday, June 19, 13

USE Method, cont.: Homework
 Your ToDo:

- 1. find a system functional diagram
- 2. based on it, create a USE checklist on your internal wiki
- 3. fill out metrics based on your available toolset
- 4. repeat for your application environment

 You get:
- A checklist for all staff for quickly finding bottlenecks
- Awareness of what you cannot measure:
- unknown unknowns become known unknowns
- ... and known unknowns can become feature requests!

Wednesday, June 19, 13

USE Method, cont.
 Pros:

- Complete: all resource bottlenecks and errors
- Not limited in scope by available metrics
- No unknown unknowns – at least known unknowns
- Efficient: picks three metrics for each resource –

from what may be hundreds available
 Cons:

- Limited to a class of issues: resource bottlenecks

Wednesday, June 19, 13

Thread State Analysis Method

Wednesday, June 19, 13

Thread State Analysis Method
 1. Divide thread time into operating system states
 2. Measure states for each application thread
 3. Investigate largest non-idle state

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 2 State
 A minimum of two states:

On-CPU

Off-CPU

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 2 State
 A minimum of two states:

 Simple, but off-CPU state ambiguous without further division

On-CPU executing
spinning on a lock

Off-CPU

waiting for a turn on-CPU
waiting for storage or network I/O
waiting for swap ins or page ins
blocked on a lock
idle waiting for work

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 6 State
 Six states, based on Unix process states:

Executing

Runnable

Anonymous Paging

Sleeping

Lock

Idle

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 6 State
 Six states, based on Unix process states:

 Generic: works for all applications

Executing on-CPU

Runnable and waiting for a turn on CPU

Anonymous Paging runnable, but blocked waiting for page ins

Sleeping waiting for I/O: storage, network, and data/text page ins

Lock waiting to acquire a synchronization lock

Idle waiting for work

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 As with other methodologies, these pose questions to answer

- Even if they are hard to answer
 Measuring states isn’t currently easy, but can be done

- Linux: /proc, schedstats, delay accounting, I/O accounting, DTrace
- SmartOS: /proc, microstate accounting, DTrace

 Idle state may be the most difficult: applications use different techniques to
wait for work

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 States lead to further investigation and actionable items:

Executing Profile stacks; split into usr/sys; sys = analyze syscalls

Runnable Examine CPU load for entire system, and caps

Anonymous Paging Check main memory free, and process memory usage

Sleeping Identify resource thread is blocked on; syscall analysis

Lock Lock analysis

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 Compare to database query time. This alone can be misleading, including:

- swap time (anonymous paging) due to a memory misconfig
- CPU scheduler latency due to another application

 Same for any “time spent in ...” metric
- is it really in ...?

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 Pros:

- Identifies common problem sources, including from other applications
- Quantifies application effects: compare times numerically
- Directs further analysis and actions

 Cons:
- Currently difficult to measure all states

Wednesday, June 19, 13

More Methodologies
 Include:

- Drill Down Analysis
- Latency Analysis
- Event Tracing
- Scientific Method
- Micro Benchmarking
- Baseline Statistics
- Modelling

 For when performance is your day job

Wednesday, June 19, 13

Stop the Guessing
 The anti-methodolgies involved:

- guesswork
- beginning with the tools or metrics (answers)

 The actual methodolgies posed questions, then sought metrics to answer them
 You don’t need to guess – post-DTrace, practically everything can be known
 Stop guessing and start asking questions!

Wednesday, June 19, 13

Thank You!
 email: brendan@joyent.com
 twitter: @brendangregg
 github: https://github.com/brendangregg
 blog: http://dtrace.org/blogs/brendan
 blog resources:

- http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard
- http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails
- http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns
- http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist
- http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization

Wednesday, June 19, 13

mailto:brendan@joyent.com
mailto:brendan@joyent.com
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/
http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/
http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/

